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Abstract. We present an analytical and numerical study of noise-assisted quantum

exciton (electron) transfer (ET) in a dimer consisting of donor and acceptor, modeled

by interacting continuous electron bands of finite widths. We start with discrete energy

levels for both bands. The interaction with the environment is modeled by a stationary

stochastic process (noise) acting on all the donor and acceptor energy levels. Then, by

using a continuous limit for the electron spectra, we derive integro-differential equations

for the ET dynamics between the two bands. Finally, we derive from these equations

rate-type differential equations for the ET dynamics. We formulate the conditions

of validity of the rate-type equations. We consider different regions of parameters

characterizing the widths of the donor and acceptor bands and the strength of the

dimer-noise interaction. For a simplified model with a single energy level donor and

a continuous acceptor band, we derive a generalized simple analytic expression and

provide numerical simulations for the ET rate. They are consistent with Wigner-

Weisskopf, Förster-type, and Marcus-type expressions, in their corresponding regime

of parameters. For a weak dimer-noise interaction, our approach leads to the Wigner-

Weisskopf ET rate, or to the Förster-type ET rate, depending on other parameters.
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In the limit of strong dimer-noise interaction, our approach is non-perturbative in

the dimer-noise interaction constant, and it recovers the Marcus-type ET rate. Our

analytic results are confirmed by numerical simulations. We demonstrate how our

theoretical results are modified when both the donor and the acceptor are described

by finite bands. We also show that, for a relatively wide acceptor band, the efficiency

of the ET from donor to acceptor can be close to 100% for a broad range of noise

amplitudes, for both “downhill” and “uphill” ET, for sharp and flat redox potentials,

and for reasonably short times. We discuss possible application of our approach.

PACS numbers: 87.15.ht, 05.60.Gg, 82.39.Jn
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1. Introduction

The mathematical modeling of excitonic and electron transfer (ET) in mesoscopic

and biological systems has recently attracted much attention [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In this respect, the common features

of these systems are: (i) the ET takes place between donor and acceptor with finite

bandwidths [2, 3, 21, 22, 23] and (ii) the interaction between donor and acceptor

bands, and the interaction of the dimer with environment should be taken into account.

In real systems, the Hilbert space, which defines the structure of the electron donor

(acceptor) energy band (such as the bandwidth and the density of states), can be very

complicated [21, 22, 23]. The interaction, V (E), between donor and acceptor bands

can be a complicated function of energy, E. The environment, in which the dimer

is embedded, is different in different systems. Usually, in theoretical approaches, the

environment is modeled by vibrational bosonic modes [6] or by stochastic processes

[24, 25, 26, 27, 28]. In particular, the exciton transfer in light harvesting complexes

(LHCs) and the electron transfer in primary processes of charge separation in the

reaction centers (RCs) of photosynthetic bio-complexes such as plants, eukaryotic algae

and cyanobacteria, take place on a very short time-scale, of the order of 0.1 - 10

ps. Generally, these processes (i) involve a heat transfer between the dimer and the

environment and (ii) increase the entropy of the dimer (diabatic processes), and they

cannot be considered in the framework of the equilibrium statistical approaches. (For

discussion see, for example, [7, 8, 9, 10, 11, 12, 13, 29], and references therein.) The

mechanisms of interaction between the dimer and the environment are the subjects

of many approaches. They include different modifications of the perturbation theory,

such as a well-known Redfield theory (RT) [30], modified Redfield theory (MRT) [31],

coherent modified Redfield theory (CMRT) [32], polaron transformation [33, 34], non-

perturbative approaches [35, 36], hierarchical equations of motion [37, 38], and many

others.

One of the main characteristics of the ET processes in these systems is the ET

rate. In different regions of parameters, V and λ (interaction with environment),

the ET rate has the well-known analytic expressions, such as the Fermi golden rule

(perturbation in V and λ) [29]), Förster (modification of Fermi golden rule [29, 39]),

Wigner-Weisskopf (wide acceptor band [40, 41]), and Marcus limits (perturbation in V

and non-perturbative regime in λ [17, 18, 19]).

The main goal of the present paper is to develop a mathematical approach which

gives a simple analytic generalized expression for the ET rate, which has all four limits

mentioned above. In order to do this, we consider some simplifications of our model.

We study analytically and numerically the ET between the donor and the acceptor,

which are modeled by continuous energy bands of finite width, centered at energies,

Ed
0 and Ea

0 , respectively. In order to derive consistently the analytic expression for

a generalized ET rate, we start in Sec. 2 with an effective system of corresponding

discrete energy levels. The interaction between the donor and acceptor energy levels is
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provided by non-diagonal matrix elements, Vmn(E), which smoothly depend on energy.

The environment is modeled by a stochastic process (telegraph noise) which has two

characteristics: the amplitude and the correlation time. Our approach provides: (i) the

derivation of a closed set of integro-differential equations for the reduced density matrix

(averaged over noise), obtained by taking a continuous limit of a model with discrete

electron energy levels, (ii) the derivation of simplified rate-type differential equations

describing the ET between interacting donor-acceptor bands with finite bandwidths,

and (iii) the identification of the conditions of validity of the rate-type equations.

The distance between the bands, bandwidths, and the intensity of noise can be

varied in our theory. This allows us to consider the ET rates and efficiency for narrow

or wide electron bands, for bands overlapping to different degrees, and for various noise

intensities. Our approach is quite general and can be applied to a variety of systems

with noisy environment.

Among our main results are the following.

1) We derive a closed set of the rate-type differential equations for interacting donor-

acceptor bands of finite widths and for different intensities of the external noise. These

rate-type equations have a simple form, which makes them useful for both theoretical

modeling and interpretation of experimental results on ET processes in complex systems.

2) When the donor consists of a single energy level, we obtain an analytic expression

for the generalized ET rate. It is consistent with Wigner-Weisskopf, Förster-type,

and Marcus-type results in their appropriate regimes. We compare our analytic and

numerical results for a continuous acceptor band with the results for the acceptor band

consisting of a large number of discrete energy levels.

3) We demonstrate that in the above case 2), there exists an important parameter

in the ET rate which includes the electron bandwidths and the dimer-noise interaction

constant and which characterizes the asymptotic ET rate for large times.

4) We calculate analytically the ET dynamical rates for two interacting bands. We

show the difference in the ET dynamics for two models, when the donor consists of a

single level and when it has a band of energies.

5) We find explicitly the conditions of applicability of our approach in all considered

limits.

6) We demonstrate that the efficiency of populating the acceptor can be close to

100 % in relatively short times, for both “downhill” and “uphill” redox potentials.

The paper is organized as follows. In Sec. 2, a simplified model is considered in

which the donor has a single electron energy level, and the acceptor is modeled by an

electron band of finite width. Diagonal noise acts on both the donor and the acceptor.

A set of simplified rate-type differential equations is derived. Analytic expressions for

time-dependent and asymptotic ET rates are presented. In Sec. 3, we present the results

for a generalized model when both, donor and acceptor, are modeled by electron bands

of finite width. In Appendix A, we compare the results of a discrete model, when the

donor has a single energy level and the acceptor includes many energy levels, with the

solutions of the rate-type equations. We also present in Appendix A, the illustration
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of application of our results to the dimers based on Chla and Chlb molecules in LHCs.

In the Conclusion, we summarize our results, and discuss possible applications. The

Supplemental Material (SM) contains technical details, http://. . . .

2. A simplified model

In this section, we consider a simplified model shown in Fig. 1. A single electron donor

site, denoted by the quantum state, |d〉, interacts with an acceptor site with 2Na + 1

(Na � 1) quasi-degenerate discrete energy levels.

Figure 1. (Color online) Schematic of our simplified model consisting of the donor

with a single electron energy level, and the acceptor with a discrete (nearly continuous)

electron spectrum. The donor energy level and the center of the acceptor band are

indicated by red color.

In the presence of a diagonal noise, the quantum dynamics of the ET can be

described by the Hamiltonian [1],

H(t) = (E
(d)
0 + λd(t))|d〉〈d|+

Na∑
n=−Na

(En + λa(t))|n〉〈n|

+
Na∑

n=−Na

(V ∗n |n〉〈d|+ Vn|d〉〈n|), (1)

where E
(d)
0 is the energy level of the donor, E

(a)
0 is the center of the acceptor band, λd(t)

and λa(t) describe the noise acting on the donor and the acceptor, respectively. As one

can see from (1), this stochastic environment interacts dipole-wise with the dimer. This

environment is characterized by two main parameters, the amplitude and the correlation

rate (see below), and it describes many non-equilibrium processes, including the spectral

density of the protein-solvent fluctuations, polarizability, dimer-environment interaction,

and others.

We assume, for simplicity, that the noisy environment, ξ(t), is the same for the

donor and the acceptor (collective noise). This assumption is similar to that used in

the Marcus theory where thermal protein-solvent environments are considered [17, 18].

One can write λd(t) = gdξ(t) and λa(t) = gaξ(t), where gd and ga are the interaction

constants. We consider a stationary noise described by a random variable, ξ(t), with
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correlation function χ(t− t′) = 〈ξ(t)ξ(t′)〉 and 〈ξ(t)〉 = 0. The averaging, 〈...〉, is taken

over a random process describing the noise.

We assume that the electron energy spectrum of the acceptor is sufficiently dense,

so that En and Vn can be considered as continuous variables. Thus, in Eq. (1) one can

perform an integration instead of a summation,

H(t) = (E
(d)
0 + λd(t))|d〉〈d|) +

∫
(E + λa(t))|E〉〈E|%(E)dE

+
(∫

V (E)|d〉〈E|%(E)dE + h.c.
)
, (2)

where, %(E) = dn(E)/dE, is the density of electron states of the acceptor, and Vn is

replaced by V (E).

We consider a Gaussian density of states (see, for example, [21]) of the acceptor,

centered at the energy, E
(a)
0 ,

%(E) = %0e
−α(E−E(a)

0 )2 , (3)

where, %0 = dn(E)/dE|
E

(a)
0

, is the density of states at the center of the acceptor band.

Formally, the expression (3) allows the existence of energy levels in the acceptor band

with very large energies, |E| → ∞, although with very small density of states. To

simplify our consideration, we assume that all the 2Na+1 levels of the acceptor band are

distributed inside the finite interval, δa (acceptor energy band), [E
(a)
0 −δa/2, E

(a)
0 +δa/2].

Since the number of levels also equals
∫ δa/2
−δa/2 %(E + E

(a)
0 )dE, we have,

2Na + 1 = %0

√
π/α erf(

√
αδa/2), (4)

where, erf(z) = (2/
√
π)
∫ z

0
exp(−x2)dx, is the error function [52]. We define the acceptor

bandwidth by δa = 2
√
π/α. Employing this expression in Eq. (4), we obtain,

%0 =
4Na + 2

δa erf(
√
π)
. (5)

Using the result (5), Eq. (3) can be written as,

%(E) =
4Na + 2

δa erf(
√
π)
e−4π(E−E(a)

0 )2/δ2a . (6)

Note, that the factor, erf(
√
π), is very close to one: erf(

√
π) ≈ 0.988.

The expression (5) allows us to establish a formal relation between the number of

levels, (2Na + 1), in the acceptor of a discrete model (1) and the density of states, %0,

at the center of the acceptor band, in a continuum approach (2). This relation is used

below, in numerical simulations, for comparison of these two approaches.

Limit Na → ∞. It follows from (5), that when the acceptor bandwidth is finite,

δa > 0, then the density of states satisfies %0 → ∞ when Na → ∞, which should be

expected. In what follows, we will require that, in this limit, the variance of energy (1)

(at λa,d = 0) is finite. This requirement involves the initial state of the system. Suppose

that initially only the donor is populated. From (1) the variance of energy in the donor
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state, |d〉, is

Dd ≡ 〈d|H2|d〉 − 〈d|H|d〉2 =
Na∑

n=−Na

|Vn|2 = (2Na + 1)|V |2 ≡ v2erf(
√
π),(7)

where we have used, for simplicity: Vn = V , and v2 = V 2%0

√
π/α (see below). The

requirement Dd = const means that, when Na → ∞, the matrix elements, Vn → 0 (or

V → 0), and the renormalized matrix element, v = const.

In Fig. 2, the density of states for the acceptor band, centered at E
(a)
0 = 0, is

depicted. As one can see, the density of states, %(E), very quickly goes to zero outside

of the interval (−δa/2, δa/2). This supports our choice of the relation between α and

the acceptor bandwidth: δa = 2
√
π/α.

Figure 2. (Color online) Dependence of the density of states, %(E), on the energy, E.

Parameters: Na = 25, δa = 10.

We denote the donor and acceptor populations (occupation probabilities) at time

t, averaged over the noise, by pd(t) and pa(t). Suppose that the donor has a single

energy level and the acceptor has a continuous energy band. The total donor-acceptor

state ρ(t) has matrix elements we denote by ρdd(t), ρdE(t), ρEd(t) and ρEE′(t). We have

pd(t) = 〈ρdd(t)〉 and ρa(t) =
∫
%(E)〈ρEE(t)〉dE = 1− pd(t).

We obtain the following system of integro-differential equations for the average of

the populations (for technical details, see SM at http://. . . )

d

dt
pd(t) = −

∫ t

0

K1(t, t′)pd(t
′)dt′ +

∫ t

0

K2(t, t′)pa(t
′)dt′, (8)

d

dt
pa(t) =

∫ t

0

K1(t, t′)pd(t
′)dt′ −

∫ t

0

K2(t, t′)pa(t
′)dt′. (9)

The kernels, K1,2(t, t′), are found to be,

K1(t, t′) = 2v2Φ(t, t′) cos(ε(t− t′)) exp
(
−(t− t′)2

4α

)
, (10)

K2(t, t′) = 2v2Φ(t, t′) cos(ε(t− t′)) exp
(
−t

2 + t′2

4α

)
, (11)
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where,

ε = E
(d)
0 − E

(a)
0 , v2 = V 2%0

√
π/α, (12)

and ϕ(t) = (gd−ga)
∫ t

0
ξ(s)ds, Φ(t, t′) = 〈eiϕ(t)e−iϕ(t′)〉 being the characteristic functional

of the random process. For the stationary random process Φ(t, t′) = Φ(t− t′).
To arrive at Eqs. 8 - 12, we have modeled the noise by a random telegraph process

(RTP) with the correlation function given by [48, 49, 50],

χ(t− t′) = 〈ξ(t)ξ(t′)〉 = σ2e−2γ(t−t′), t ≥ t′. (13)

The RTP includes two parameters, the amplitude of noise, σ, and the decay of

correlations, γ. Both these parameters allow one to model the protein-solvent

environment in the wide region of functional regimes. In addition, the use of the

telegraph noise simplifies significantly the technical part of the mathematical approach,

as it allows one to split the high-order correlations into the second order (see SM for

detail).

Rate-type equations. One can show (for detail see SM at http:// . . . ) that if∣∣∣ ∫ t

0

(t− t′)K1,2(t, t′)dt′
∣∣∣� 1, t ∈ (0,∞), (14)

then the integro-differential equations (8) and (9) are well approximated by the rate-type

ordinary differential equations

d

dt
pd = −R1(t)pd + R2(t)pa, (15)

d

dt
pa = R1(t)pd −R2(t)pa, (16)

where R1,2(t) =
∫ t

0
K1,2(t, t′)dt′. We call the functions, R1,2(t), the “ET dynamical

rates”. The rate-type equations (15) and (16) remind us of the Master equations (18)

in [53] (see also [54]).

The solution of Eqs. (15) and (16) can be written as,

pd(t) = e−f(t)(1 +

∫ t

0

R2(s)ef(s)ds), (17)

pa(t) = 1− pd(t), (18)

where, f(t) =
∫ t

0
(R1(τ) + R2(τ))dτ .

On the conditions of applicability of the rate-type equations. The strong

conditions of validity of approximation leading to Eqs. (15) and (16) can be written as

(see SM at http:// . . . for technical details),

|∆ρ(t)|
pa(t)

� 1, and
v

p
� 1, (19)

where p =
√
δ2
a/4π + 2(Dσ)2, and we set σ2 = χ(0), and D = gd−ga. The perturbation,

∆ρ(t), is defined by Eq. (65) in SM.

As one can see, the left inequality in (19) depends on time, and both conditions

impose the limitations on the parameters v, ε, and δa. The first inequality in Eq. (19)
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is related to the derivation of Eqs. (8) and (9). Unfortunately, the explicit analytical

form of this condition cannot be obtained, and even its numerical analysis is rather

complicated. The condition of applicability, presented by Eq. (14), leads to the second

inequality in Eq. (19): v � p. It allows us to replace the system of integro-differential

equations, (8) and (9), by the rate-type equations (15) and (16).

2.1. Estimates of the ET rates

To proceed further, one needs to know the explicit expression for the characteristic

functional. We find that Φ(t) obeys the following integro-differential equation (see SM

for detail):

d

dt
Φ(t) = −D2

∫ t

0

χ(t− t′)Φ(t′)dt′. (20)

When the correlation time of the random process, τc = (1/χ(0))
∫∞

0
χ(t)dt, is small

enough, τc � 1/|D
√
χ(0)|, one can use the Gaussian approximation and recast (20) as

follows:
d

dt
Φ(t) ≈ −Φ(t)D2

∫ t

0

χ(t− t′)dt′. (21)

The solution of Eq. (21) can be written as

Φ(t) = exp
(
−D2

∫ t

0

dt′
∫ t′

0

dt′′χ(t′ − t′′)
)
. (22)

When the condition |d lnχ(0/dt)| � 3p2/2ε holds, for computation of the ET rates,

R1,2(t) =
∫ t

0
K1,2(t, t′)dt′, one can use the Gaussian approximation in its simplified form

with (see SM for detail)

Φ(t) = exp
(
− D2χ(0)

2
t2
)
. (23)

For the RTP, with the correlation function (13), we obtain,

Φ(t− t′) = exp
(
− D2σ2(t− t′)2

2

)
. (24)

This approximation is valid if the following conditions hold:

τc �
1

|Dσ|
and τc �

2ε

3p2
, (25)

where τc = 1/2γ is the correlation time of the RTP. The main feature of the Gaussian

approximation, in the simplified form (23), is that for the correlation time satisfying the

condition τc � 2ε/3p2, the characteristic functional (24) does not depend on γ. Then,

this approximation simplifies significantly all the following analytical expressions.

Computation of the ET dynamical rates yields:

R1(t) =

√
π v2

p
exp

(
− ε2

p2

)(
erf
(pt

2
+ i

ε

p

)
+ erf

(pt
2
− iε

p

))
, (26)

R2(t) =

√
π v2

p

{
exp

(
− t2

2α
+

(t/2α− iε)2

p2

)(
erf
(pt

2
− (t/2α− iε)

p

)
+ erf

((t/2α− iε)
p

))
+ c.c.

}
. (27)
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From the properties of the error function it follows that the asymptotic values of

rates, Γ1,2 = limt→∞R1,2(t), are:

Γ1 =
2
√
πv2

p
e−ε

2/p2 , (28)

Γ2 =

{
Γ1, if δa = 0,

0, if δa 6= 0,
(29)

where 0 ≤ p <∞. Note, that, at a given value of ε, Γ1(p = 0) = 0 and Γ1(p→∞)→ 0.

The maximum of the asymptotic ET rate (28) corresponds to the “resonant” condition,

pres =
√

2ε, (30)

and the maximum of the ET rate (28) is,

Γ
(max)
1 =

√
2π

e

v2

ε
. (31)

The ET rate (28) approaches zero at parameter p = 0 and at p =∞. It has a maximum

at pres (30). The physical reason for this is rather simple: When p = 0, there is no

external random force. When p = ∞, the external random force is so large, that the

system cannot follow the excitation. In the Marcus theory (thermal environment) the

ET rate also experiences maximum (resonance) at some value of the interaction constant

between the dimer and the environment.

We find that the leading terms in Eqs. (26) and (27), as t→∞, are:

R1(t) = Γ1

(
1 +O

( e−pt√
π pt

))
, (32)

R2(t) ∼ Γ1 cos
( εt

αp2

)
exp

(
− νt2

)
, (33)

where,

ν =
2p2 − 1/α

4αp2
. (34)

Note on the asymptotic limits. The expression (28) for Γ1 can be considered as

a generalized ET rate for a single-level (“zero bandwidth”) donor and a finite bandwidth

acceptor. As we show below, it reduces to (i) the Wigner-Weisskopf ET rate for an

infinitely wide acceptor band, and for any intensity of dimer-noise interaction constant,

(ii) the modified Wigner-Weisskopf (or Förster-type) ET rate for weak dimer-noise

interaction and finite bandwidth, and (iii) the Marcus-type ET rate, for relatively strong

dimer-noise interaction, when the regular perturbation approach for dimer-environment

interaction cannot be used.

It is important to note, that in the case of a single-level donor and a finite band

acceptor, the ET rate, (28), is finite even at t → ∞. This results in re-population of

the donor-acceptor complex during the time-interval 0 ≤ t < ∞. As we show below,

this situation changes for a finite bandwidth donor. On the other hand, for any finite

bandwidth, δa 6= 0, of the acceptor, the asymptotic rate satisfies Γ2 = 0. This rate

provides a re-population of the ET dynamics only during finite times.
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Our analytical results, (28) and (29), are confirmed by the results of our numerical

simulations for a continuous model, (15) and (16), presented in Figs. 3 - 6, for different

values of parameters characterizing the bandwidth and the intensity of noise.

In the numerical simulations, we measure all energy parameters in units of ps−1, and

time is measured in ps. The values of parameters in the energy units can be obtained by

multiplying our values by ~ ≈ 6.58× 10−13meV. For example, ε = 60 ps−1 ≈ 40 meV.

2.2. Dependence of asymptotic ET rate on acceptor bandwidth and strength of

dimer-noise interaction

We use the expression (28) to describe the ET rates of the system. In the rest of

the paper, it is assumed that initially only the donor is populated. We will analyze

two limits: the “narrow” acceptor band, when δa � ε (the donor and the acceptor

band do not overlap) and the “wide” acceptor band, when δa � ε (the donor overlaps

with the acceptor band). We also define the “weak dimer-noise interaction” regime by

|Dσ| � δa/
√

8π, and the “strong dimer-noise interaction” regime to be the opposite

limit, when |Dσ| � δa/
√

8π.

2.2.1. Weak dimer-noise interaction For weak dimer-noise interaction, one can neglect

the contribution of Dσ, and write p ≈ δa/2
√
π. Substituting p into Eq. (28), we obtain,

Γ1 =
4πv2

δa
e−4πε2/δ2a . (35)

Förster-type ET rate. If we take into account the relation, v2 = V 2%0

√
π/α,

then expression (35) becomes

Γ1 = 2πV 2%0e
−4πε2/δ2a . (36)

The ET rate (36) can be interpreted as the Wigner-Weisskopf-type ET rate with the

renormalized electron density of states, %0 → %0 exp(−4πε2/δ2
a). We will call it the

Förster-type ET rate. It differs from the Wigner-Weisskopf-type ET rate by the factor,

exp(−4πε2/δ2
a), which characterizes the overlap between the donor energy level and the

acceptor band.

In Fig. (3), we illustrate the Förster-type ET dynamics for weak dimer-noise

interaction and for a partial overlapping of the donor level with the acceptor band

(ε � δa). One can see a good agreement between the solutions of Eqs. (15) and (16)

(green and blue solid curves) with the plots presented by dashed and dash-dotted curves

corresponding to the rate given by Eq. (36).

Wigner-Weisskopf-type ET rate. For ε � δa/2
√
π (very wide band), the ET

rate can be written as,

Γ1 = 2πV 2%0 = 4πv2/δa, (37)

which coincides with the Wigner-Weisskopf-type ET rate [40, 41].
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Figure 3. (Color online) Dependence of pd(t) on time, for the Förster-type ET rate:

solutions of Eqs. (15) and (16) (green and blue solid curves). Parameters: v = 5,

Dσ = 0.01, δa = 50; ε = 10 (green and red dash-dotted curves); ε = 15 (blue and red

dashed curves). Plots presented by dashed and dash-dotted curves correspond to the

rate given by Eq. (36).

Relation to Heisenberg uncertainty principle. Note, that the rate (37) has

a simple connection with the Heisenberg uncertainty relation. Indeed, Γ1 (37) can be

written as:

Γ1 = 4π(v/δa)v < v, (38)

where we have used the inequality, v � δa, which means that
√
Dd in (7), is significantly

smaller than the acceptor bandwidth. If we use for tunneling time in (37), ∆td ∼ 1/Γ1,

and for energy uncertainty from (7), ∆Ed =
√
Dd ∼ v, we have from (38) the Heisenberg

uncertainty relation: ∆Ed∆td > 1.

Fermi’s golden rule.The expression (37) means that the probability of population

of the acceptor band is pa(t) = 1− exp(−Γ1t). For Γ1t� 1, we get pa(t) ≈ Γ1t, which

corresponds to the Fermi’s golden rule [29].

The dynamics of the donor population is illustrated, for weak dimer-noise

interaction and wide band (the Wigner-Weisskopf limit), in Fig. 4. The following

parameters were chosen: v = 1, ε = 0, Dσ = 0.01 and δa = 20. In this case, noise

does not make a contribution to the ET rate, and the population of the acceptor is

determined by the “entropy factor” – the continuous electron energy spectrum of the

acceptor band. The case of weak dimer-noise interaction and narrow band, which is

close to a two-level system, is discussed in Appendix A.

2.2.2. Strong dimer-noise interaction In this case we have p ≈
√

2Dσ and for both,

narrow and wide bands, (28) gives the Marcus-type expression for the ET rate,

Γ1 = v2

√
2π

D2σ2
exp

(
− ε2

2D2σ2

)
. (39)
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Figure 4. (Color online) Dependence of pd(t) on time, for the Wigner-Weisskopf-

type ET rate: solution of Eqs. (15) and (16) (red curve); green dash-dotted curve

corresponds to the asymptotic rate (37). Parameters: v = 1, ε = 0, Dσ = 0.01,

δa = 20.

This result is similar to the Marcus ET rate for a donor-acceptor complex, modeled by a

two-level system, having strong interaction with the environment, [18, 19], even though

for the latter one considers a thermal noise.

As one can see from (39), the dimer-noise interaction, Dσ, represents, in the

Marcus-type limit, a “singular perturbation”, and the ET rate (39) cannot be derived

by using a regular perturbation theory in Dσ.

Our analytic prediction (39) is confirmed by the numerical simulations of Eqs. (15)

and (16), presented in Fig. 5 (for strong dimer-noise interaction and relatively narrow

band) and in Fig. 6 (for strong dimer-noise interaction and wide band). In Fig. 5,

pd(t) is shown for different values of the dimer-noise interaction constant, Dσ, and for

a relatively narrow band, δa. In Fig. 6, the donor population is given for a relatively

wide acceptor band.

2.2.3. Notes on reorganization energy. In our approach, we model the protein-

solvent environment by a stochastic process (stationary telegraph noise), which has two

main characteristics: the amplitude and the correlation rate. This approach is similar

to those used in [24, 25, 26, 27, 28]. Many approaches in bio-systems are based on the

thermal environment, which is described by non-commuting quantum bosonic operators

(such as in [18, 19]). Note, that it would be very desirable to verify experimentally

the conditions of applicability of both noisy and thermal environments for very fast ET

processes in bio-complexes, when the thermal relaxation times significantly exceed the

times of ET processes.

As it should be expected, the symmetric stochastic process, with ξ̄(t) = 0, leads to

a vanishing reorganization energy in the Marcus-type expression for the ET rate (39).

As shown in [51] (see Eq. (40)), one way to introduce a reorganization energy in our
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Figure 5. (Color online) Marcus-type ET rate. Strong dimer-noise interaction and

narrow band. Dependence of pd(t) on time, t (v = 1, ε = 25, δa = 5). From the top to

bottom, Dσ = 50 and Dσ = 25. Solid curves correspond to the solutions of Eqs. (15)

and (16). Dashed curves correspond to the rate given by Eq. (39).

Figure 6. (Color online) Marcus-type ET rate. Strong dimer-noise interaction and

relatively wide band. Dependence of pd(t) on time, t (v = 1, ε = 1, δa = 10). From

the top to bottom, Dσ = 150 and Dσ = 50. Solid curves correspond to solutions of

Eqs. (15) and (16). Dashed curves correspond to the rate given by Eq. (39).

approach is to use ‘a “non-symmetric” stochastic process with 〈ξ(t)〉 ≡ ξ̄ 6= 0. In this

case, the renormalized redox potential becomes, ε→ ε−λ, where λ = Dξ̄ is the effective

“reorganization energy”. Then, the ET rate in (39) can be rewritten as [51],

Γ = v2

√
2π

D2σ2
exp

(
− (ε− λ)2

2D2σ2

)
. (40)

At the same time, the “reorganization energy” in (40) differs from the reorganization

energy, εrec, in Marcus theory, where εrec ∝ λ2, and has a different meaning and

dependence on parameters of the thermal environment [18, 19]. We call ET rate (40) the
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Marcus-type rate because, similar to the Marcus theory, this rate (i) is a perturbative

result in the donor-acceptor interaction, v, (ii) is a non-perturbative result in the dimer-

environment interaction, Dσ, (has the interaction constant, Dσ, in the denominator)

and (iii) has a similar form as the Marcus ET rate.

2.3. Uphill ET (ε < 0)

Until now, we have discussed the “downhill ET” (ε > 0) in the donor-acceptor

photosynthetic complex. This situation in rather common–the energy of the donor band

is positioned above the energy of the acceptor band. The question arises if it is possible

to transfer the energy in photosynthetic complexes uphill (“uphill ET”, ε < 0), when

the energy of the donor band is positioned below the energy of the acceptor band (see

Fig. 7). The answer is positive, and there exists significant experimental and theoretical

research in this field. (See, for example, [55, 56, 57, 58, 59, 60, 61, 62], and references

therein.) Even though many mechanisms of uphill ET are discussed in the literature, a

complete understanding has not yet been reached.

Figure 7. (Color online) Schematic of the uphill ET model consisting of the donor

energy band positioned below the acceptor energy band.

In this sub-section, we discuss the uphill ET mechanism based on the ‘entropy

factor”. Namely, we demonstrate that the uphill ET can be realized when the number

of energy levels in the higher positioned acceptor band is larger than the number of

energy levels in the lower positioned donor band, and under some additional conditions,

which can be easily satisfied.

As was already mentioned, it was shown analytically and demonstrated numerically

in [1] that for the asymptotic stationary solution in the discrete system of equations,

described by the Hamiltonian (1), there is “equal distribution” of probabilities of all

participating levels. Namely, for non-degenerate energy levels of the acceptor band

(εnn′ = E
(a)
n − E(a)

n′ 6= 0) at large time (t → ∞), the probability of population of any

energy level, l, of donor and acceptor, is,

〈ρll(t→∞)〉 =
1

2Na + 2
, (41)
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Figure 8. (Color online) Illustration of the uphill ET (ε < 0), shown in Fig. 9.

Dependence of pd(t) on time. Discrete band (blue dash-dotted curve), continuous

band (red solid curve). Parameters: V = 0.25 (v = 2.528), ε = −20, Dσ = 30, γ = 30,

Na = 50, δa = 10.

Figure 9. (Color online) Schematic of uphill ET model consisting of the donor with

a single electron energy level positioned below the acceptor energy band.

where, as above, 2Na + 1 is the total number of levels in the acceptor band. This result

is independent of whether we consider downhill ET or uphill ET.

We also observe independence of the ET on the sign of ε in our continuum approach.

Namely, the above introduced dynamical rates, R1(t) and R2(t), do not depend on the

sign of ε. So, the results will be the same for the acceptor band located above or below

the donor energy level, with E
(d)
0 − E

(a)
0 = ±|ε|. This means that our results for the

ET dynamics, in the continuum approach, will be the same for both the downhill and

uphill ET dynamics.

Then, the asymptotic probability to populate an acceptor band is:

pa(t→∞) =
2Na + 1

2Na + 2
, (42)

and pa(t → ∞) ≈ 1, when Na � 1. In the continuum limit, Na → ∞, and

pd(t→∞) = 0.

In Fig. 8, we present the results of numerical simulations for the uphill ET (ε < 0),
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for the case shown in Fig. 9: a single-level donor and the acceptor with many quasi-

degenerate levels, 2Na + 1. As one case see, the results for a discrete model (blue

dash-dotted curve) are in good agreement with the results of our continuum approach

(red solid curve).

A significant difference between the ET dynamics of the discrete and continuous

models occurs when both the donor and the acceptor have finite bandwidths. This case

is discussed in the next section.

3. Finite electron bands of donor and acceptor

Figure 10. (Color online) Schematic of our model consisting of a donor and an

acceptor with nearly continuous electron energy spectra.

In this Section, we consider both the donor and the acceptor sites with 2Nd + 1

and 2Na + 1 nearly degenerate discrete energy levels, respectively (see Fig. 10). The

corresponding Hamiltonian can be written as:

H(t) =

Nd∑
m=−Nd

(Em + λd(t))|m〉〈m|+
Na∑

n=−Na

(En + λa(t))|n〉〈n|

+

Nd∑
m=−Nd

Na∑
n=−Na

(Vmn|m〉〈n|+ Vnm|n〉〈m|). (43)

We assume that the electron energy spectra of both the donor and the acceptor

are sufficiently dense, so in Eq. (43) one can perform an integration instead of the

summation. We have,

H(t) =

∫
(Ed + λd(t))|Ed〉〈Ed|%(Ed)dEd +

∫
(Ea + λa(t))|E〉〈Ea|%(Ea)dEa

+

∫ ∫
dEddEa%(Ed)%(Ea)

(
V (Ed, Ea)|Ed〉〈Ea|+ h.c.

)
, (44)

where, %(Ed), %(Ea), are densities of electron states in the donor and acceptor bands,

respectively, and Vmn → V (Ed, Ea). Further, we assume that the amplitude of transition
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is a smoothly varying function of energy, so one can approximate V (Ed, Ea) ≈ V as a

constant.

For simplicity, we consider Gaussian densities of states for the donor and acceptor

bands centered at E
(a)
0 for the acceptor and at E

(d)
0 for the donor,

%(Ed) = %de
−α1(Ed−E

(d)
0 )2 , (45)

%(Ea) = %ae
−α2(Ea−E(a)

0 )2 . (46)

The corresponding bandwidths of the donor and the acceptor can be defined as in Sec.

II. Namely, the bandwidth of the donor is: δd = 2
√
π/α1, and the bandwidth of the

acceptor is: δa = 2
√
π/α2.

The dynamics of the donor-acceptor complex can be described by the following

rate-type system of ordinary differential equations (For detail see SM at http:// . . . ).

We obtain,

d

dt
〈ρ11〉 = −R1(t)〈ρ11〉+ R2(t)〈ρ22〉, (47)

d

dt
〈ρ22〉 = R1(t)〈ρ11〉 −R2(t)〈ρ22〉, (48)

where

R1(t) =

√
π v2

p

{
exp

(
− t2

2α1

+
(t/2α1 − iε)2

p2

)(
erf
(pt

2
− (t/2α1 − iε)

p

)
+ erf

((t/2α1 − iε)
p

))
+ c.c.

}
, (49)

R2(t) =

√
π v2

p

{
exp

(
− t2

2α2

+
(t/2α2 − iε)2

p2

)(
erf
(pt

2
− (t/2α2 − iε)

p

)
+ erf

((t/2α2 − iε)
p

))
+ c.c.

}
. (50)

Here we have set, ε = E
(d)
0 − E

(a)
0 , and

v2 =
π%a%d|V |2√

α1α2

=
1

4
%a%dδaδd|V |2, (51)

p =
√

1/α1 + 1/α2 + 2(Dσ)2 =
√
δ2
d/4π + δ2

a/4π + 2(Dσ)2. (52)

Note, that the parameters, v and p, generalize those defined in the previous sections in

the case Nd = 1. The difference with the previous sections is that in (51), for finite δa,d,

we require that v2 ≈ (2Nd + 1)(2Na + 1)|V |2 = const, when both Na,d →∞ and V → 0.

As in the previous sections, this is equivalent to the requirement of a finite dispersion

for the initial population of the donor band.

We find that the leading terms in Eqs. (49) and (50), as t→∞, are:

R1,2(t) ∼ Γ cos
( εt

α1,2p2

)
exp

(
− ν1,2t

2
)
, (53)
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where

Γ =
2
√
πv2

p
e−ε

2/p2 , (54)

ν1,2 =
2p2 − 1/α1,2

4α1,2p2
. (55)

Using the relationship between the bandwidths and the parameters α1,2, α1 = 4π/δ2
d,

α2 = 4π/δ2
a, one can rewrite Eqs. (53), (55) as,

R1(t) ∼ Γ cos
( δ2

dεt

4πp2

)
exp

(
− ν1t

2
)
, (56)

R2(t) ∼ Γ cos
( δ2

aεt

4πp2

)
exp

(
− ν2t

2
)
, (57)

where,

ν1 =
δ2
d(8πp

2 − δ2
d)

64π2p2
, ν2 =

δ2
a(8πp

2 − δ2
a)

64π2p2
. (58)

Conditions of applicability of the rate-type equations. The conditions of

validity of the approximation, leading to Eqs. (47) and (48), can be written as (see SM

for technical details),

|D
√
χ(0)| � d

dt
lnχ(t)

∣∣∣
t=0
� 3p2

2ε
, (59)

v

p
� 1, and

|∆ρ(t)|
pa(t)

� 1. (60)

They are similar to the conditions given by Eqs. (19) and (25). However, here the

parameters, v and p, are given by (51) and (52), and the perturbation, ∆ρ(t), is defined

by Eq. (121) in SM.

Inserting pa(t) = 1− pd(t) into Eq. (47), we obtain,

d

dt
pd = − (R1(t) + R2(t))pd + R2(t). (61)

The solution is:

pd(t) = e−f(t)(pd(0) +

∫ t

0

R2(τ)ef(τ)dτ), (62)

where f(t) =
∫ t

0
(R1(τ) + R2(τ))dτ .

From here it follows, that if, for example, initially the donor was populated,

pd(0) = 1 (assume that the donor band is populated homogeneously), then, as t→∞,

the asymptotic population of donor becomes,

lim
t→∞

pd(t) = e−f(∞)(1 +

∫ ∞
0

R2(τ)ef(τ)dτ). (63)

Peculiarities of the ET dynamics for finite donor and acceptor

bandwidths. When both the donor and acceptor bandwidths, δd and δa, are finite, the
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ET dynamics is significantly different from the previous case of a simplified continuum

model, with a single-level donor. This is mainly caused by the fact that both dynamical

rates, R1,2(t), in (56) and (57) vanish, for the two-band model, at characteristic times,

t1,2 ∼ 1/
√
ν1,2, respectively. This was not the case for the simplified model, considered

in Secs. II and III. [See Eqs. (32), (33), and (34)]. Namely, the parameter, Γ1 in (32)

has the meaning of the asymptotic rate. However, a similar (by its form) parameter,

Γ, in (33) is a dynamical rate, which decays in time. This makes the ET dynamics

of the simplified model and of the model with both finite donor and acceptor bands

significantly different.

The rigorous mathematical approach for the transition from two discrete donor-

acceptor energy bands to a continuum limit (including the intermediate dynamics),

when Nd,a � 1 and δd,a are finite, will be discussed in the future. So far, we understand

well the situation where the dimer is in contact with a quantum heat reservoir (not

classical noise as in the present manuscript) in the limiting case when both bands are

reduced to a single level, having arbitrary degeneracies Nd and Na. In this situation

we can apply the dynamical resonance theory [42] and find the population dynamics

for all times explicitly, in both the Förster and the Marcus regime. Taking this as a

starting point, we plan to develop the resonance theory also for finite (small) donor and

acceptor bandwidths. We expect to observe the emergence of two time scales, similar

to [63]. On a shorter time scale, the dynamics shows rich behavior due to the fact that

there are multiple quasi-stationary states (corresponding to fully stationary states when

the bandwidths collapse to zero). On a longer time scale the effect of the non-vanishing

bandwidths becomes dominant and the dimer is driven to a final, unique stationary

state (equilibrium).

Finally, the “intermediate” ET dynamics, in the continuum two-band model,

significantly depends on three parameters, given by Eqs. (54) and (55): Γ, and ν1,2.

Indeed, according to Eqs. (56) and (57), when Γ� √ν1,2, the ET dynamics reveals itself

on the time-scale, ∼ 1/Γ. And the relaxation effects, related to time-scales, ∼ 1/
√
ν1,2,

are not important. In this case, at some additional conditions (see below), one can

expect a high efficiency of the ET from donor band to acceptor band. However, when

Γ � √ν1,2, the ET dynamics is significantly suppressed, as the dynamical rates (56)

and (57) quickly decay. In this case, for the initially populated donor band, one cannot

expect an efficient ET to the acceptor band. Below, we plot the ET dynamics for initial

population of the donor band, and for different values of the parameters.

When δd � δa, for times t � 1/δa, one can neglect the contribution of the term∫ t
0
R2(τ)ef(τ)dτ , and (62) can be simplified as follows:

pd(t) ≈ e−
∫ t
0 R1(τ)dτ . (64)

For an arbitrary donor bandwidth, we did not succeed to obtain an analytical

expression for pd(t). However, for δd � δa and Dσ & ε/2, we find that as t → ∞, the
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donor population can be estimated as,

pd ≈ exp
(
− (2π)3/2v2

pδd
e−ε

2/p2
)
. (65)

This can be recast as follows:

pd = exp
(
−
√

2πΓ

δd

)
, (66)

where Γ is defined by Eq. (54).

Let us assume that both bandwidths are of the same order: δa ≈ δd. Supposing

that pd(0) = 1, we obtain from Eq. (62) the following result:

pd(t) =
1

2
(1 + e−2

∫ t
0 R1(τ)dτ ). (67)

For δa, δd � ε (δa ≈ δd) and Dσ & ε/2, we find that asymptotically, as t → ∞, the

donor population is given by,

pd(∞) ≈ 1

2

(
1 + e−2

√
2πΓ/δd

)
. (68)

In Figs. 11 and 12, the results predicted by Eqs. (65), (68) and the numerical

solution of Eq. (61) are presented. Our numerical simulations show that the asymptotic

formulas (65) and (68) yield a good agreement with the solution of Eq. (61), when

Dσ & ε/2.

Figure 11. (Color online) Dependence of pd on time (v = 5, δd = 5, δa = 100).

Parameters: Dσ = 5, ε = 20, γ = 10 (blue dashed curve) and ε = 10 (green dash-

dotted curve); Dσ = 100, ε = 100, γ = 75 (upper black solid curve). The results of

the theoretical predictions, given by Eq. (65), are depicted by red lines.

Modified Wigner-Weisskopf, Förster, and Marcus-type ET dynamics.

The parameters chosen in Fig. 11 are: v = 5, δd = 5, δa = 100, Dσ = 5, γ = 10, ε = 20

(blue dashed curve) and ε = 10 (green dash-dotted curve). The lower green dash-dotted
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Figure 12. (Color online) Dependence of pd on time (v = 2, ε = 2, δd = 5, δa = 5,

γ = 10). From the top to bottom: Dσ = 10 (green), Dσ = 5 (blue). The results of the

theoretical predictions, given by Eq. (68), are depicted by horizontal red solid lines

curve, represents the ET dynamics for the narrow donor band overlapped with the wide

acceptor band, accompanied by a relatively weak dimer-noise interaction. We can say

that this ET dynamics is of the Wigner-Weisskopf-type or of the Förster-type. For

ε = 100 and Dσ = 100 (black curve), the donor and acceptor bands do not overlap and

we have the Marcus-type ET dynamics.

For the green dash-dotted curve, we chose Γ ≈ 1.7, ν1 ≈ 1, and ν2 ≈ 211. So,

we have: ν1 < Γ � ν2. In this case, the dynamical rate, R2(t), decays very fast (due

to the relatively wide acceptor band), on the time-scale, ∼ 1/
√
ν2 ≈ 0.07. The rate,

Γ, provides the ET from donor band to acceptor band on the time-scale, 1/Γ ∼ 0.6.

Finally, the dynamical rate R1(t), decays on the time-scale, ∼ 1/
√
ν1 ≈ 1, and the ET

dynamics saturates. In this case, the efficiency of the ET from donor to acceptor is,

pa(t→∞)〉 ≈ 90%. (See Fig. 11, green dash-dotted curve.)

On the other hand, for parameters: v = 5, ε = 100, δd = 5, δa = 100, Dσ = 100

the donor and acceptor bands do not overlap, and the dimer-noise interaction is strong

(close to the resonant noise, p =
√

2ε). So, we can say that the upper black curve in

Fig. 11 corresponds to the Marcus-type ET dynamics.

In this case, Γ ≈ 0.337, ν1 ≈ 1, and ν2 ≈ 400. So, we have: ν1 . Γ � ν2. Similar

to the previous case, the dynamical rate, R2(t), decays very fast, on the time-scale

∼ 1/
√
ν2 ≈ 0.05. Because ν1 . Γ, the ET dynamics saturates, as in the previous case,

at the time-scale, ∼ 1/
√
ν1 ≈ 1. Because Γ is smaller than in the previous case, the ET

efficiency drops to ≈ 30%. (See Fig. 11, black curve.)

In Fig. 12, the Marcus-type ET rate is plotted, Γ ≈ (
√

2πv2/2Dσ) exp(−ε2/2D2σ2).

In this case, the dimer-noise interaction constant is relatively large, Dσ � δd,a/
√

8π,

for all values of Dσ, presented in Fig. 12. Because the donor and acceptor bandwidths
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are equal, the efficiency is not high. For example, for Dσ = 10, the rate Γ ≈ 0.86,

and ν1,2 ≈ 0.25. The efficiency in this case is approximately 40%. When the dimer-

noise interaction decreases, Dσ = 5, we have: Γ ≈ 1.59, and ν1,2 ≈ 0.25. In this

case, the efficiency increases, and reaches approximately 48%. In Figs. 13 – 15, the

Figure 13. (Color online) Dependence of pd on time, (ε = 5, v = 2.5, Dσ = 10,

γ = 15). From the top to bottom: (δd, δa) = [(50, 50), (10, 10), (2.5, 2.5)]. The results

of the theoretical predictions, given by Eq. (68), are depicted by the horizontal red

solid lines.

Figure 14. (Color online) Dependence of pd on time, (ε = 0, v = 5, Dσ = 1, γ = 10).

From the top to bottom: (δd, δa) = [(100, 50), (50, 100)].

dependence of the donor population, pd(t), is shown for different values of parameters.

For parameters chosen in Fig. 13, both bands have equal widths. For a relatively weak
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Figure 15. (Color online) Dependence of pd on time, (ε = 20, v = 3, δd = 10, δa = 25,

γ = 75). From the top to bottom: Dσ = 5, 50, 20.

Figure 16. (Color online) Uphill ET for two finite bands. Dependence of pd on time,

(ε = −5, v = 2.5, δd = 5, δa = 10, γ = 15). From the top to bottom: Dσ = 20, 15, 10.

dimer-noise interaction, the efficiency of population of the acceptor band is small (upper

red curve). When the dimer-noise interaction is strong, and both bands are narrow (blue

lower curve in Fig. 13), the results become close to those of the two-level system. In

this case, the populations of donor and acceptor bands become close.

When the donor band is wider than the acceptor band (red curve in Fig. 14),

the acceptor is not efficiently populated. In this case, Γ ≈ 3, ν1 ≈ 239, and ν2 ≈ 90.

Then, in this case, both dynamical rates, R1,2 decay fast, and the efficiency of acceptor

population is small.

Finally, as the bandwidth of the acceptor increases, the population of the acceptor

becomes more efficient (blue lower curve in Fig. 14). Similar results, with different

intensity of noise, are presented in Fig. 15. More efficient population of the acceptor,
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for Dσ = 20, occurs because this case is closer to the resonant one, p =
√

2ε.

Uphill ET dynamics. Since the dynamical rates, R1(t) and R2(t), 53, do not

depend on the sign of ε, the results for the ET dynamics are the same for the acceptor

band located above or below the donor band (see Figs. 7 and 10). In Fig. 16, we present

the results of numerical simulations for the uphill ET (ε < 0), for different values of the

dimer-noise interaction constant, Dσ. For chosen parameters, indicated by the green

curve, the efficiency of the uphill acceptor population reaches 60%.

4. Conclusion

In this paper, we have studied the exciton and electron transfer (ET) dynamics using

a donor-acceptor model in which both the donor and the acceptor are represented by

continuous energy bands of finite width. Direct interactions between the donor and the

acceptor are described by matrix elements in the Hamiltonian. Instead of the thermal

bath, we model the environment by a stationary stochastic process which acts on both

the donor and the acceptor energy levels.

The usefulness of our approach is that it allowed us (i) to derive a set of simplified

rate-type differential equations, which describe the ET dynamics, and (ii) to present

analytically the generalized expressions for the time dependent “dynamical ET rates”.

They are characterized by the redox potential (distance between bands), a single

parameter - a sum of the contributions from the dimer-noise interaction constant and

the bandwidths of donor and acceptor, and some time-independent decay rates. These

generalized ET rates allowed us to derive analytically the ET rates for Wigner-Weisskopf,

Förster-type, and Marcus-type limits.

We presented numerical simulations which illustrate and confirm our analytical

results. We demonstrated that by manipulating the bandwidths of donor and acceptor,

high efficiency of acceptor population can be achieved for both downhill and uphill,

sharp and flat redox potentials. We have paid particular attention to the formulation of

the conditions of applicability of the simplified rate-type equations for the ET dynamics.

Experimental tests of our results would be useful for a simplified description of

complex bio-systems. One possibility is to separate the contributions to the exciton

(electron) transfer coming from (i) the thermal bath and noise, associated with the

protein-solvent environment and (ii) the entropy factor – the contribution to the ET

rates related to the finite widths of electron donor and acceptor bands. Indeed, as

we have demonstrated, the dimer-noise interaction constant and the bandwidths enter

the asymptotic expression for the ET rate through a dimensionless parameter called p.

Experiments measuring the ET rate and the efficiency (in which the bandwidths of both

donor and acceptor and their overlap can be controlled) can be performed, for example,

by using the photosynthetic bio-complexes based on chlorophyll molecules. Another

possibility is to use the artificial nano-systems considered in [4, 5]. In this case, both

donor and acceptor are two dye molecules embedded in a DNA-engineered environment

[64]. In these experiments, the Wigner-Weisskopf, Förster-type, and Marcus-type limits
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can be studied for downhill and uphill, sharp and flat redox potentials.
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Appendix A. Comparison of continuum and discrete models

In this section, we compare the discrete system governed by the Hamiltonian (1) with

the corresponding continuous model, described by the rate-type Eqs. (15) and (16).

We assume, for simplicity, that the amplitudes of transitions, Vn, are the same for all

acceptor levels, Vn = V . We consider the noisy environment to be described by a random

Figure A1. (Color online) Energy distribution inside the acceptor band: discrete

band (blue diamonds), continuous band (red solid curve). Parameters: Na = 25,

δa = 5.

telegraph process with the correlation function given by,

χ(t− t′) = σ2e−2γ|t−t′|, (A.1)

where σ is the amplitude of noise, and γ is the decay rate of correlations. It is convenient

to introduce the subindex 0 to denote the donor level, while n = 1, . . . , 2Na + 1 denotes

the nth acceptor level (this notation is different from the one previously used in the

paper). Then, the equations of motion can be written as follows (for details see Ref.

[1]):

〈ρ̇00〉 = iV

M∑
n=1

(〈ρ0n〉 − 〈ρn0〉), (A.2)

〈ρ̇nn′〉 = − iεnn′〈ρnn′〉+ iV (〈ρn0〉 − 〈ρ0n′〉),
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〈ρ̇0n〉 = iεn0〈ρ0n〉+ iV (〈ρ00〉 −
M∑
n′=1

〈ρn′n〉)− iDσ〈ρξ0n〉,

〈ρ̇ξ00〉 = − 2γ 〈ρξ00〉+ iV
M∑
n=1

(〈ρξ0n〉 − 〈ρ
ξ
n0〉,

〈ρ̇ξnn′〉 = (iεn′n − 2γ)〈ρξnn′〉+ iV (〈ρξn0〉 − 〈ρ
ξ
0n′),

〈ρ̇ξ0n〉 = (iεn0 − 2γ)〈ρξ0n〉+ iV (〈ρξ00〉 −
M∑
n′=1

〈ρξn′n〉)− iDσ〈ρ0n〉, (A.3)

where εn′n = E
(a)
n′ − E(a)

n , εn0 = E
(a)
n − E(d)

0 and 〈ρξnn′〉 = 〈ξ(t)ρn,n′(t)〉.
Further, we assume that M = 2Na + 1 acceptor levels are distributed inside the

band, centered at the point E
(a)
0 = E

(a)
Na+1, and according to the Gaussian distribution

(3). We find the following relation between the label n of the energy levels and their

energies,

n = Na + 1 +
Naerf

(2
√
π(E

(a)
n − E(a)

Na+1)

δa

)
erf(
√
π)

. (A.4)

Solving this relation for E ≡ E
(a)
n yields the curve plotted in Fig. A1.

Employing Eq. (5), one can recast the renormalized amplitude of transition,

v2 = V 2%0

√
π/α, as

v = V

√
2Na + 1

erf(
√
π)
. (A.5)

According to the definitions in (12), and Eqs. (19) and (25), the conditions of

validity of the continuum approximation, (19), are given by,

|∆ρ(t)|
pa(t)

� 1, and
v

p
� 1, (A.6)

|Dσ| � 2γ � 3p2

3ε
, (A.7)

where ∆ρ(t), is defined below Eq. (51) in SM.

It is important to note, that in the region of parameters (A.7), the ET rate (28)

does not depend on the decay rate, γ, of the noise correlation function (A.1). In our

numerical simulations, presented in Figs. A3 – 8 for selected parameters, the second

condition in Eq. (A.6) and the inequalities, (A.7), are satisfied for all cases, except for

those presented in Figs. A5 and A9. The first condition in Eq. (A.6) is analyzed in the

Appendix in SM.

In Fig. A2, we plot the population distribution, 〈ρii(t)〉, inside the discrete acceptor

band, for different times. As one can see, the evolution of 〈ρii(t)〉 approaches, for large

times, an “equal distribution” [1] (black diagonal crosses in Fig. A2, for t = 1000).

The energy level of the donor and of each acceptor is populated with equal probability,

1/(2Na + 2). With Na = 25, this gives 〈ρii(t→∞)〉 = 1/(2Na + 2) ≈ 0.019.
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Figure A2. (Color online) Population distribution inside the discrete acceptor band,

for different times, t: t = 1 (orange asterisks), t = 10 (red diamonds), t = 100 (green

boxes), t = 500 (blue circles), t = 1000 (black diagonal crosses). Parameters: V = 0.25,

ε = 20, Dσ = 40, γ = 30, δa = 5, Na = 25.

In Figs. A3 - A5, we compare the results of numerical simulations for discrete and

continuous acceptor bands, for the Marcus-type ET rate, for different parameters, and

for Na = 50. So, the total number of levels in the acceptor band is, 2Na + 1 = 101.

When both conditions of validity of continuous approximation, (A.6) and (A.7), hold,

one can observe a good agreement between the discrete and continuum models (Figs.

A3 and A4).

In Fig. A5, we compare the regime of the Marcus-type ET for discrete and

continuous models, and for the choice of parameters when the first inequality in (A.6) is

violated, and the rate-type Eqs. (15) and (16) cannot be used. (For details see Appendix

C in SM at http://. . . .)

Intermediate ET dynamics for weak and strong dimer-noise interaction and narrow

acceptor band

For a continuous acceptor band, and for any (even a very small) asymptotic rate, Γ1

(28), the probability of population of a single-level donor approaches zero as t → ∞:

pd(t → ∞) = 0. However, our simulations show that there can be a two-scale ET

dynamics of the donor-acceptor system. Indeed, suppose that the acceptor band is

relatively narrow. Then, on an intermediate time scale, the dynamics resembles the

dynamics of a two-level system (with δa ≈ 0, see (A.8)) and after, on a longer time scale

given by tslow ∼ 1/Γ1, a slow re-population of the acceptor band occurs.

In Fig. A6, we show the intermediate dynamics of the initially populated donor for a

weak dimer-noise interaction constant (Dσ = 0.01) and for a relatively narrow acceptor

band, δa < ε (δa = 2, ε = 10). In this case, the intermediate dynamics approaches

the dynamics of the corresponding two-level “donor-acceptor” system, in which noise
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Figure A3. (Color online) The Marcus-type ET. Dependence of the donor probability,

pd(t), on time. Discrete band (blue curve), continuum band (red curve). Green dashed

curve corresponds to an exponential decay with the rate given by Eq. (39). Parameters:

V = 0.25, (v = 2.528), ε = 10, Dσ = 40, γ = 60, δa = 5, Na = 50.

Figure A4. (Color online) The Marcus-type ET. Dependence of the donor probability,

pd(t), on time. Discrete band (blue dashed curve), continuum band (red solid curve).

Green dash-dotted curve corresponds to an exponential decay with the rate given by

Eq. (39). The inset is a zoom of the main figure, to show the initial system behavior.

Parameters: V = 0.2, (v = 2.02), ε = 1, Dσ = 10, γ = 30, δa = 5, Na = 50.

is absent. In the latter case, we found empirically that the solution of Eqs. (A.2) and

(A.3) for pd(t) can be approximated as,

pd(t) = 1− 4v2

ε2 + 4v2

(
1− e−νt2 cos(ΩRt)

)
, (A.8)

where ν = δ2
a/16π [see (34)] and ΩR =

√
ε2 + 4v2. The amplitude of oscillations of

pd(t) is found to be, 4v2/(ε2 + 4v2). As one can see from (A.8), the Rabi oscillations
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Figure A5. (Color online) Dependence of the donor probability, pd(t), on time, when

the condition (A.6) of applicability of the continuum approach is violated. Discrete

band (blue dashed curve), continuous band (red solid curve). Parameters: V = 0.249,

(v = 2.5), ε = 0, Dσ = 5, γ = 15, δa = 5, Na = 50.

Figure A6. (Color online) The two-level system limit: narrow acceptor band and

weak noise. Dependence of pd(t) on time. Parameters: Na = 50, ε = 10, δa = 2,

Dσ = 0.005, γ = 0.01, V = 0.1. Blue curve presents the solution of the discrete model,

described by the system of Eqs. (A.2) and (A.3). Red dashed curve corresponds to

the analytical expression (A.8).

decay. For the parameters chosen in Fig. A6, pmind ≈ 0.98, and the period of oscillations,

T = 2π/ΩR ≈ 0.616. Figure A6 shows a good agreement of analytical expression (A.8)

with the numerical solution for the discrete band. The decay of the Rabi oscillations

resulted from the finite width of the acceptor band.

In Figs. A7 and A8, we compare the results of the numerical simulations for discrete

and continuum acceptor bands, for a narrow acceptor band and for a weak dimer-noise

interaction, and when the conditions of applicability of the continuum approximation,
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Figure A7. (Color online) The two-level system limit: narrow acceptor band and weak

dimer-noise interaction. Dependence of pd(t) on time. Parameters: Na = 50, ε = 10,

δa = 2, Dσ = 0.005, γ = 0.01, V = 0.1 (v = 1.01). Red curve corresponds to the results

of rate-type Eqs. (15) and (16), which describe the ET in the continuous acceptor band

mode. The blue curve presents the solution of the discrete model described by Eqs.

(A.2) and (A.3). The inset shows the zoom-in of the main figure.

Figure A8. (Color online) The two-level system limit: narrow acceptor band and

weak dimer-noise interaction. Dependence of pd(t) on time, t. Parameters: Na = 25,

ε = 5, δa = 2, Dσ = 0.01, γ = 0.025, V = 0.1 (v = 0.719). The blue curve presents

the solution of the discrete model described by Eqs. (A.2) and (A.3). The red dashed

curve corresponds to the analytical expression (A.8). The green dash-dotted curve

corresponds to the results of Eqs. (15) and (16) (continuous acceptor band). The inset

shows the zoom-in of the main figure.

(A.6) and (A.7), are satisfied. One can observe a good agreement between discrete and

continuum models.

As was mentioned above, for very large times, the probability of the donor
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Figure A9. (Color online) The two time-scale behavior of the system for strong

dimer-noise interaction and narrow band. Parameters: Na = 50, ε = 5, δa = 0.01,

Dσ = 40, γ = 60, V = 0.5 (v = 5.06). Red dashed curve corresponds to the solution

of Eqs. (15) and (16) (continuous band). Blue curve represents the solution of the

discrete model described by the system of Eqs. (A.2) and (A.3). The inset shows the

asymptotic behavior of the continuum model (red dashed curve), of the discrete system

(blue solid curve, Na = 25) and of the dynamical rate R2(t) (green dash-dotted curve).

Figure A10. (Color online) The Marcus-type ET, for strong dimer-noise interaction

and narrow band. Dependence of pd(t) on time. Parameters: Na = 50, ε = 150,

δa = 100, Dσ = 150, γ = 100, V = 1.39 (v = 14). Blue dash-dotted line presents the

solution of the discrete model described by the system of Eqs. (A.2) and (A.3). Red

curve corresponds to the results of Eqs. (15) and (16) (continuous band).

population, pd(t → ∞) = 0, and the acceptor becomes populated. For parameters

chosen in Figs. A6, A7 and A8, the characteristic timescale, at which the ET dynamics

approaches its intermediate asymptotics [take t→∞ in A.8]

pd ≈
ε2

ε2 + 4v2
, (A.9)
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can be estimated as: tsat = 1/
√
ν ≈ 2/p ≈ 4

√
π/δa ≈ 3.5. The intermediate asymptotics

(A.9) and the saturation time, tsat, are in good agreement with numerical results for

both the discrete and continuum models.

In Fig. A9, we show the intermediate ET dynamics close to the two-level system,

for narrow acceptor band and for strong dimer-noise interaction. The pure two-level

system, with δa = 0, and all other parameters as in Fig. A5, experiences, for large

enough times, the equal distribution, pd(t) = pa(t) = 1/2 [1]. As one can see from

Fig. A9, at intermediate time already, t ≈ 100, the equal distribution is approximately

realized in a continuum model. Because of finite width of the acceptor band, δa, the

probability, pd(t), decays in both, discrete and continuous systems. However, an impor-

tant observation is that both curves start to diverge significantly after t ≈ 100, due to

inapplicability of the rate-type equations. Similar to Figs. A6 - A8, the intermediate

ET dynamics occurs, after which a slow exponential decay of the donor population takes

place with a very small ET rate (see inset in Fig. A9).

Example: Dimers based on Chla and Chlb molecules in LHCs. The energy

transfer from Chlb (donor) to Chla (acceptor) occurs on the 0.1− 10 ps timescale [65],

depending on the geometry of the LHC, the matrix elements of interaction between donor

and acceptor, and the environment, as well as the positioning of the dimer in the local

protein-solvent environment. As a representative example, we mention here ref. [66],

where the exciton Hamiltonian pertaining to the first excited states of chlorophyll (Chla

and Chlb) pigments in the minor light-harvesting complex CP29 of plant photosystem

II is determined based on the recent crystal structure at 2.8 Å resolution applying a

combined quantum chemical/electrostatic approach as used earlier for the major light-

harvesting complex LHCII.

In Fig. A10, we compare the discrete and continuum models for a strong dimer-noise

interaction and for a relatively narrow band (Marcus-type ET). The chosen parameters

are: ε = 150 ps−1 ≈ 100 meV, v = 14 ps−1 ≈ 9.3 meV, δa = 100 ps−1 ≈ 66.7 meV,

Dσ = 150 ps−1 ≈ 100 meV, which are close to the parameters of the donor-acceptor

dimers realized by Chla and Chlb molecules in LHCs. (See, for example, [66], and

references therein.) For the given choice of parameters, the conditions of validity of

approximation (A.6) and (A.7) hold, and one can see a good agreement between the

two models. The analytical expressions for the ET rate (28) (or (39)) give, Γ1 ≈ 2 ps−1,

which is in good agreement with numerical simulations.
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