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Abstract

We present a rigorous analysis of the phenomenon of decoherence for general
N−level systems coupled to reservoirs. The latter are described by free massless
bosonic fields. We apply our general results to the specific cases of the qubit and
the quantum register. We compare our results with the explicitly solvable case of
systems whose interaction with the environment does not allow for energy exchange
(non-demolition, or energy conserving interactions). We suggest a new approach
which applies to a wide variety of systems which are not explicitly solvable.

1 Introduction

In this paper we examine rigorously the phenomenon of quantum decoherence. This

phenomenon is brought about by the interaction of a quantum system, called here “the

system S” for short, with an environment, see e.g. [24, 36, 41] and the many references

therein. Decoherence is reflected in the temporal decay of off-diagonal elements of the

reduced density matrix of the system in a given basis. So far, this phenomenon has

been analyzed rigorously only for explicitly solvable models, [15, 17, 24, 33, 36, 37, 35,

40, 41]. In this paper we consider the decoherence phenomenon for quite general non-

solvable models. Our analysis is based on the modern theory of resonances for quantum

statistical systems as developed in [2, 6, 22, 9, 23, 21, 38, 31, 32] (see also the book
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[20]), which is related to resonance theory in non-relativistic quantum electrodynamics

([9, 5]).

Let h = hS⊗hR be the Hilbert space of the system interacting with the environment,

also called the “reservoir”, and let

H = HS ⊗ 1lR + 1lS ⊗HR + λv (1.1)

be its Hamiltonian. Here, HS and HR are the Hamiltonians of the system and the

reservoir, respectively, and λv is an interaction with a coupling constant λ ∈ R. We will

omit trivial factors 1lS⊗ and ⊗1lR when there is no danger of confusion. In this paper

we consider finite dimensional systems, the reservoirs are described by free massless

quantum fields, and we take interactions of the form v = G ⊗ ϕ(g), where G is a

self-adjoint matrix on hS and ϕ(g) is the field operator, smoothed out with a coupling

function (form factor).

Consider possibly entangled initial states of the system and reservoir, where the

reservoir is close to (a local perturbation of) an equilibrium state at some temperature

T = 1/β > 0. (In the literature on decoherence, most often it is assumed that the

initial states are product states, where the reservoir is in equilibrium, but our method

works in the general case.) Let ρt be the density matrix of the total system at time t.

The reduced density matrix (of the system S) at time t is then formally given by

ρt = TrR ρt,

where TrR is the partial trace with respect to the reservoir degrees of freedom. For the

sake of explicitness we describe here the case where the state of the reservoir is given

by a well-defined density matrix on the Hilbert space hR. In the next section we define

the relevant notions for a more realistic reservoir, obtained for instance by taking a

thermodynamic limit, or a continuous-mode limit.

Let ρ(β, λ) be the equilibrium state of the interacting system at temperature T =

1/β and set ρ(β, λ) := TrRρ(β, λ). There are three possible scenarios for the asymptotic

behaviour of the reduced density matrix, as t→ ∞:

(i) ρt −→ ρ∞ = ρ(β, λ),

(ii) ρt −→ ρ∞ 6= ρ(β, λ),

(iii) ρt does not converge.

The first situation is generic while the last two are not, although they are of interest,

e.g. for energy conserving, or quantum non-demolition interactions, characterized by

[HS, v] = 0, see [24] and Section 7.2.

Decoherence is a basis-dependent notion. It is usually defined as the vanishing of the

off-diagonal elements [ρt]m,n, m 6= n in the limit t → ∞, in a chosen basis. Most often

decoherence is defined w.r.t. the basis of eigenvectors of the system Hamiltonian HS

2



(the energy basis, also called the computational basis for a quantum register), though

other bases, such as the position basis for a particle in a scattering medium [24], are

also used.

Since ρ(β, λ) is generically non-diagonal in the energy basis, the off-diagonal ele-

ments of ρt will not vanish in the generic case, as t → ∞. Thus, strictly speaking, de-

coherence in this case should be defined as the decay (convergence) of the off-diagonals

of ρt to the corresponding off-diagonals of ρ(β, λ). The latter are of the order O(λ) and

in concrete applications often of the order O(λ2). If these terms are neglected, then

decoherence manifests itself as a process in which initially coherent superpositions of

basis elements ψj become incoherent statistical mixtures,

∑

j,k

cj,k|ψj〉〈ψk| −→
∑

j

pj|ψj〉〈ψj |, as t→ ∞.

In particular, phase relations encoded in the cj,k, j 6= k, disappear for large times. Of

course, as t → ∞, the off-diagonal elements of ρt vanish in a basis of eigenvectors of

the asymptotic Hamiltonian HS,λ,β := − 1
β ln ρ(β, λ) = HS +O(λ). We conjecture that

this Hamiltonian absorbs the leading order correction to the non-interacting dynamics

e−itHS due to the interaction with the reservoir. We discuss the role of HS,λ,β in more

detail elsewhere. We set ~ equal to one in what follows.

In this paper we consider N -dimensional quantum systems interacting in a quite

general way with reservoirs of massless free quantum fields (photons, phonons or other

massless excitations). Let A be an arbitrary observable of the system (an operator on

the system Hilbert space hS) and set

〈A〉t := TrS(ρtA) = TrS+R(ρt(A⊗ 1lR)). (1.2)

We show, under certain conditions on the interaction, that the ergodic averages

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0
〈A〉t dt (1.3)

exist, i.e., that 〈A〉t converges in the ergodic sense as t → ∞. Furthermore, we show

that for any t ≥ 0 and for any 0 < ω′ < 2π
β ,

〈A〉t − 〈〈A〉〉∞ =
∑

ε 6=0

eitεRε(A) +O
(
λ2 e−

t
2
[maxε{Im ε}+ω′/2]

)
, (1.4)

where the complex numbers ε are the eigenvalues of a certain explicitly given operator

K(ω′), lying in the strip {z ∈ C | 0 ≤ Imz < ω′/2}. They have the expansions

ε ≡ ε(s)e = e− λ2δ(s)e +O(λ4), (1.5)

where e ∈ spec(HS ⊗ 1lS − 1lS ⊗ HS) = spec(HS) − spec(HS) and the δ
(s)
e are the

eigenvalues of a matrix Λe, called a level-shift operator, acting on the eigenspace of
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HS ⊗ 1lS − 1lS ⊗HS corresponding to the eigenvalue e (which is a subspace of hS ⊗ hS).

The level shift operators play a central role in the ergodic theory of open quantum

systems, see e.g. [29]. We describe them in Section 4. The terms Rε(A) in (1.4)

are linear functionals of A and are given in terms of the initial state, ρ0, and certain

operators depending on the Hamiltonian H. They have the expansion

Rε(A) =
∑

(m,n)∈Ie

κm,nAm,n +O(λ2),

where Ie is the collection of all pairs of indices such that e = Em − En, the Ek being

the eigenvalues of HS. Here, Am,n is the (m,n)-matrix element of the observable A in

the energy basis of HS, and the κm,n are coefficients depending on the initial state of

the system (and on e, but not on A nor on λ).

Discussion of (1.4). In the absence of interaction (λ = 0) we have ε = e ∈ R,

see (1.5). Depending on the interaction each resonance energy ε may migrate into the

upper complex plane, or it may stay on the real axis, as λ 6= 0. The averages 〈A〉t
approach their ergodic means 〈〈A〉〉∞ if and only if Imε > 0 for all ε 6= 0. In this case

the convergence takes place on the time scale [Imε]−1. Otherwise 〈A〉t oscillates. A

sufficient condition for decay is that Imδ
(s)
e < 0 (and λ small, see (1.5)).

Remark about the error term in (1.4). The restrictive condition Im ε < ω′/2 <

π/β in (1.4) which implies β ≤ cλ2, for some constant c, can be eliminated by using

renormalization group methods as in [9, 34], and our results can be upgraded to hold

uniformly in T = 1/β → 0. This point will be addressed elsewhere.

There are two kinds of processes which drive the decay: energy-exchange processes

and energy preserving ones. The former are induced by interactions having nonvanish-

ing probabilities for processes of absorption and emission of field quanta with energies

corresponding to the Bohr frequencies of S (this is the “Fermi Golden Rule Condi-

tion”, [9, 18, 29, 31, 32]). Energy preserving interactions suppress such processes,

allowing only for a phase change of the system during the evolution (“phase damping”,

[35, 12, 15, 17, 24, 33, 37]).

Relation (1.4) gives a detailed picture of the dynamics of averages of observables.

The resonance energies ε and the functionals Rε can be calculated for concrete models,

to arbitrary precision (in the sense of rigorous perturbation theory in λ). See (1.9)-

(1.11) for explicit expressions for the qubit, and the illustration below for an initially

coherent superposition given by (1.15). In this paper we use relation (1.4) to discuss

the processes of thermalization and decoherence. It would be interesting to apply the

techniques developed here to the analysis of the transition from quantum behaviour to

classical behaviour (see [11, 15]).

We apply our results to a qubit, as well as to energy-preserving, or non-demolition

interactions. They apply equally well to a register of arbitrarily many qubits. The case

of energy-preserving interactions can be solved explicitly and serves as an illustrative
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example as well as a starting point for a perturbation theory for interactions which are

not energy-preserving, but for which the commutator [HS, v] is small.

Our results for the qubit can be summarized as follows. Consider a qubit coupled

linearly to the field by the interaction

v =

[
a c
c b

]
⊗ ϕ(g), (1.6)

where ϕ(g) is the Bose field operator, smeared out with a coupling function (form

factor) g(k), k ∈ R
3, and the 2×2 coupling matrix (representing the coupling operator

in the energy eigenbasis) is hermitian. The operator (1.6) - or a sum of such terms, for

which our technique works equally well - is the most general coupling which is linear

in field operators. We refer to Remark 14 below for the link between (1.6) and the

spin-boson model.

Note that the form-factor g contains an ultra-violet cut-off which introduces a time-

scale τUV . This time scale depends on the physical system in question. We can think

of it as coming from some frequency-cutoff determined by a characteristic length scale

beyond which the interaction decreases rapidly. For instance, for a phonon field τUV

is naturally identified with the inverse of the Debye frequency. We assume τUV to be

much smaller than the time scales considered here.

A key role in the decoherence analysis is played by the infrared behaviour of form

factors g ∈ L2(R3,d3k). We characterize this behavior by the unique p ≥ −1/2 satis-

fying

0 < lim
|k|→0

|g(k)|
|k|p = C <∞. (1.7)

The power p depends on the physical model considered, e.g. for quantum-optical

systems, p = 1/2, and for the quantized electromagnetic field, p = −1/2.

Decoherence of models with interaction (1.6) with c = 0 is considered in [12, 15, 17,

24, 33, 35, 37, 39] (see also Section 7.2). This is the situation of a non-demolition (energy

conserving) interaction, where v commutes with the Hamiltonian HS and consequently

energy-exchange processes are suppressed. The resulting decoherence is called phase-

decoherence. A particular model of phase-decoherence is obtained by the so-called

position-position coupling, where the matrix in the interaction (1.6) is the Pauli matrix

σz [12, 17, 35, 39]. On the other hand, energy-exchange processes, responsible for

driving the system to equilibrium, have a probability proportional to |c|2n, for some

n ≥ 1 (and a, b do not enter) [1, 9, 18, 22, 29, 31, 32]. Thus the property c 6= 0 is

important for thermalization (return to equilibrium).

We express the energy-exchange effectiveness in terms of the function

ξ(η) = lim
ǫ↓0

1

π

∫

R3

d3k coth

(
β|k|
2

)
|g(k)|2 ǫ

(|k| − η)2 + ǫ2
, (1.8)

where η ≥ 0 represents the energy at which processes between the qubit and the

reservoir take place. Let ∆ = E2 − E1 > 0 be the energy gap of the qubit. In
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works on convergence to equilibrium it is usually assumed that |c|2ξ(∆) > 0. This

condition is called the “Fermi Golden Rule Condition”. It means that the interaction

induces second-order (λ2) energy exchanging processes at the Bohr frequency of the

qubit (emission and absorption of reservoir quanta). The condition c 6= 0 is actually

necessary for thermalization while ξ(∆) > 0 is not (higher order processes can drive

the system to equilibrium). Observe that ξ(∆) converges to a fixed function, ξ0(∆), as

T → 0, and ξ(∆) increases exponentially as T → ∞. The expression for the decoherence

involves also ξ(0) (see below).

In this paper we describe the dynamics, and in particular the decoherence prop-

erties, of systems which exhibit both thermalization and (phase) decoherence. See the

the discussion after (1.7) for a comparison of the two effects, and how they relate to

the coefficients a, b, c and the coupling function g in (1.6).

Let the initial density matrix, ρt=0, be of the form ρ0 ⊗ ρR,β. (Our method does

not require the initial state to be a product, see Remark 5 below.) Denote by pm,n the

rank-one operator represented in the energy basis by the 2 × 2 matrix whose entries

are zero, except the (n,m) entry which is one. We show that for t ≥ 0

[ρt]1,1 − 〈〈p1,1〉〉∞ = eitε0(λ)
[
C0 +O(λ2)

]
(1.9)

+ eitε∆(λ)O(λ2) + eitε−∆(λ)O(λ2) +O(λ2 e−tω′/2)

and

[ρt]1,2 − 〈〈p1,2〉〉∞ = eitε∆(λ)
[
C∆ +O(λ2)

]
(1.10)

+ eitε0(λ)O(λ2) + eitε−∆(λ)O(λ2) +O(λ2 e−tω′/2).

Here, C0, C∆ are explicit constants depending on the initial condition ρ0, but not on

λ, and the resonance energies ε have the expansions

ε0(λ) = iλ2π2|c|2ξ(∆) +O(λ4)

ε∆(λ) = ∆ + λ2R+ i
2λ

2π2
[
|c|2ξ(∆) + (b− a)2ξ(0)

]
+O(λ4) (1.11)

ε−∆(λ) = −ε∆(λ)

with the real number

R = 1
2 (b2 − a2)

〈
g, ω−1g

〉

+1
2 |c|

2P.V.

∫

R×S2

u2|g(|u|, σ)|2 coth

(
β|u|
2

)
1

u− ∆
.

The error terms in (1.9), (1.10) and (1.11) satisfy, for small λ,

∣∣∣∣
O(λ2)

λ2

∣∣∣∣ < C and sup
t≥0

∣∣∣∣∣
O(λ2 e−tω′/2)

λ2 e−tω′/2

∣∣∣∣∣ < C.

Remarks. 1) To our knowledge this is the first time that formulas (1.9)-(1.11)

are presented for models which are not explicitly solvable. Results for exactly solvable
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models (non-demolition interactions) are given, among others, in [35, 37, 33]. See [24]

for an overview of the subject.

2) Relations (1.9)-(1.11) are valid for all values of t ≥ 0, and the remainder terms

O(λ2) are uniform in t ≥ 0. In particular, we do not require that λ→ 0 as t→ ∞ (van

Hove limit).

3) Even if the initial density matrix, ρt=0, is a product of the system and reservoir

density matrices, the density matrix, ρt, at any subsequent moment of time t > 0 is

not of the product form. In other words, the evolution creates the system-reservoir

entanglement.

4) The corresponding expressions for the matrix elements [ρt]2,2 and [ρt]2,1 are

obtained from the relations [ρt]2,2 = 1− [ρt]1,1 (conservation of unit trace) and [ρt]2,1 =

[ρt]
∗
1,2 (hermiticity of ρt).

5) If the qubit is initially in one of the logic pure states ρ0 = |ϕj〉〈ϕj |, where

HSϕj = Ejϕj , j = 1, 2, then we have C∆ = 0, and C0 = eβ∆/2( eβ∆ + 1)−3/2 for j = 1

and C0 = eβ∆( eβ∆ + 1)−3/2 for j = 2, see at the end of Section 7.1.

6) We develop a formula for 〈A〉t − 〈〈A〉〉∞ for all observables A of any N -level

system S in Section 4.

7) If the system has the property of return to equilibrium, i.e., if ξ(∆) > 0, then

〈〈pn,m〉〉 = [ρ∞]m,n = δm,n
e−βEm

TrS( e−βHS)
+O(λ2).

We thus recover the Gibbs law in the long time limit followed by the weak coupling

limit. A similar observation is found in the context of the quantum Langevin equation

in [10].

8) If ρ0 is an arbitrary initial density matrix on HS ⊗ HR (i.e., not necessarily of

product form), then the method developed in Section 4 yields the following result: For

any η > 0 there are constants C0, C∆, depending on η and ρ0 but not on λ, s.t.

[ρt]1,1 − 〈〈p1,1〉〉∞ = eitε0(λ) [C0 +O(λ)] (1.12)

+ eitε∆(λ)O(λ) + eitε−∆(λ)O(λ) +O(λ e−tω′/2) +O(η)

and

[ρt]1,2 − 〈〈p1,2〉〉∞ = eitε∆(λ) [C∆ +O(λ)] (1.13)

+ eitε0(λ)O(λ) + eitε−∆(λ)O(λ) +O(λ e−tω′/2) +O(η),

where O(η) is uniform in t, and where the resonance energies are given by (1.11).

Furthermore, all remainder terms depend on η, in general.

9) Equations (1.9), (1.10) and (1.11) define the decoherence time scale, τD =

[Imε∆(λ)]−1, and the thermalization time scale, τT = [Imε0(λ)]−1. We should com-

pare τD with the decoherence time scales in real systems and with computational time

scales. The former depends on the physical realization of the qubit and its environment.
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It can vary from 104s for nuclear spins in paramagnetic atoms to 10−12s for electron-

hole excitations in bulk semiconductors (see e.g. [16]). Re ε∆(λ) − ∆ = λ2R + O(λ4)

gives the radiative energy shifts.

10) To second order in λ, the imaginary part of ε∆ is increased by a term ∝
(b − a)2ξ(0) only if p = −1/2, where p is defined in (1.7). For p > −1/2 we have

ξ(0) = 0 and that contribution vanishes. For p < −1/2 we have ξ(0) = ∞.

11) ξ(∆) and R contain purely quantum, vacuum fluctuation terms, as well as

thermal ones, while ξ(0) is determined entirely by thermal fluctuations. ξ(∆) and ξ(0)

are increasing in T , and, as T → 0, ξ(0) is linear in T (p = −1/2) and ξ(∆) converges

to a fixed nonzero value. The decoherence rate thus increases for decreasing T , and

it approaches a finite value as T → 0, for c 6= 0. Our proofs work for arbitrarily

small, fixed temperatures. There is strong evidence that the results above remain valid

for T → 0 (see the remark about the error term in (1.4) above, and also [9, 34]). A

discussion of the decoherence function in terms of the temperature for the explicitly

solvable case, c = 0, is given in [35].

12) To second order in pertrubation, the ratio of the thermalization versus deco-

herence rate is τT/τD = 1
2 [1 + ( b−a

|c| )2 ξ(0)
ξ(∆) ]. For τT/τD < 1, the populations converge to

their limiting values faster than the off-digaonal matrix elements, as t → ∞ (coherence

persists beyond thermalization of the population). For τT/τD > 1, the off-diagonal el-

ements converge faster. If the interaction matrix is diagonal (c = 0), then τT/τD = ∞,

if it is off-diagonal (or if a = b), then τT/τD = 1/2.

13) For energy-conserving interactions, c = 0, it follows that full decoherence occurs

if and only if b 6= a and ξ(0) > 0. If either of these conditions are not satisfied then the

off-diagonal matrix elements are purely oscillatory (while the populations are constant).

We analyze energy-conserving interactions in Section 7.2.

14) In the ubiquitous spin-boson model [28], obtained as a two-state truncation

of a double-well system or an atom, interacting with a Bose field, the Hamiltonian

is given by (1.1) with HS = −1
2∆0σx + 1

2ǫσz and v = σz ⊗ ϕ(g). Here, σx, σz are

Pauli spin matrices, ǫ is the “bias” of the asymmetric double well, and ∆0 is the “bare

tunneling matrix element”. In the canonical basis, whose vectors represent the states

of the system localized in the left and the right well, HS has the representation

HS =
1

2

[
ǫ −∆0

−∆0 −ǫ

]
. (1.14)

The diagonalization of HS yields HS
∼= diag(E+, E−), where E± = ±1

2

√
ǫ2 + ∆2

0. The

operator v = σz ⊗ ϕ(g) is represented in the basis diagonalizing HS as (1.6), with

a = −b = −(
∆2

0
ǫ2

+ 1)−1/2 and c = 1
2( ǫ2

∆2
0

+ 1)−1/2.

Illustration. Let us discuss the decoherence and thermalization properties in the

case where S is initially given by a coherent superposition in the energy basis. For sake
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of explicitness we take

ρ0 = 1
2

[
1 1
1 1

]
. (1.15)

We obtain the following expressions for the dynamics of matrix elements, for all t ≥ 0:

[ρt]m,m =
e−βEm

ZS,β
+

(−1)m

2
tanh

(
β∆

2

)
eitε0(λ) +Rm,m(λ, t), m = 1, 2,

[ρt]1,2 = 1
2 eitε−∆(λ) +R1,2(λ, t),

where the numbers ε are given in (1.11). The remainder terms satisfy |Rm,n(λ, t)| ≤
Cλ2, uniformly in t ≥ 0, and they can be decomposed into a sum of a constant and a

decaying part,

Rm,n(λ, t) = 〈〈pn,m〉〉∞ − δm,n
e−βEm

ZS,β
+R′

m,n(λ, t),

where |R′
m,n(λ, t)| = O(λ2 e−γt), with γ = min{Imε0, Imε±∆}. These relations show

in particular that, to second order in λ, convergence of the populations to the equi-

librium values (Gibbs law), and decoherence occur exponentially fast, with rates

τT = [Imε0(λ)]−1 and τD = [Imε∆(λ)]−1, respectively. (If either of these imaginary

parts vanishes then the corresponding process does not take place, of course.) In

particular, coherence of the initial state stays preserved on time scales of the order

λ−2[|c|2ξ(∆) + (b− a)2ξ(0)]−1, c.f. (1.11). We show how to arrive at the above expres-

sions at the end of Section 7.1.

The method we use in this work yields an error estimate in (1.4) which is not

uniform in T = 1/β → 0. However, our result can be upgraded to a uniform estimate

by employing spectral renormalization group methods as developed in [9, 31, 32, 34].

This will be addressed elsewhere.

As mentioned above, we prove equation (1.4) using quantum statistical resonance

theory, which is based on spectral deformation techniques. To keep the exposition as

simple as possible we use in this paper the simplest and most restrictive version of this

method, namely, the translation deformation. This produces weaker results (like non-

uniformity in temperature of the error estimate in (1.4), as mentioned above) than can

be obtained by more refined techniques. Dilation deformation [9] and a combination

of dilation and translation deformation [31, 32] in conjunction with spectral renormal-

ization group methods weakens the restrictions on the class of treatable interactions

considerably and strengthens the results, but at the price of a much more involved

mathematical machinery.

Although there is a subtle mathematical theory behind our techniques, we believe

that on a formal level, they are simpler and more powerful than the standard path-

integral methods ([14, 3, 25, 26]). The rigorous treatment based on master equations

and Lindblad generators [27] seems to be more difficult. While the path-integral and
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master equation approaches are intrinsically time-dependent, the resonance theory is

formulated as a stationary eigenvalue problem for some (albeit non-self-adjoint) oper-

ators Λe,β,λ acting on subspaces of two copies of the system Hilbert space, hS ⊗ hS. In

particular, the complex numbers ε are eigenvalues of these operators. See the remark

at the end of Section 4.

This paper is organized as follows. In Section 2 we introduce the model and in

Section 3 we present our main result for general N−level systems and for the qubit.

We develop a general dynamical resonance theory for systems at positive temperatures

and densities in Sections 4-6 (our general theorem stating (1.4) is proven in Section 4

and the relation (1.5) is shown in Section 5). We give two applications of this theory

in Section 7: the first one yields a proof of the results for the qubit mentioned above,

the second one illustrates our method on an explicitly solvable non-demolition model.

Appendices A and B contain explicit formulas for some quantities which are important

for our resonance theory. In Appendices C and D we outline the perturbation theory of

equilibrium states, and we give the proofs of several propositions of previous sections,

including the short calculation of the explicit solution of a non-demolition model.

2 Open quantum systems

The system S. Let hS be the space of pure states of a quantum system S whose

dynamics is generated by a Hamiltonian HS. In applications we will take hS = C
N and

HS = diag(E1, . . . , EN ), but we give a discussion of more general systems S with finitely

or infinitely many (discrete) levels. This discussion is straightforward and instructive,

we believe. The evolution of a density matrix ρS on hS is

t 7→ e−itHSρS eitHS , t ∈ R. (2.1)

The Gibbs state at temperature T = 1/β > 0 is ρS,β = Z−1
β e−βHS , with the nor-

malization constant Zβ = TrS e−βHS . (If dim hS < ∞ then Zβ < ∞ for any HS. In

the infinite-dimensional case we assume that HS is trace-class.) Observables of S are

operators on hS, they form the algebra of all bounded operators B(hS).

One can represent any state on S, mixed or pure, by a single vector in the Hilbert

space HS = hS ⊗ hS. This is the so-called Gelfand–Naimark–Segal representation of

states. To see how this works take an arbitrary density matrix ρS on hS, and write it

in its diagonalizing basis as

ρS =
∑

j

pj|ψj〉〈ψj |. (2.2)

The corresponding state is defined by A 7→ TrS(ρSA) for any observable A ∈ B(hS). Let

us denote by L2(hS) the set of all Hilbert–Schmidt operators, i.e., A ∈ L2(hS) if and

only if TrS(A∗A) is finite. (In the case dim hS <∞ we have L2(hS) = B(hS).) L2(hS) is

a Hilbert space with the scalar product 〈A,B〉2 = TrS(A∗B). Since the density matrix
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ρS is a positive trace class operator, its square is a Hilbert–Schmidt operator, and due

to the cyclicity of the trace we have

TrS(ρSA) = 〈√ρS, A
√
ρS〉2 . (2.3)

This shows that the density matrix ρS on hS is represented by the vector
√
ρS ∈ L2(hS).

Instead of working with the state space L2(hS) it is often convenient to switch to

HS = hS ⊗ hS. This is done via the correspondence

T : |ϕ〉〈ψ| −→ ϕ⊗ Cψ, (2.4)

which extends by linearity to an isometric isomorphism between L2(hS) and HS. Here,

C is a map on hS that is chosen to be antilinear (conjugate linear) since T should be

linear but ψ 7→ 〈ψ| is antilinear. Furthermore, to make T an isometry (norm preserving)

C has to be antiunitary, meaning that it satisfies

〈Cχ1, Cχ2〉 = 〈χ1, χ2〉 (2.5)

for all χ1,2 ∈ hS. Relation (2.5) implies that C is bijective: injectivity follows from

‖Cχ‖ = ‖χ‖ and surjectivity follows from the fact that C2 is unitary, so RanC ⊇
RanC2 = hS.

In what follows we choose C to be the operator that takes the complex conjugate

of coordinates w.r.t. the basis of hS in which HS is diagonal. In this case C is an

involution, C2 = C.

Since T is an isomerty we have 〈A,A〉2 = ‖TA‖2 = 〈TA, TA〉, where the norm and

the scalar product on the r.h.s. are those of HS. This implies that 〈A,B〉2 = 〈TA, TB〉,
by the polarization identity. In particular, (2.3) gives

TrS(ρSA) = 〈T√ρS, TA
√
ρS〉 . (2.6)

The vector in HS representing the state (2.2) is thus

Ψ = T
√
ρS =

∑

j

√
pj ψj ⊗ Cψj , (2.7)

and the Gibbs state corresponds to

ΩS,β = Z
−1/2
β

∑

j

e−βEj/2ϕj ⊗ ϕj , (2.8)

where ϕj is the eigenvector of HS corresponding to the energy Ej .

Due to (2.6) and since TA
√
ρS = (A⊗ 1l)Ψ we have

TrS(ρSA) = 〈Ψ, (A⊗ 1l)Ψ〉 . (2.9)

The algebra of observables of S is given by B(hS)⊗ 1l when viewed as operators on HS.
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Remark. It appears that in the representation of the Gibbs state the temperature

dependence (parameter β) is entirely concentrated on the vector ΩS,β, (2.8), and the

represented observables A⊗1l are independent of β. We may transfer the β-dependence

entirely (or partly) to the observables by a change of basis. For example, let Ψ′ be any

fixed vector on HS and take any unitary Uβ with the property UβΩS,β = Ψ′. Then we

have TrS(ρSA) = 〈Ψ′, Aβ Ψ′〉, where Aβ = Uβ(A⊗ 1l)U∗
β .

As we see from (2.1), (2.2) and (2.7), the evolution of Ψ is given by

t 7→
∑

j

√
pj e−itHSψj ⊗ C e−itHSψj = e−itLSΨ, (2.10)

where

LS = HS ⊗ 1l − 1l ⊗HS (2.11)

is called the (standard) Liouville operator. It satisfies the relation

LSΩS,β = 0. (2.12)

In the Heisenberg picture, a system observable A evolves according to

t 7→ eitLS(A⊗ 1l) e−itLS . (2.13)

Remark on the choice of the Liouville operator. The map T , (2.4), is only a

particular choice of an isometric isomorphism. We may more generally put

T : |ϕ〉〈ψ| −→ Uϕ⊗ V Cψ,

where U and V are arbitrary unitary operators on hS. We may even define a time-

dependent isometric isomorphism Tt, by taking time-dependent families of unitaries Ut

and Vt. For instance, the special choice U = 1l and V = Vt yields

TtA e−itHS
√
ρS eitHS = (A⊗ 1l)( e−itHS ⊗ Vt eitHS)Ψ,

with Ψ given in (2.7). Therefore, we may equally well define the evolution of Ψ by

t 7→ Ψ(t) = ( e−itHS ⊗ Vt eitHS)Ψ. As an example, take Vt = e−itHS , then Ψ(t) =

( e−itHS ⊗ 1l)Ψ. It is easy to see that the only choice of Vt for which the Gibbs vector

ΩS,β, (2.8), is invariant under the evolution, i.e. for which ΩS,β(t) = ΩS,β for all t, is

given by Vt = 1l. This convenient choice results in (2.10), (2.11) and (2.12).

The reservoir R. We introduce now a second quantum system, a reservoir R

in a state of thermal equilibrium at a temperature T = 1/β > 0. A typical reservoir

is a very large quantum system, say a quantum gas with a given particle density (or

a radiation field). In order to suppress recurrences one may consider the idealized

situation of an infinitely extended reservoir giving rise to truly irreversible processes

(like thermalization or decoherence). In physical experiments reservoirs have of course
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finite size, but the idealized limit is a good approximation for physically realistic times

that are not exceedingly large, see e.g. [19] for a discussion of this point.

The reservoir R we consider is the infinitely extended gas of massless relativistic

Bosons (of photons or phonons, for example) at positive temperature and positive den-

sity. Our approach applies also to fermionic reservoirs, and in fact becomes technically

much simpler in that case. The state of R is obtained by performing a thermodynamic

limit of finite-volume equilibrium (Gibbs) states with fixed temperature and density.

We refer to [30] for a detailed exposition of this matter in textbook-style. Just as in

the case of the system S one can represent the equilibrium state by a single vector in

a suitable Hilbert space. This is the so-called Araki–Woods representation, [4, 30], in

which the Hilbert space is given by

HR = F(L2(R3,d3k)) ⊗F(L2(R3,d3k)), (2.14)

where F(L2(R3,d3k)) is the bosonic Fock space over the one-particle space of wave

functions L2(R3,d3k) in momentum representation. The usual bosonic creation and

annihilation operators a∗(k) and a(k), k ∈ R
3, are represented in HR as the thermal

creation- and annihilation operators,

a(k) 7→ aβ(k) =
√

1 + µβ a(k) ⊗ 1l +
√
µβ 1l ⊗ a∗(k), (2.15)

a∗(k) 7→ a∗β(k) =
√

1 + µβ a
∗(k) ⊗ 1l +

√
µβ 1l ⊗ a(k), (2.16)

where µβ is Planck’s momentum density distribution for black-body radiation,

µβ(k) =
1

eβ|k| − 1
(2.17)

(we take the Bose gas in a phase without a Bose–Einstein condensate). The represen-

tation (2.15), (2.16) is the equivalent to the representation of an observable A ∈ B(hS)

by A ⊗ 1l ∈ B(HS) in the case of the system S, c.f. the remark after (2.9). The map

defined by (2.15), (2.16) is called the Araki-Woods representation map.

Denote by Ω the vacuum vector of F(L2(R3,d3k)). It is easily seen that the vector

ΩR,β = Ω ⊗ Ω (2.18)

represents the equilibrium state and

〈
ΩR,β, a

∗
β(k)aβ(l)ΩR,β

〉
= δ(k − l)µβ(k),

where δ is the Dirac delta function.

The dynamics of a density matrix ρR of the reservoir (acting on HR) is given by

t 7→ e−itLRρR eitLR , (2.19)

where

LR = HR ⊗ 1l − 1l ⊗HR, (2.20)
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with

HR =

∫

R3

|k|a∗(k)a(k)d3k. (2.21)

The self-adjoint operator LR is called the standard Liouville operator for R, it

satisfies (compare with (2.12))

LRΩR,β = 0. (2.22)

The smoothed-out thermal creation and annihilation operators are defined as

a∗β(h) =

∫

R3

h(k)a∗β(k)d3k, (2.23)

aβ(h) =

∫

R3

h(k)aβ(k)d3k, (2.24)

where h ∈ L2(R3,dk3) is a wave function of a single Boson and where the aβ(k) and

a∗β(k) are given in (2.15), (2.16).

It is not hard to check explicitly that LR, (2.20), implements the Heisenberg dy-

namics of observables, given by the Bogoliubov transformation

t 7→ eitLRa#
β (h) e−itLR = a#

β ( ei|k|th).

The total system S + R. The joint system S + R is described by the Hilbert

space

H = HS ⊗HR, (2.25)

and the non-interacting dynamics of a density matrix ρ on HS ⊗HR is

t 7→ e−itL0ρ eitL0 , (2.26)

with

L0 = LS + LR. (2.27)

The state ρS,β ⊗ ρR,β = |ΩS,β〉〈ΩS,β| ⊗ |ΩR,β〉〈ΩR,β| is an equilibrium state w.r.t. the

non-interacting dynamics.

The coupling between S and R is specified by an interaction operator V which is

an observable of the joint system and is related to the interaction operator v given in

(1.6). The full dynamics of a density matrix ρ on HS ⊗HR,

t 7→ e−itLλρ eitLλ , (2.28)

is generated by

Lλ = L0 + λV, (2.29)

where λ is a coupling constant. An important class of interactions is given by coupling

operators of the form

v = G⊗ ϕ(g), (2.30)
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see also (1.1), where G is a self-adjoint operator on hS and where

ϕ(g) =
1√
2

(a∗(g) + a(g)) (2.31)

is the bosonic field operator on F(L2(R3,d3k)), smeared out with a form factor g ∈
L2(R3,d3k). On the positive temperature Hilbert space HS ⊗ HR this interaction

Hamiltonian leads to the operator

V = G⊗ 1lS ⊗ ϕβ(g), (2.32)

where

ϕβ(g) =
1√
2
(a∗β(g) + aβ(g)) (2.33)

is the smoothed out thermal field operator, (2.23), (2.24). More generally, the interac-

tion is specified by an operator V ∈ M = MS ⊗ MR, or a V which is unbounded, but

affiliated with M,1 like (2.32).

For a wide class of interactions V , the interacting dynamics admits an equilibrium

state ρ(β, λ) (at least for small λ), but we do not limit our discussion to such operators

V .

The reduced density matrix ρt of the open system S is obtained by tracing out the

degrees of freedom of the reservoir, it is defined by

TrS(ρtA) = TrS+R

(
e−itLλρ0 eitLλ(A⊗ 1lR)

)
,

for all A ∈ B(hS), where ρ0 is the initial state of S. It is customary to take ρ0 =

ρ0 ⊗ ρR,β, where ρ0 is the initial state of S and ρR,β is the reservoir equilibrium state,

but our analysis works equally well for initially entangled (non-product) states which

are arbitrary local perturbations of ρR,β.

Let {ϕj}j≥1 be an orthonormal basis of hS diagonalizing HS. The reduced density

matrix has matrix elements

[ρt]m,n := 〈ϕm, ρtϕn〉 = TrS(ρtpn,m)

where

pn,m = |ϕn〉〈ϕm|. (2.34)

We say that the system S + R has the property of return to equilibrium iff

lim
t→∞

TrS+R(ρ0 eitLλM e−itLλ) = TrS+R(ρ(β, λ)M),

for all observables (of the joint system) M and for all initial density matrices ρ0 on H.

The large time limit of the reduced density matrix of such a system is given by

ρ∞ := lim
t→∞

ρt = TrR(ρ(β, λ)) = ρS,β +O(λ),

1meaning that it commutes with all bounded operators belonging the the commutant algebra M′
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since, by perturbation theory of equilibrium states, ρ(β, λ) = ρS,β ⊗ ρR,β +O(λ). The

leading term of ρ∞ (for small coupling) is just the Gibbs state of S. In this sense, S

undergoes the process of thermalization.

The system S is said to exhibit (full) decoherence (in the energy basis) if the off-

diagonal matrix elements of the reduced density matrix vanish in the limit of large

times,

lim
t→∞

[ρt]m,n = 0

whenever m 6= n.

It has to be pointed out that ρ∞ is not diagonal in the energy basis in general, but

only its leading part is. Therefore, thermalization prevents full decoherence since the

final state of the thermalized system S has still non-vanishing off-diagonal elements,

which are of the order O(λ). In fact, there is creation of non-vanishing off-diagonals by

thermalization since even if S is initially an incoherent superposition of basis elements

of a given basis {χj}j≥1,

ρ0 =
∑

m

αm|χm〉〈χm|,

it will become a coherent superposition since in general,

〈χm, ρ∞χn〉 6= 0.

We illustrate this for a qubit in Theorem 3.3.

Full decoherence can occur if thermalization processes are excluded. For instance, if

one suppresses energy exchanges between S and R (i.e., if V commutes with HS) then,

even if an equilibrium state exists, the system does not converge to it as t → ∞. So

there is no thermalization but full decoherence, i.e. [ρ∞]m,n = 0, m 6= n, can be shown

to occur in various models. (That there is no thermalization is readily seen since the

populations are time-independent).

However, it is well known [35, 33] that even if energy exchange processes are sup-

pressed, full decoherence may not take place if the infrared modes of the reservoir are

only weakly coupled to the system, see Section 7.2.

3 Decoherence and thermalization of a general N-level

system and of a qubit

We analyze an N -level system coupled to a thermal environment modeled by an in-

finitely extended free massless relativistic Bose field at temperature T > 0. Under

suitable conditions on the interaction the system has the property of return to equi-

librium. Our goal is to compare the thermalization and decoherence processes and, in

particular, the speed of convergence of the diagonal and off-diagonal matrix elements

of the reduced density matrix.
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The state space of an N -level system is given by hS = C
N , and its Hamiltonian is

HS = diag(E1, . . . , EN ). (3.1)

We couple the N -level system to the reservoir through an operator v = G⊗ϕ(g), where

G is a hermitian N ×N matrix, and the field operator is as in (2.31), with a coupling

function g(k), k ∈ R
3. Let g(k) = g(r, σ), where (r, σ) ∈ R+×S2. We make a regularity

assumption on g. Fix any phase φ ∈ R and define

gβ(u, σ) :=

√
u

1 − e−βu
|u|1/2

{
g(u, σ) if u ≥ 0,
− eiφg(−u, σ) if u < 0,

(3.2)

where u ∈ R and σ ∈ S2. The phase φ is a parameter which can be chosen appropriately

to satisfy the following condition for a given coupling function g, see [18].

(A) We assume that the map ω 7→ gβ(u + ω, σ) has an analytic extension to a

complex neighbourhood {|z| < ω′} of the origin, as a map from C to L2(R3,d3k).

This condition ensures that the simplest version of a dynamical resonance theory

- the one using complex deformations - can be implemented in a straightforward way.

Examples of g satisfying (A) are given by g(r, σ) = rp e−rm
g1(σ), where p = −1/2 + n,

n = 0, 1, . . ., m = 1, 2, and g1(σ) = eiφg1(σ).

The technical simplicity of the complex translation method comes at a price. On

the one hand, it limits the class of admissible functions g(k), which have to behave

appropriately in the infra-red regime so that the parts of (3.2) fit nicely together at

u = 0, to allow for an analytic continuation. On the other hand, the square root in

(3.2) must be analytic as well, which implies the condition ω′ < 2π/β.

We now state our main result on the dynamics. Let ψ0 ⊗ ΩR,β be the vector in

HS ⊗HR representing the density matrix at time t = 0. Let B be the unique operator

in 1lS ⊗ B(CN ) satisfying

BΩS,β = ψ0.

The existence of such a B is not hard to verify, see also the end of Section 7.1 for

concrete examples. Define the vector

Ωβ,0 := ΩS,β ⊗ ΩR,β.

Theorem 3.1 (Dynamical resonance theory) Assume condition (A) with a fixed

ω′ satisfying 0 < ω′ < 2π/β. There is a constant c0 s.t. if |λ| ≤ c0/β then the limit

〈〈A〉〉∞, (1.3), exists for all observables A ∈ B(hS). Moreover, for all such A and for

all t ≥ 0 we have

〈A〉t − 〈〈A〉〉∞ =
∑

s : ε
(s)
0 6=0

eitε
(s)
0

〈
(B∗ψ0) ⊗ ΩR,β, Q

(s)
0 (A⊗ 1lS)Ωβ,0

〉

+
∑

e 6=0

ν(e)∑

s=1

eitε
(s)
e

〈
(B∗ψ0) ⊗ ΩR,β, Q

(s)
e (A⊗ 1lS)Ωβ,0

〉

+O(λ2 e−
t
2
[maxe,s{Im} ε

(s)
e +ω′/2]). (3.3)
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Here, the ε
(s)
e are given by (1.5), 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigen-

value e into distinct resonance energies ε
(s)
e , and the Q

(s)
e are (non-orthogonal) finite-

rank projections.

Remarks. 1. One can explicitly expand in powers of λ both the resonance energies

ε
(s)
e and the resonance projections Q

(s)
e , see Sections 5 and 6.

2. Our techniques are not restricted to unentangled initial states (see also (1.12),

(1.13)).

Return to equilibrium for N -level systems with a coupling (2.32) to the Bose field

has been shown by several authors over the last few years, provided the coupling is

sufficiently effective, and under regularity conditions much weaker than (A), see for

instance [22, 9, 18] and references therein. For the sake of notational simplicity we

will restrict our attention to the qubit (N = 2) in the presentation of the remaining

results in this section. The Hamiltonian of the qubit is HS = diag(E1, E2), we set

∆ := E2 − E1 > 0. The operator G in (2.32) is represented in the energy-basis by the

matrix

G =

[
a c
c b

]
, (3.4)

where a, b ∈ R.

Theorem 3.2 (Thermalization, return to equilibrium for the qubit) Assume

condition (A), and that |c|2ξ(∆) > 0. There is a constant c0 s.t. if 0 < |λ| < c0/β

then the qubit coupled to the reservoir of thermal Bosons has the property of return to

equilibrium.

The condition |c|2ξ(∆) > 0 is often called the “Fermi Golden Rule Condition”. It

means that the interaction induces second-order (λ2) energy exchanging processes at

the Bohr frequency of the qubit (emission and absorption of reservoir quanta). The

condition c 6= 0 is actually necessary for thermalization while ξ(∆) > 0 is not (higher

order processes can drive the system to equilibrium).

Theorem 3.3 (Creation of off-diagonals by thermalization)

Under the assumption of Theorem 3.2 the off-diagonal elements of the reduced den-

sity matrix are given in the limit t→ ∞, irrespectively of the initial density matrix ρ0,

by

[ρ∞]1,2 =
cλ2

ZS,β

〈
g, (a e−βE1B1 + b e−βE2B2)g

〉
+O(λ4),
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where ZS,β = TrS( e−βHS) is the partition function of S, and where

B1 =
µ

ω(ω + ∆)

[
eβω/2( eβω/2 − 1) − e−β∆/2( e−β∆/2 − 1) + eβ∆/2 − 1

]

+
1 + µ

ω(ω − ∆)
( e−βω/2 − e−β∆/2)( e−β∆/2 + e−βω/2 − 1)

− e−β∆/2 − 1

ω∆
( e−β∆/2 − µ− 1) +

µ

∆(ω + ∆)
( e−β∆/2 − 1),

and

B2 =
1 + µ

ω(ω + ∆)

[
( e−βω/2 − eβ∆/2)2 + eβ∆/2 − 1

]

+
µ

ω(ω − ∆)

[
eβω − eβ∆/2( eβ∆/2 − 1) − 1

]
+

eβ∆/2( eβ∆/2 − 1)

ω∆

+
1 + µ

∆(ω + ∆)
( eβ∆/2 − 1) − µ

∆(ω − ∆)
( eβ∆/2 − 1).

Here ω = |k|, ∆ = E2 −E1 > 0 is the energy gap of HS, and µ = µβ is given in (2.17).

This theorem follows from an expansion of the equilibrium state in powers of λ. We

give an outline of the proof in Appendix C.

Remarks. 1) Even if the system S starts out in an incoherent superposition of

vectors from the energy basis, Theorem 3.3 shows that in the large-time limit, coherence

of order λ2 is built up in that basis.

2) If the interaction matrix G is diagonal, i.e. if c = 0, then the O(λ2) terms in

the off-diagonals of ρ∞ vanish. The same happens if a = b = 0, i.e., if G is purely

off-diagonal.

Recall the notation 〈A〉t, 〈〈A〉〉∞ and pn,m, (1.2), (1.3) and (2.34).

Theorem 3.4 (Convergence of matrix elements) Assume (A) for a fixed ω′ > 0

satisfying 0 < ω′ < 2π/β. There is a constant c0 s.t. the following statements hold for

|λ| < c0/β. For any initial density matrix of the form ρ0⊗ρR,β and any observable A of

S the limit 〈〈A〉〉∞ exists, and statements (1.9)-(1.11) about the asymptotic behaviour

of [ρt]m,n are true.

Let us again point out that our method works for any entagled initial density matrix

ρ0 on HS ⊗HR, c.f. (1.12), (1.13).

4 Dynamical resonance theory for systems at positive

temperatures and positive densities and proof of Theo-

rem 3.1

The goal of this section is to arrive at relation (3.3) expressing the asymptotic behaviour

of the averages of a system observable A as t→ ∞.
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The state of S, given by the initial density matrix ρ0, is represented by the vector

state A 7→ 〈ψ0, (A⊗ 1lS)ψ0〉, for a ψ0 ∈ HS = hS⊗hS, see (2.7). For instance, ψ0 = ΩS,β

if S is initially in equilibrium, c.f. (2.8).

Let the initial state of the total system S + R be the product state ρ0 ⊗ ρR,β, which

is represented on HS ⊗HR by the vector

ψ0 ⊗ ΩR,β ∈ HS ⊗HR, (4.1)

where ΩR,β is given in (2.18). An observable A ∈ M of the system S + R evolves

according to the Heisenberg evolution

t 7→ eitLλA e−itLλ,

where Lλ is given in (2.29), (2.32). The Schrödinger dynamics of a vector ψ ∈ HS⊗HR

determining the state 〈ψ, · ψ〉 on M is given by t 7→ ψt = e−itLλψ. The average of an

observable A of S at time t is thus

〈A〉t =
〈
ψ0 ⊗ ΩR,β, eitLλ(A⊗ 1lS ⊗ 1lR) e−itLλ ψ0 ⊗ ΩR,β

〉
. (4.2)

It is reasonable to just write A instead of A ⊗ 1lS ⊗ 1lR in this section. Our goal is to

examine 〈A〉t as a function of t.

It is not hard to see that ΩS,β has the following property of separability: given any

vector ψ0 ∈ HS ⊗HS we can find a unique operator B ∈ 1lS ⊗B(hS) with the property

that

ψ0 = BΩS,β. (4.3)

One can solve this equation for the matrix elements of B, e.g. by using (2.8). See also

the end of Section 7.1 for concrete examples.

An entangled initial state of the system, given by a density matrix ρ0, is realized on

the Hilbert space HS ⊗HR by a vector Ψ0 which is not of the product (4.1). However,

one can show that any Ψ can be approximated arbitrarily well by vectors of the form

BΩβ,0, for some B in the commutant of M, and where

Ωβ,0 = ΩS,β ⊗ ΩR,β. (4.4)

(The commutant of M is the von Neumann algebra consisting of all operators on

HS ⊗HR which commute with all operators of M.) The following arguments can then

be carried out in a similar fashion. This is why our method works for arbitrary initial

states, not only for Feynman-Vernon type, disentangled initial states.

Since eitLλM e−itLλ = M (invariance of the algebra of observables), the operator B

(belonging to the commutant of M,) commutes with eitLλ(A⊗1lS ⊗1lR) e−itLλ . We can

thus use (4.3) in (4.2) and commute B to the left, with the result

〈A〉t =
〈
(B∗ψ0) ⊗ ΩR,β, eitLλA e−itLλΩβ,0

〉
. (4.5)
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The following formula, derived in [31, 32], reduces the description of the long-time

behaviour of (4.5) to a spectral problem for an auxiliary operator Kλ(ω) defined below,

〈A〉t =
−1

2πi

∫

R−i
eitz

〈
(B∗ψ0) ⊗ ΩR,β, (Kλ(ω) − z)−1AΩβ,0

〉
dz. (4.6)

The integral in (4.6) is understood as an improper Riemann integral,

∫

R−i
f(z)dz = lim

a,b→∞

∫ b

−a
f(x− i)dx. (4.7)

We present here a heuristic derivation of (4.6), see however [31, 32] for a rigorous proof.

First we get rid of the factor e−itLλ in (4.5) by the following trick [23, 31, 32]: one can

add to Lλ a term which does not change the dynamics but which is s.t. the resulting

sum Kλ satisfies KλΩβ,0 = 0. The operator Kλ is of the form

Kλ = L0 + λI,

for some non-self-adjoint operator I related to V , see (B.3). We present the explicit

construction of Kλ in Appendices A and B. It gives that eitLλA e−itLλ = eitKλA e−itKλ ,

and that e−itKλΩβ,0 = Ωβ,0. Using these relations we obtain from (4.5)

〈A〉t =
〈
(B∗ψ0) ⊗ ΩR,β, eitKλAΩβ,0

〉
. (4.8)

The operator Kλ is unbounded and non-self-adjoint, and we do not know a priori

whether eitKλ is defined on AΩβ,0. Consequently, the formula above and the next one

are formal, heuristic expressions (which obtain a rigorous meaning using a complex

deformation, see below and [31, 32]). Furthermore, we represent the propagator as an

integral over the resolvent, [31, 32] to arrive at

〈A〉t =
−1

2πi

∫

R−i
eitz

〈
(B∗ψ0) ⊗ ΩR,β, (Kλ − z)−1AΩβ,0

〉
dz. (4.9)

Next we “uncover the resonances”. We use the following notation for the second

quantization of a a one-body operator O acting on single-particle wave functions of the

variable k ∈ R
3:

dΓ(O) =

∫

R3

a∗(k)Oa(k) d3k. (4.10)

Let

N = dΓ(1l) ⊗ 1lR + 1lR ⊗ dΓ(1l)

be the total number operator on HR = F(L2(R3,d3k)) ⊗ F(L2(R3,d3k)), and define

the operator

D = dΓ(ϑ) ⊗ 1l − 1lR ⊗ dΓ(ϑ), (4.11)

where ϑ = i
2(k̂ · ∇ + ∇ · k̂), with k̂ = k

|k| . The operator D is self-adjoint (even though

dΓ(ϑ) alone is only symmetric but not self-adjoint, see [31]). Let

U(ω) = e−iωD, (4.12)
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ω ∈ R, be the group of unitary transformations on HR generated by D. We transform

the operator Kλ unitarily as Kλ(ω) = U(ω)KλU(ω)−1. From −i[dΓ(ϑ),dΓ(|k|)] =

dΓ(1l), and from equations (2.20), (2.21) and (2.27), we obtain the relation i[D,L0] = N .

Consequently,

Kλ(ω) = L0 + ωN + λI(ω), (4.13)

where I(ω) = U(ω)IU(ω)−1. The explicit formula is presented in Appendices A and

B. Since U(ω) is unitary (for ω ∈ R), and since both AΩβ,0 and (B∗ψ0) ⊗ ΩR,β are

invariant under U(ω), the r.h.s. of equation (4.9) equals that of (4.6), for all ω ∈ R.

The integrand in (4.6) can be extended to an analytic function in ω, for ω in a strip

0 < Imω < ω0 = 2π
β (which is continuous as Imω ↓ 0). Since the r.h.s. of (4.6) is

constant in ω for real ω, it follows that (4.6) holds for all complex ω in the strip. This

concludes our heuristic derivation of formula (4.6).

Let us take ω = iω′, for some ω′ > 0. The point is that the spectrum of Kλ(ω) is

much easier to analyze than that of Kλ. This is so because the spectrum of K0(ω) =

L0 + iω′N is

spec(K0(ω)) = ({Ei − Ej}i,j=1,...,N ) ∪n≥1 (iω′n+ R). (4.14)

The eigenvalues Ei − Ej have eigenvectors ϕi ⊗ ϕj ⊗ ΩR,β and the lines iω′n + R are

horizontal branches of continuous spectrum. There is a gap of size ω′ separating the

eigenvalues from the continuous spectrum of K0(ω), so if we add the perturbation

λI(ω), which is bounded relative to K0(ω), we can follow the location of eigenvalues by

simple (analytic) perturbation theory, provided λ is small compared to ω′. One obtains

the following result.

Theorem 4.1 Fix ω′ > 0. There is a constant c0 > 0 s.t. if |λ| ≤ c0/β then, for all

ω with Imω > ω′, the spectrum of Kλ(ω) in the complex half-plane {Imz < ω′/2} is

independent of ω and consists purely of the distinct eigenvalues

{ε(s)e (λ) | e ∈ spec(LS), s = 1, . . . , ν(e)},

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e. Moreover, we have

limλ→0 |ε(s)e (λ) − e| = 0 for all s = 1, . . . , ν(e), and we have Imε
(s)
e (λ) ≥ 0. Also, the

continuous spectrum of Kλ(ω) lies in the region {Imz ≥ 3ω′/4}.

Remarks. 1. The proof of the theorem uses standard analytic perturbation theory.

The constant c0 in Theorem 4.1 is defined by the condition that the eigenvalues ε
(s)
e (λ)

stay away from the continuous spectrum of Kλ(ω). Since

(a) the continuous spectrum of Kλ(ω) lies in a neigbourhood of order λ around the

continuous spectrum of K0(ω), i.e., in the region {Imz ≥ 3ω′/4}, provided |λ| ≤ c1ω
′,

for some constant c1 (see (4.14)), and
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(b) the eigenvalues ε
(s)
e (λ) have imaginary part bounded from above by c2λ

2, for

some constant c2, see (1.5),

the eigenvalues and the continuous spectrum of Kλ(ω) are separated provided |λ| ≤
min{c1, c2}ω′ < 2πmin{c1, c2}/β.

The fact that the spectrum of Kλ(ω) must lie in the closed upper half plane is quite

clear since 〈A〉t, (4.9), must stay bounded as t→ ∞.

2. By construction we have Kλ(ω)Ωβ,0 = 0, so we set ε
(1)
0 = 0.

We now perform the pole approximation by deforming the contour z = R− i in the

integral (4.6) into the contour z = R + i
2 [µ+ ω′/2], where we introduce

µ = max
e,s

{Im ε(s)e (λ)}. (4.15)

This contour separates the eigenvalues ε
(s)
e (λ) (lying below it) from the continuous spec-

trum (lying above it). Indeed, the gap between the eigenvalue with biggest imaginary

part and the continuous spectrum is bounded from below by 3ω′/4 − µ.

With this contour deformation, we pick up the residues of the poles of the integrand,

sitting at the resonance energies ε
(s)
e (λ). Let C(s)

e be a small circle around ε
(s)
e not

enclosing any other point of the spectrum of Kλ(ω). Then (4.6) gives

〈A〉t = (4.16)

−1

2πi

∑

e

ν(e)∑

s=1

∫

C(s)
e

eitz
〈
(B∗ψ0) ⊗ ΩR,β, (Kλ(ω) − z)−1AΩβ,0

〉
dz +R,

where

R =
−1

2πi

∫

R+ i
2
[µ+ω′/2]

eitz
〈
(B∗ψ0) ⊗ ΩR,β, (Kλ(ω) − z)−1AΩβ,0

〉
dz. (4.17)

We prove the following estimate on the remainder term R in Appendix D.

Proposition 4.2 We have R = O(λ2 e−
t
2
[µ+ω′/2]).

For simplicity of the exposition, we assume in the remainder of this section that

the nonzero resonance energies ε
(s)
e 6= 0 are simple poles of the resolvent (Kλ(ω)− z)−1

(i.e., that the ε
(s)
e are semisimple eigenvalues of Kλ(ω); this will be satisfied in all our

applications). It is easy to extend the following arguments to the general situation.

Under the assumption above we can replace eitz by eitε
(s)
e in the first term on the

r.h.s. of (4.16),

〈A〉t =
∑

e

ν(e)∑

s=1

eitε
(s)
e

〈
(B∗ψ0) ⊗ ΩR,β, Q

(s)
e AΩβ,0

〉
+O(λ2 e−ω′t/2), (4.18)
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where we introduced the (in general, non-orthogonal) projections

Q(s)
e = Q(s)

e (ω) =
−1

2πi

∫

C(s)
e

(Kλ(ω) − z)−1dz.

If ε
(s)
e is a simple eigenvalue of Kλ(ω), then we have

Q(s)
e = |χ(s)

e 〉〈χ̃(s)
e |,

where the vectors χ
(s)
e and χ̃

(s)
e satisfy

Kλ(ω)χ(s)
e = ε(s)e χ(s)

e and (Kλ(ω))∗χ̃(s)
e = ε

(s)
e χ̃(s)

e , (4.19)

and are normalized as 〈
χ(s)

e , χ̃(s)
e

〉
= 1. (4.20)

We obtain from (4.18) the relation

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0
〈A〉t dt =

∑

s′: ε
(s′)
0 =0

〈
(B∗ψ0) ⊗ ΩR,β, Q

(s′)
0 AΩβ,0

〉
. (4.21)

All the other terms vanish in the ergodic mean limit.

If 〈A〉t has a limit as t → ∞, as is the case when Im ε
(s)
e (λ) > 0 for ε

(s)
e (λ) 6= 0,

then 〈〈A〉〉∞ is just that limit (it may happen that 〈A〉t does not have a limit, but

〈〈A〉〉∞ always exists as we see from (4.21)). We have thus identified the limit term in

the expansion (4.18) and we obtain the results of Theorem 3.1.

For specific models, one can calculate (perturbatively in λ, to any order) the reso-

nance energies ε
(s)
e and the projection operators Q

(s)
e , and one obtains estimates on the

difference 〈A〉t − 〈〈A〉〉∞.

Remark. As the results above show, the long time behaviour of averages 〈A〉t
is determined by the resonance energies ε

(s)
e and the resonance eigenvectors χ

(s)
e and

χ̃
(s)
e of the family K(ω) and its adjoint. This resonance data can be constructed from

eigenvalues and eigenfunctions of operators Λe,β,λ which act on hS ⊗ hS and which are

independent of ω. (This reconstruction can be viewed as a kind of “inversion” of the

Feshbach map, see Sections 5 and 6.) We point out that this procedure is relatively

easy to implement for translation-analytic systems, i.e., systems satisfying Condition

A stated after (3.2). For systems wich do not possess this condition a renormalization

group analysis in the spirit of [7, 8] has to be carried out, see also [31, 32].

5 Resonance energies ε
(s)
e (λ)

The goal of this section is to evaluate the main contribution (in λ) to the resonance

energies ε
(s)
e (λ), where e ∈ {Em − En | m,n = 1, . . . ,N}. Using a standard Feshbach-

map argument (see e.g. [9, 5, 31, 32]) we obtain the expansion

ε(s)e (λ) = e− λ2δ(s)e +O(λ4), (5.1)
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where the δ
(s)
e ∈ C are the eigenvalues of the so-called level shift operator Λe associated

to e, defined by

Λe = PeIP e(L0 − e+ i0)−1P eIPe, (5.2)

where Pe = P (LS = e) ⊗ PΩ is the eigen-projection of L0 associated to the eigenvalue

e, P e = 1l−Pe, and the restriction of P eL0P e to the range of P e is denoted by L0 (see

also [29]).

Consider an interaction of the form (2.32), where G is a symmetric matrix on

hS = C
n. The following result follows from a direct calculation involving the explicit

form of Λe. We prove it in Appendix D.

Proposition 5.1 (Level shift operators) The operator

Λe(ǫ) := PeIP e(L0 − e+ iǫ)−1P eIPe

has the representation

Λe(ǫ) = Λe,d(ǫ) + Λe,o(ǫ) + Λe,m(ǫ), (5.3)

where the subscripts “d,o,m” stand for “diagonal, off-diagonal, mixed” and refer to the

decomposition G = Gd + Go into a sum of a diagonal and an off-diagonal matrix in

the energy basis. Let G be the matrix obtained by taking the complex conjugate of G,

in the energy basis. We have

2Λe,d(ǫ) (5.4)

= Pe(Gd ⊗ 1l − 1l ⊗Gd)(Gd ⊗ 1l + 1l ⊗Gd)Pe

〈
g,

ω

ω2 + ǫ2
g

〉

−Pe

(
Gd ⊗ 1l − 1l ⊗Gd

)2
Pe

〈
g, coth

(
βω

2

)
iǫ

ω2 + ǫ2
g

〉
,

2Λe,o(ǫ) (5.5)

= Pe(Go ⊗ 1l)

∫

R×S2

u2|g(|u|, σ)|2
|1 − e−βu| (LS − e+ u+ iǫ)−1 (Go ⊗ 1l)Pe

+ Pe(1l ⊗ e−
β

2
HSGo)

∫

R×S2

u2|g(|u|, σ)|2
|1 − e+βu| (LS − e+ u+ iǫ)−1 (1l ⊗Go e

β

2
HS)Pe

− Pe(Go ⊗ 1l)

∫

R×S2

u2|g(|u|, σ)|2
|1 − e−βu| (LS − e+ u+ iǫ)−1 (1l ⊗ e−

β

2
HSGo e

β

2
HS)Pe

− Pe(1l ⊗ e−
β

2
HsGo e

β

2
HS)

∫

R×S2

u2|g(|u|, σ)|2
|1 − e+βu| (LS − e+ u+ iǫ)−1 (Go ⊗ 1l)Pe
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2Λe,m(ǫ) (5.6)

= Pe

{
(Gd ⊗ 1l + 1l ⊗Gd) , (Go ⊗ 1l − 1l ⊗ e−

β
2
HSGo e

β
2
HS)

}
Pe ×

×
〈
g,

ω

ω2 + ǫ2
g

〉

− Pe

{
(Gd ⊗ 1l − 1l ⊗Gd) , (Go ⊗ 1l − 1l ⊗ e−

β

2
HSGo e

β

2
HS)

}
Pe ×

×
〈
g, coth

(
βω

2

)
iǫ

ω2 + ǫ2
g

〉
,

where {A,B} = AB +BA is the anti-commutator.

Remarks. 1. If e is a simple eigenvalue then all factors e±
β

2
HS in (5.4)-(5.6) can

be set equal to one.

2. If the eigenvalues of HS are non-degenerate then Λ0(ǫ) = Λ0,o(ǫ). In particular,

the eigenvalues δ
(s)
0 do not depend on the diagonal elements of G.

To see that the statements in the remark are true, simply use in formulas (5.4)-

(5.6), the facts that P0 =
∑

j pj ⊗ pj ⊗PR, where pj = |ϕj〉〈ϕj | and PR = |ΩR,β〉〈ΩR,β|,
and that Pe = pi ⊗ pj ⊗ PR if e is simple.

6 Resonance eigenvectors χ
(s)
e (λ) and χ̃

(s)
e (λ)

In this section we derive the following expansions of χ
(s)
e (λ) and χ̃

(s)
e (λ) (defined in

(4.19)) in λ:

χ(s)
e =

[
1l − λP e(L0(ω) − e)−1P eI(ω)Pe

]
η(s)

e ⊗ ΩR,β +O(λ2), (6.1)

χ̃(s)
e =

[
1l − λP e(L0(ω) − e)−1P e(I

∗)(ω)Pe

]
η̃(s)

e ⊗ ΩR,β +O(λ2), (6.2)

where η
(s)
e ⊗ΩR,β and η̃

(s)
e ⊗ΩR,β denote the eigenvectors of the level shift operator Λe

and its adjoint (Λe)
∗, respectively,

Λe η
(s)
e ⊗ ΩR,β = δ(s)e η(s)

e ⊗ ΩR,β, (6.3)

(Λe)
∗ η̃(s)

e ⊗ ΩR,β = δ
(s)
e η̃(s)

e ⊗ ΩR,β. (6.4)

To arrive at the expansions (6.1), (6.2), we use the method of the Feshbach map (see

e.g. [7, 8]), according to which we know that

χ(s)
e =

(
Pe − λP e(Kλ(ω) − ε(s)e )−1P eI(ω)

)
Peξ

(s)
e , (6.5)

where Kλ(ω) = P eKλ(ω)P e ↾ RanP e, and where ξ
(s)
e ∈ RanPe is the eigenvector of

F
Pe,ε

(s)
e

(Kλ(ω)) := Pe

(
e− λ2I(ω)P e(Kλ(ω) − ε(s)e )−1P eI(ω)

)
Pe, (6.6)
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with eigenvalue ε
(s)
e . We expand the r.h.s. of (6.6) in λ using a Neumann series

expansion of the resolvent P e(Kλ(ω)− ε
(s)
e )−1P e = P e(K0(ω) + λI(ω)− ε

(s)
e (λ))−1P e.

This gives

F
Pe,ε

(s)
e

(Kλ(ω)) = Pe

(
e− λ2Λe +O(λ4)

)
Pe,

where we also used (5.1). Consequently, taking into account the definition (6.3), we

get the expansion

ξ(s)e = η(s)
e ⊗ ΩR,β +O(λ2).

Finally, a similar expansion of the r.h.s. of (6.5) gives (6.1).

The analogous expansion (6.2) for χ̃
(s)
e is obtained by proceding as above, and by

using the following little result.

Lemma 6.1 The level shift operator associated to the eigenvalue e and the adjoint

operator (Kλ(ω))∗, Imω > 0, is given by

Pe(I
∗)(ω)P e(L0(ω) − e)−1P e(I

∗)(ω)Pe = (Λe)
∗.

Proof. We have (recall (4.11) and (4.12))

(Kλ(ω))∗ = [ e−iωDKλ eiωD]∗ = e−iωDK∗
λ eiωD = L0(ω) + λ(I∗)(ω).

Therefore we have the following expression for the level shift operator,

Pe(I
∗)(ω)P e(L0(ω) − e)−1P e(I

∗)(ω)Pe

= PeI
∗P e(L0 − e− i0)−1P eI

∗Pe

=
[
PeIP e(L0 − e+ i0)−1P eIPe

]∗

= (Λe)
∗.

In order to get rid of the parameter ω by analyticity, we have introduced in the first

step the term −i0. �

7 Special cases

7.1 The qubit: proof of Theorem 3.4

In this section we calculate the level shift operators and their spectral data for a qubit

coupled to the Bose field. Recall that a qubit is a two-dimensional system, with state

space (of pure states) hS = C
2, and Hamiltonian HS = diag(E1, E2). The interaction

to the Bose field is given by (1.6) (which becomes (2.32) in the Hilbert space of positive

temperature states). Recall the definition of the coupling parameter ξ(η), (1.8). We

set

ϕ1 =

[
1
0

]
, ϕ2 =

[
0
1

]
.

Let ∆ = E2 − E1 > 0 denote the gap in the energy spectrum of HS. The following

result is an easy application of Proposition 5.1 to the specific model.
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Proposition 7.1 In the basis {ϕ1 ⊗ ϕ1, ϕ2 ⊗ ϕ2}, the level shift operator Λ0 is given

by

2Λ0 = −iπ2|c|2 ξ(∆)

cosh(β∆/2)

[
e−β∆/2 −1

−1 eβ∆/2

]
. (7.1)

The (one-dimensional) level shift operator Λ∆ is given by

2Λ∆ = (b2 − a2)
〈
g, ω−1g

〉
+ |c|2P.V.

∫

R×S2

u2|g(|u|, σ)|2 coth

(
β|u|
2

)
1

u− ∆

−iπ2|c|2ξ(∆) − iπ(b− a)2ξ(0), (7.2)

and Λ−∆ is obtained from the r.h.s. of (7.2) by switching the sign of the real part,

Λ−∆ = −Λ∆.

Remarks. 1. The vector ΩS,β ∝ ϕ1 ⊗ ϕ1 + e−β∆/2ϕ2 ⊗ ϕ2 spans the kernel of Λ0. The

gap in the spectrum of Λ0 is π2|c|2ξ(∆), it is exactly twice the gap of ImΛ±∆ coming

from a G with constant diagonal in the energy basis.

2. ξ(0) is non-zero only if the infra-red behaviour of g is given by p = −1/2, c.f.

(1.7).

It is also easy to obtain the eigenvectors of the level shift operators (and their

adjoints, see Lemma 6.1).

Proposition 7.2 For the qubit model, the vectors determined by (6.3) and (6.4) are

η
(1)
0 = η̃

(1)
0 = ΩS,β = (1 + e−β∆)−1/2

(
ϕ1 ⊗ ϕ1 + e−β∆/2ϕ2 ⊗ ϕ2

)
,

η
(2)
0 = η̃

(2)
0 = (1 + e−β∆)−1/2

(
e−β∆/2ϕ1 ⊗ ϕ1 − ϕ2 ⊗ ϕ2

)
,

η∆ = η̃∆ = ϕ2 ⊗ ϕ1,

η−∆ = η̃−∆ = ϕ1 ⊗ ϕ2,

they are normalized as
〈
η

(s)
e , η̃

(s)
e

〉
= 1, as required by (4.20).

Propositions 7.1 and 7.2 together with Theorem 3.1 imply Theorem 3.4. �

Let us show the assertion of Remark 5 after (1.11). Suppose that ρ0 = |ϕj〉〈ϕj | for

a fixed j = 1, 2. This initial state is represented on HS = C
2 ⊗ C

2 by the vector

ψ0 = ϕj ⊗ϕj . The operator B defined by relation (4.3) is B = cj1lS⊗|ϕj〉〈ϕj |, where cj
is a complex number. Thus B∗ψ0 = cjψ0 and we may replace B∗ by cj in formula (3.3),

Theorem 3.1. By Proposition 7.2 we have Q±∆ = |η±∆〉〈η̃±∆| ⊗ |ΩR,β〉〈ΩR,β| +O(λ2),

so the terms in (3.3) coming from the nonzero resonances are

cj 〈ψ0 ⊗ ΩR,β, Q±∆AΩβ,0〉 = cj 〈ϕj ⊗ ϕj ⊗ ΩR,β, Q±∆AΩβ,0〉 = O(λ2),

since 〈ϕj ⊗ ϕj , η±∆〉 = 0. The calculation of the constants C0 for j = 1, 2 is carried

out in the same fashion. Here one uses that A = p1,1 ⊗ 1lS ⊗ 1lR and the explicit form

of Ωβ,0, see (4.4) and (2.8).
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Finally we show how to arrive at the relations given in the illustration involving

(1.15). As one easily verifies the state ψ0 representing (1.15) in hS ⊗ hS is given by

ψ0 = 1√
2
(ϕ1 ⊗ ϕ2 + ϕ2 ⊗ ϕ2). The associated operator B (see (4.3)) is

B =

√
ZS,β

2
1lS ⊗

[
0 0

eβE1/2 eβE2/2

]
.

The relations after (1.15) follow by easy direct calculation, using Theorem 3.1 and

Propositions 7.1 and 7.2.

7.2 Energy conserving interactions

In this section we apply the dynamical resonance theory to interactions which com-

mute with HS. Such quantum non-demolition interactions are widely studied in the

literature, see e.g. [15, 17, 35, 33, 40] and references therein (this is a small fraction

of works on this subject – there is an immense number of papers on it). Some energy

conserving models can be solved explicitly and provide benchmark examples for our

methods, as well as starting points for a perturbative treatment (for small [HS, v]).

Let hS = C
N , HS = diag(E1, . . . , EN ), where E1 < E2 < · · · < EN . (A similar

analysis can be carried out if there are degenerate eigenvalues.) We couple S to the

bosonic reservoir via the interaction λv, (1.6), which is represented on the positive

temperature Hilbert space by the operator λV of the form (2.32), with a matrix G that

commutes with HS, i.e.,

G = diag(γ1, . . . , γN ),

with γj ∈ R. Let d ≥ 1 be the dimension of the quantum field, and ω = |k|. The

dynamical resonance theory yields the following result (which we prove in Appendix

D).

Proposition 7.3 Theorem 3.1 implies that [ρt]m,m = [ρ0]m,m, and that, for m 6= n,

[ρt]m,n = ([ρ0]m,n +O(λ2)) e−it(Em−En)+iλ2t[δEn−Em+O(λ2)] +O(λ2 e−tω′/2), (7.3)

where

δEn−Em = 1
2(γ2

m − γ2
n)

〈
g, ω−1g

〉
+ i(γm − γn)2





0 if p > 2−d
2

πξ(0) > 0 if p = 2−d
2

+∞ if p < 2−d
2

(7.4)

Here, p is the power characterizing the infrared behaviour of g, c.f. (1.7), and ξ(0) is

given by (1.8) in which the integral is taken over R
d instead of R

3.

As it turns out, this model is explicitly solvable. For illustration purposes we com-

pare the explicit solution to the results obtained by our dynamical resonance method.
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Proposition 7.4 (Explicit solution) The reduced density matrix elements are given

by

[ρt]m,n = [ρ0]m,n e−it(Em−En)+iλ2αm,n(t),

with αm,n(t) = (γ2
m − γ2

n)S(t) + i(γm − γn)2Γ(t), where

Γ(t) =

∫

Rd

|g(k)|2 coth

(
βω

2

)
sin2(ωt

2 )

ω2
ddk,

S(t) =
1

2

∫

Rd

|g(k)|2 ωt− sinωt

ω2
ddk,

and where ω(k) = |k|, σ(k) ∈ Sd−1.

Remarks. 1) The same result for the decoherence function Γ(t) has been obtained

in [35, 33]. There, the strategy was to obtain an explicit expression for the matrix

elements, first for the system where the reservoir’s modes are discrete, and to take

afterwards the continuous mode limit. Our calculation is performed directly on the

system with continuous modes. We give it in Appendix D.

2) We have
〈
g, ω−1g

〉
<∞, as follows from the assumption µβg ∈ L2(Rd,ddk). The

latter is required for the interaction (1.6), (2.33) to be defined (recall that µβ has an

ω−1/2-singularity at zero, see (2.17)).

The next statement is evident from the explicit form of the matrix elements.

Corollary 7.5 The populations are constant, [ρt]m,m = [ρ0]m,m for all m and all t.

Full decoherence takes place if and only if Γ(t) → ∞ as t → ∞, i.e., if and only if

p ≤ 2−d
2 .

The following result examines the asymptotic behaviour of αm,n(t). It illustrates the

compatibility between the explicit solution and the result obtained from the resonance

theory. Its proof follows readily from the explicit expressions given in Proposition 7.4.

Proposition 7.6 Let δEn−Em be defined as in (7.4). We have

lim
t→∞

αm,n(t)

t
= δEn−Em.

For p = 2−d
2 the decoherence function grows asymptotically linearly in time, Γ(t) ∼

πξ(0)t, for large t.

Remark: Comparison with the results in [35]. Propositions 7.3 and 7.6 shows the

following behaviour of the decoherence function. In dimension d = 1, for an infra-red

behaviour of the coupling function g(k) ∼ |k|1/2, and for large times, the decoherence

function is Γ(t) ∼ ξ(0)t, which becomes Γ(t) ∼ Tt, for small temperatures (see Remark

11 after (1.11)). This is the same result as obtained in [35]. In dimension d = 3,

the contribution to the decoherence function which is quadratic in λ vanishes, see
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Proposition 7.3. This is in accordance with the result of [35] that decoherence is

incomplete in three dimensions.

We conclude this section with the analysis of the resonances for energy-conserving

interactions. The next result (see Appendix D for a proof) shows that the kernel of

L0 is invariant under energy-conserving interactions. In particular, the degeneracy of

the eigenvalue zero is not lifted under perturbation. This means that there are no

resonances bifurcating out of the origin.

Proposition 7.7 (Zero resonances) The kernels of L0, Kλ and Kλ(ω) coincide.

They are spanned by the vectors

χ
(s)
0 = ϕs ⊗ ϕs ⊗ ΩR,β, s = 1, . . . ,N.

The kernel of (Kλ(ω))∗ is spanned by

χ̃
(s)
0 = ϕs ⊗ ϕs ⊗ (1l + Ts)ΩR,β, s = 1, . . . ,N,

where Ts = O(λ) satisfies 〈ΩR,β, TsΩR,β〉 = O(λ2). In particular, there are no reso-

nances bifurcating from the origin.

As an application of this result, we show, using resonance theory, that the popula-

tions are constant (a fact we know already from Corollary 7.5). Proposition 7.7 gives

us the following expresssion for the projection onto the zero resonances:

Q0 =
−1

2πi

∫

Γ0

(Kλ(ω) − z)−1dz (7.5)

=

N∑

s=1

w−1
s |ϕs ⊗ ϕs ⊗ ΩR,β〉〈ϕs ⊗ ϕs ⊗ (1l + Ts)ΩR,β|,

where

ws = 〈(1l + Ts)ΩR,β,ΩR,β〉 = 1 + 〈T ∗
s 〉ΩR,β

= 1 +O(λ2)

is a normalization factor. Using (7.5) in equation (4.21) we obtain

〈〈pn,m〉〉∞ = δn,m
e−βEm/2

√
ZS,β

〈B∗ψ0, ϕm ⊗ ϕm〉

= δn,m 〈(B∗ψ0) ⊗ ΩR,β, (pn,m ⊗ 1lS ⊗ 1lR)Ωβ,0〉
= δn,m 〈pn,m〉t=0 . (7.6)

To see how to recover the fact that the populations are constant in time we note that

since pn,n ⊗ 1lS ⊗ 1lR commutes with Kλ(ω) (this is not true for pn,m, m 6= n) and since

Kλ(ω)Ωβ,0 = 0 we have

(Kλ(ω) − z)−1(pn,n ⊗ 1lS ⊗ 1lR)Ωβ,0 = −z−1(pn,n ⊗ 1lS ⊗ 1lR)Ωβ,0.
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The contour integrals in (4.16) can then be evaluated,

〈pn,n〉t − 〈pn,n〉t=0 = 〈pn,n〉t=0

1

2πi

∫

R+iω′/2

eitz

z
dz.

The last integral has to be understood in the sense of the appropriate limit (4.7). By a

standard contour deformation we see that we may take ω′ > 0 in this integral as large

as we please, so the r.h.s. is zero (see the proof of Proposition 4.2 in Appendix D for

details). Consequently, 〈pn,n〉t = 〈pn,n〉t=0, i.e., [ρt]n,n = [ρ0]n,n.

Next we examine the nonzero resonances. We have proven above that, under energy-

conserving perturbations, there are no resonances bifurcating out of the origin. Now we

show that nonzero eigenvalues may migrate into the upper complex plane or may stay

on the real line, depening on the energy-conserving interaction. We know from (7.6)

that the ergodic means of the off-diagonal matrix elements tend to zero as t→ ∞. The

off-diagonal matrix elements can be purely oscillatory, which corresponds to resonances

staying on the real axis, or they decay in case the resonances move into the upper

complex plane. To examine which of the two cases happens we consider the level shift

operator Λe associated to an eigenvalue e of LS, given in (5.3). Since G is diagonal, only

the diagonal term (5.4) is present. Let Ie be the set of indices m,n s.t. e = Em − En,

where the Ej are the eigenvalues ofHS. We have Pe =
∑

Ie
pm⊗pn, where pj = |ϕj〉〈ϕj |,

and we obtain easily the relation

Λe =
∑

Ie

pm ⊗ pn

[
(γ2

m − γ2
n)

〈
g, ω−1g

〉
− iπξ(0)(γm − γn)2

]
,

see also (1.8) (where the integral is understood to be taken over R
d). This shows that

if the coupling to the low energy modes of the reservoir is weak, p > 2−d
2 , then the

imaginary part of all the level shift operators vanish, since ξ(0) = 0. Note that for e = 0

the sum extends over pm ⊗ pm and hence ImΛ0 = 0, which is consistent with the result

of Proposition 7.4. Furthermore, if G is constant on RanPe then ImΛe = 0 as well. In

these cases the resonances stay on the real line, to second order in λ. Proposition 7.4

asserts that this actually happens to all orders in λ, a result which one could extract

from the resonance theory as well, by performing a deeper analysis. For instance, one

sees from the explicit form of the interaction operator I(ω) (Appendix B, after (B.15))

that

I(ω)ϕm ⊗ ϕn ⊗ ΩR,β = (γm − γn)
(
1lS ⊗ 1lS ⊗ U(ω)ϕβ(g)

)
ϕm ⊗ ϕn ⊗ ΩR,β, (7.7)

and consequently, that if γm = γn, then the Feshbach map applied to Kλ(ω) is simply

equal to ePe. The isospectrality of the Feshbach map implies that the eigenvalue e of

L0 does not move under the perturbation (to any order in λ).

7.3 Observations about quantum registers

Consider a register of L qubits located at positions xj, j = 1, . . . , L, which do not

interact directly with each other. This L-bit register is placed in an environment,
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modelled by a thermal Bose field described in Section 2. It is known [35, 17] that

the decoherence properties of the register depend on the relation between the spacing

of the qubits in the register and the correlation length of the reservoir. Consider the

following two cases:

(i) The qubits are very far apart, s.t. mini6=j |xi − xj| is much larger than the

correlation length of the reservoir.

(ii) The qubits are packed very closely together, so that maxi,j |xi − xj| is much

smaller than the correlation length of the reservoir.

In case (i) we expect that a good approximation to the true dymamics is given by a

register where each qubit is coupled to its own reservoir. Such a system is described

by the zero-temperature Hilbert space of pure states

hi =
L⊗

j=1

hS,j ⊗ hR,j,

where hS,j and hR,j are the Hilbert spaces of the j-th qubit and the j-th reservoir.

(Recall the notation of Sections 1 and 2.) The subindex i indicates that the qubits are

coupled to individual, independent reservoirs. The Hamiltonian is given by

Hi,λ =

L∑

j=1

Hλ,j, (7.8)

where Hλ,j acts nontrivially only on the j-th qubit-reservoir pair, and is given by (1.1).

Accordingly, the positive temperature Hilbert space is Hi = ⊗L
j=1HS,j ⊗ HR,j, and

the Liouville operator has the form Lλ =
∑L

j=1 Lλ,j, where each Lλ,j generates the

dynamics of a single qubit coupled to its own environment, as in Section 3. Let us

label the state ϕm1 ⊗ · · · ⊗ ϕmL
of the register by m = (m1, . . . ,mL) ∈ {0, 1}L. The

reduced density matrix for the register, ρt, is simply the product of the reduced density

matrices of the single qubits, ρj,t. Its matrix elements are

[ρt]m,n =

L∏

j=1

[ρj,t]mj ,nj
,

where each [ρj,t]mj ,nj
evolves according to (1.9)-(1.11).

Next let us consider the case (ii). We expect that the true dymamics is well ap-

proximated by an interaction term where all the qubits sit in the same location. In this

situation one observes collective decoherence, [35, 17]. Here, the subindex “c” stands

for “collective”. The Hilbert space of pure states (at zero temperature) is

hc =




L⊗

j=1

hS,j


 ⊗ hR,
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where hS,j is the Hilbert spaces of the j-th qubit and hR is that of the reservoir. The

Hamiltonian is given by

Hc,λ =

L∑

j=1

HS,j +HR + λ




L∑

j=1

Gj


 ⊗ ϕ(g), (7.9)

where HS,j is as above and where Gj acts as a fixed matrix G on the j-th qubit and

trivially on all other qubits. The positive temperature Hilbert space is

Hc =




L⊗

j=1

Hj


 ⊗HR,

where Hj = C
2 ⊗ C

2, and HR is given in (A.1). The generator of dynamics takes the

form Lc,λ = L0 + λVc, with

L0 =

L∑

j=1

LS,j + LR and Vc =




L∑

j=1

Gj ⊗ 1lj


 ⊗ ϕβ(g) (7.10)

(compare also with (3.1)-(2.33) and (2.29)). Here, LS,j acts non-trivially, as HS⊗1l−1l⊗
HS, only on the j-th qubit space, and Gj ⊗1lj acts as G⊗1l on the j-th qubit space and

trivially on the other qubits. Our general result, Theorems 4.1 and 3.1 and Proposition

5.1 are valid for this model. However, the analysis of the level shift operators associated

to the Liouville operator (7.10) becomes increasingly more involved with growing L.

This is simply due to the size of the matrices representing the level shift operators.

We point out, though, that the particular structure of Vc may facilitate the spectral

analysis of the level shift operators. Furthermore, since we have explicit formulas for

the levels shift operators, our method may be suitable for a computer-based analysis.

The Hamiltonians Hi,λ and Hc,λ, (7.8) and (7.9), are in a certain sense extreme

cases, as described by (i) and (ii) above, of an intermediate Hamiltonian. The latter is

given in [35] as

Hλ =

L∑

j=1

HS,j ⊗ 1l + 1l ⊗HR + λ

L∑

j=1

Gj ⊗ ϕ
(
e−ikxjg

)
. (7.11)

Here, g is a fixed form factor, typically imagined to be so that its inverse Fourier

transform, ǧ, is peaked around the origin in x space. The Fourier transform of the

function ǧ shifted to the position of the j-th qubit, ǧj(x) := ǧ(x− xj), is then just the

e−ikxjg appearing in the interaction of (7.11).

The following are two problems in connection with quantum registers:

P1 Derive the form of Hamiltonian (7.11) from a real physical situation, e.g. where

qubit j is represented by two levels of an atom located at position xj . Quantify

the approximation schemes regarding cases (i), (ii) above.
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P2 Analyze the level shift operators associated with the interaction (7.10), analyti-

cally or numerically. Obtain the dynamics of reduced density matrix elements (as

in (1.9)-(1.11)) for the collectively decohering quantum register. Identify coherent

subspaces.

A Unitary transformation of the positive-temperature

Hilbert space

It is convenient to work with a unitarily transformed version of the Araki-Woods rep-

resentation for the Bose field (2.14)-(2.18), c.f. [22, 18]. The Hilbert space (2.14) is

transformed unitarily as

F(L2(R3,d3k)) ⊗F(L2(R3,d3k)) 7→ F ≡ F(L2(R × S2,dudσ)), (A.1)

according to the map

a∗(f1) · · · a∗(fm)Ω ⊗ a∗(g1) · · · a∗(gn)Ω

7−→ a∗(χ+T f1) · · · a∗(χ+T fm)a∗(χ−T g1) · · · a∗(χ−T gn)Ω, (A.2)

where the vectors Ω are the vacua in the respective Fock spaces and, and where the

a# are the creation and annihilation operators in the respective Fock spaces. We have

introduced T which maps functions f(k) ∈ L2(R3,d3k) into functions (T f)(u, σ) ∈
L2(R × S2,dudσ), according to

(T f)(u, σ) = u

{
f(u, σ) if u ≥ 0,

− eiφf(−u, σ) if u < 0,
(A.3)

where f is represented in polar coordinates and φ is an arbitrary real phase. This

phase is a parameter which can be chosen appropriately to satisfy Condition (A) after

(3.2) for a given coupling function g, see [18]. The χ± in (A.2) are indicator functions,

χ+(u) = 1 if u ≥ 0, χ+(u) = 0 if u < 0, and χ− = 1 − χ+.

One verifies that the thermal annihilation operators, represented in the Araki-

Woods representation by (2.15), take the following form in the unitarily transformed

system:

aβ(f) = a
(√

1 + µβ(u)χ+(u)uf(u, σ)
)
− a∗

(
eiφ

√
µβ(−u)χ−(u)uf(−u, σ)

)
. (A.4)

(The a∗β(f) are obtained by taking the adjoint on the r.h.s. of (A.4)). A short calcula-

tion shows that the thermal field operator (2.33) becomes, via the unitary transforma-

tion,

ϕβ(f) =
1√
2
(a∗β(f) + aβ(f)) =

1√
2
(a∗(fβ) + a(fβ)) =: ϕ(fβ), (A.5)

for f ∈ L2(R3), where fβ is given in (3.2), and where the ϕ in the r.h.s. is the field

operator in F . The equilibrium state is represented by the vacuum vector of F ,

ΩR,β = Ω. (A.6)
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For a one-body operator O acting on wave functions of the variables (u, σ), we write

dΓ(O) =

∫

R×S2

a∗(u, σ)Oa(u, σ) dudσ. (A.7)

for the second quantization of the operator O. The new representation has the advan-

tage that the dynamics of the field is generated simply by

LR = dΓ(u), (A.8)

the second quantization of the operator of multiplication by u. We have LRΩR,β = 0,

and for z ∈ C,

ezLRϕβ(f) e−zLR = 2−1/2
(
aβ

(
e−zuf

)
+ a∗β

(
ezuf

))
, (A.9)

which gives the dynamics for z = it.

It follows from (2.29), (2.32) and (A.5) that the Liouville operator Lλ acting on

HS ⊗F is given by

Lλ = L0 + λV, (A.10)

L0 = LS + LR = HS ⊗ 1lS − 1lS ⊗HS + dΓ(u), (A.11)

V = G⊗ 1lS ⊗ ϕ(gβ). (A.12)

One verifies that the operator D, (4.11), is represented in the unitarily transformed

space as dΓ(i∂u), it generates translations in the variable u ∈ R (see also [31]). The

unitary group U(ω), (4.12), is thus given by the translation group

U(ω) = e−iωdΓ(i∂u). (A.13)

The spectrally deformed Liouville operator acting on HR ⊗F is

Lλ(ω) = L0 + ωN + λV (ω), (A.14)

where N = dΓ(1l) is the number operator in F , and where V (ω) = e−ωdΓ(∂u)V eωdΓ(∂u)

(see also (B.14)).

Observables of R are operators that can be built from sums and products of thermal

creation and annihilation operators. Strictly speaking, one considers bounded operators

built from exponentiated thermal field operators, eiϕβ(f). They form the so-called

Weyl-algebra, a von Neumann algebra

MR ⊂ B(F), (A.15)

see e.g. [13].

36



B The operators Kλ and Kλ(ω)

We consider the positive temperature Hilbert space in its form given in Appendix A.

The operatorKλ can be expressed in terms of the non-interacting Liouville operator L0,

the interaction V , see (A.10)-(A.12), and modular data J,∆ (see e.g. [13]) associated to

the vector Ωβ,0 and the von Neumann algebra M, (A.15). J is an anti-unitary operator

and ∆ is a self-adjoint non-negative operator. The defining properties of J and ∆ are

J∆1/2MΩβ,0 = M∗Ωβ,0, (B.1)

for any M ∈ M, where M∗ is the adjoint operator of M . From this property and the

facts that L0Ωβ,0 = 0 and V = V ∗ we readily see that the operator

Kλ = L0 + λI, (B.2)

I = V − J∆1/2V J∆1/2, (B.3)

satisfies KλΩβ,0 = 0. The operators J and ∆ satisfy J∆ = ∆−1J , and therefore

J∆1/2V J∆1/2 = J∆1/2V∆−1/2J . The theory of von Neumann algebras (Tomita-

Takesaki) tells us that conjugation with ∆1/2 leaves the algebra M invariant (provided

the operators in question exist; ∆ is unbounded), and furthermore, that all operators

of the form JMJ , M ∈ M, commute with all operators N ∈ M, so the subtracted term

in (B.2) commutes with all observables of S+R and hence does not alter the dynamics.

We now give explicit expressions for the operators J , ∆ and Kλ, see also [13, 18,

31, 32]. The modular data is

J = JS ⊗ JR and ∆ = ∆S ⊗ ∆R, (B.4)

where

∆S = e−βLS , (B.5)

∆R = e−βLR , (B.6)

JSφl ⊗ φr = Cφr ⊗ Cφl, (B.7)

JRψn(u1, σ1, . . . , un, σn) = einφψn(−u1, σ1, . . . ,−un, σn), (B.8)

where the action of the antilinear operator C is to take the complex conjugate of vector

coordinates in the basis {ϕj}N
j=1 of HS, and ψn is the complex conjugate of ψn ∈ F

(see (A.1)). The phase φ ∈ R is the one appearing in (3.2). It may be chosen suitably

to satisfy condition (A) (see after (3.2)), given a form factor g. Relation (B.8) shows

that

JRa
#(f(u, σ))JR = a#( eiφf(−u, σ)), (B.9)

for f ∈ L2(R × S2).

We use relations (2.32) and (B.4)-(B.7) to obtain

I = V − V ′, (B.10)

37



where

V ′ = 1lS ⊗ e−
β
2
HSG e

β
2
HS ⊗ 1√

2

[
a∗

(
gβ

)
+ a

(
e−βugβ

)]
. (B.11)

We have set G = CGC here, and we recall that gβ is defined in (3.2).

We now give the explicit form of the spectrally deformed operator Kλ(ω) = L0 +

ωN + I(ω), where U(ω) = e−iωdΓ(i∂u) (see also (A.14)). The transformation under

U(ω) of creation and annihilation operators is given by

U(ω)a#(f)U(ω)−1 = a#(f(· + ω)), ω ∈ R, (B.12)

where f(· + ω) is the shifted function (u, σ) 7→ f(u + ω, σ). Relation (B.12) can be

written in the form U(ω)a#(f)U(ω)−1 = a#( eω∂uf). In order to obtain an analytic

extension of (B.12) to complex ω, we need to take the complex conjugate of ω in the

argument of the annihilation operator (since the latter is anti-linear in its argument).

We thus have (see also (A.5))

I(ω) = V (ω) − V ′(ω), (B.13)

V (ω) = G⊗ 1lS ⊗ 1√
2

[a∗(gβ(· + ω)) + a(gβ(· + ω))] , (B.14)

V ′(ω) = 1lS ⊗ e−
β

2
HSG e

β

2
HS ⊗ 1√

2

[
a∗(gβ(· + ω)) + a

(
e−β(u+ω)gβ(· + ω)

)]
. (B.15)

Let us finally prove the validity of (7.7). Definition (A.13) of U(ω) implies that

U(ω)ϕm ⊗ ϕn ⊗ ΩR,β = ϕm ⊗ ϕn ⊗ ΩR,β.

Further, it follows from (B.5)-(B.8) that

J∆1/2ϕm ⊗ ϕn ⊗ ΩR,β = e−β(Em−En)/2ϕn ⊗ ϕm ⊗ ΩR,β.

Therefore, we have

V ′(ω)ϕm ⊗ ϕn ⊗ ΩR,β

= U(ω)V ′ϕm ⊗ ϕn ⊗ ΩR,β

= e−β(Em−En)/2U(ω)J∆1/2V ϕn ⊗ ϕm ⊗ ΩR,β

= γn e−β(Em−En)/2U(ω)J∆1/2(1lS ⊗ 1lS ⊗ ϕβ(g))ϕn ⊗ ϕm ⊗ ΩR,β

= γnU(ω)(1lS ⊗ 1lS ⊗ ϕβ(g))ϕm ⊗ ϕn ⊗ ΩR,β, (B.16)

where we have also used in the third step that Gϕn = γnϕn, and in the last step that

JR∆Rϕβ(g)ΩR,β = ϕβ(g)ΩR,β (which follows from (B.1) and the fact that ϕβ(g) is

self-adjoint). Combining (B.16) with

V (ω)ϕm ⊗ ϕn ⊗ ΩR,β = γmU(ω)(1lS ⊗ 1lS ⊗ ϕβ(g))ϕm ⊗ ϕnΩR,β

and with the fact that I(ω) = V (ω) − V ′(ω), we obtain (7.7).
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C Perturbation of equilibrium states and outline of proof

of Theorem 3.3

We give an outline of the expansion of the equilibrium state ρ(β, λ) of a coupled system

(or its reduction to a subsystem) in terms of the coupling constant λ. Explicit calcu-

lations for the situation of the qubit yield a proof of Theorem 3.3. We do not carry

them out here.

Consider an N -level system coupled to the Bose field, as described in Sections 2, 3.

It is well known [13, 9, 18, 22, 29, 31, 32] that the equilibrium state ρ(β, λ) w.r.t. the

interacting dynamics, (2.28), is represented by the vector

Ωβ,λ =
e−βLλ/2Ωβ,0

‖ e−βLλ/2Ωβ,0‖
∈ H. (C.1)

Here, the operator Lλ and the equilibrium state of the uncoupled system, Ωβ,0, are

given by (2.29) and (4.4), respectively, and H is the Hilbert space (2.25). Our task is

to expand the average

[ρ∞]m,n = 〈Ωβ,λ, (pn,m ⊗ 1lS)Ωβ,λ〉 (C.2)

in powers of λ, where we recall the definition pn,m = |ϕn〉〈ϕm|, the {ϕj} forming an

orthonormal basis diagonalizing the Hamiltonian HS. Since L0Ωβ,0 = 0, it is convenient

to use the Dyson series,

e−βLλ/2Ωβ,0 = e−βLλ/2 eβL0/2Ωβ,0

= Ωβ,0 +

∞∑

n=1

(−λ)n
∫ β/2

0
ds1 · · ·

∫ sn−1

0
dsnV (s1) · · · V (sn)Ωβ,0,

where V (s) := e−sL0V esL0. Accordingly, it is clear how to arrive at an expansion of

Ωβ,λ, (C.1), and hence of the averages (C.2), in powers of λ. �

D Proofs of propositions

Proof of Proposition 4.2. We expand the resolvent in (4.17) in λ,

(Kλ(ω) − z)−1 = (K0(ω) − z)−1 − λ(K0(ω) − z)−1I(ω)(Kλ(ω) − z)−1. (D.1)

The contribution to R coming from the free resolvent (K0(ω) − z)−1 is given by

−1

2πi

∫

R+ i
2
[µ+ω′/2]

f(z)dz, (D.2)

where f(z) := eitz
〈
B∗ψ0, (LS − z)−1AΩS,β

〉
, the inner product being that of HS. To

arrive at (D.2) we use that A is an observable of S, that Ωβ,0 = ΩS,β ⊗ ΩR,β and that
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(LR + ωN)ΩR,β = 0. The integral is understood in the sense of (4.7). Our first goal

is to show that (D.2) is actually zero. Consider the integral
∫ b
−a f(x+ i

2 [µ+ ω′/2])dx.

Since the only singularities of the integrand are poles on the real axis we can deform

the contour of integration, yielding that for any r > 1
2 [µ+ ω′/2],

∫ b

−a
f(x+ i

2 [µ+ ω′/2])dx = (D.3)

∫ b

−a
f(x+ ir)dx+

∫ r

1
2
[µ+ω′/2]

f(−a+ iy)dy −
∫ r

1
2
[µ+ω′/2]

f(b+ iy)dy.

It is easy to see that |f(−a+ iy)| < C e−ty/a for a sufficiently large, and |f(b+ iy)| <
C e−ty/b for b sufficiently large. It follows from (D.3) that

∫ b

−a
f(x+ i

2 [µ+ ω′/2])dx =
∫ b
−a f(x+ ir)dx+O(1/a) +O(1/b), (D.4)

for a, b → ∞, and where the remainder terms are uniform in r. In the limit r → ∞
the first integral on the r.h.s. of (D.4) vanishes, so by taking first r → ∞ and then

a, b→ ∞ we see that (D.4) and thus (D.2) are both zero.

Consequently, the term of order λ0 in (D.1) does not contribute to the integral in

(4.17). By iterating the resolvent equation we see that all terms with odd powers in λ

do not contribute either, because the interaction I is linear in creation and annihilation

operators, and we take a “vacuum” expectation in (4.17). Thus we have

R =
−λ2

2πi

∫

R+ i
2
[µ+ω′/2]

eitz
〈
(B∗ψ0) ⊗ ΩR,β, (K0(ω) − z)−1I(ω)× (D.5)

×(Kλ(ω) − z)−1I(ω)(K0(ω) − z)−1AΩβ,0

〉
dz.

Finally we want to show that the last integral is O( e−
t
2
[µ+ω′/2]). It is not hard to see

that the norm of the integrand is bounded above by

C e−
t
2
[µ+ω′/2]‖[(K0(ω) − z)∗]−1Φ1‖ ‖(K0(ω) − z)−1Φ2‖,

for some constant C and where Φ1 = (B∗ψ0) ⊗ ΩR,β and Φ2 = AΩβ,0. In order to

conclude that R = O(λ2 e−
t
2
[µ+ω′/2]) it thus suffices to show that

∫

R+ i
2
[µ+ω′/2]

‖(K0(ω) − z)−1Φj‖2dz <∞. (D.6)

The integrand in (D.6) is
〈
Φj, [(L0 − x)2 + (ω′N − 1

2 [µ+ ω′/2])2]−1Φj

〉
, which is read-

ily seen to be integrable w.r.t. x ∈ R (using for instance the spectral theorem

for the commuting self-adjoint operators L0 and N). We have thus shown that

R = O(λ2 e−
t
2
[µ+ω′/2]).

We point out that we did not use the specific form of Φ1 in these estimates. The

present argument works for all vectors Φ1 corresponding to any initial state ρ0 on

HS ⊗HR. �
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Proof of Proposition 5.1. This is an easy calculation using the following explicit

form of all operators involved, as presented in Appendix A.

Proof of Proposition 7.3. We refer to the paragraph after Proposition 7.7 for

a proof of the fact that the populations are independent of time. We now concentrate

on the off-diagonals. By using that G and HS commute, it is not hard to see that the

Feshbach map applied to Kλ(ω),

FPe,z(Kλ(ω)) = Pe

(
e− λ2I(ω)Pe(Kλ(ω) − z)−1PeI(ω)

)
Pe,

is diagonal in the basis {ϕm ⊗ ϕn ⊗ ΩR,β} of RanPe, where m and n are indices s.t.

e = Em − En. By the reconstruction formula for eigenvectors, (6.5), it follows that

the eigenvectors of Kλ(ω) are of the form ϕm ⊗ ϕn ⊗ (1l + Tm,n)ΩR,β, where the Tm,n

are operators on HR satisfying Tm,n = O(λ) and 〈ΩR,β, Tm,nΩR,β〉 = O(λ2). (Compare

also with Proposition 7.7 and its proof.) In a similar way we see that the eigenvectors

of [Kλ(ω)]∗ are of the form ϕm ⊗ϕn ⊗ (1l + T̃m,n)ΩR,β, for some operators T̃m,n on HR

satisfying T̃m,n = O(λ) and
〈
ΩR,β, T̃m,nΩR,β

〉
= O(λ2). Let d(ε

(s)
e ) be the degeneracy

of the resonance energy ε
(s)
e . Then we have

Q(s)
e =

d(ε
(s)
e )∑

j=1

w−1
ms,j ,ns,j

(D.7)

×|ϕms,j
⊗ ϕns,j

⊗ (1l + Tms,j ,ns,j
)ΩR,β〉〈ϕms,j

⊗ ϕns,j
⊗ (1l + T̃ms,j ,ns,j

)ΩR,β|,

where the normalization weights are

wms,j ,ns,j
:=

〈
(1l + T̃ms,j ,ns,j

)ΩR,β, (1l + Tms,j ,ns,j
)ΩR,β

〉
= 1 +O(λ2).

We can now use expression (D.7) in expansion (3.3) to arrive at

[ρt]m,n = eitε
(s(m,n))
En−EmCm,n(ψ0) +O(λ2 e−ω′t/2), (D.8)

where

ε
(s(m,n))
En−Em

= En − Em − 1
2λ

2(γ2
n − γ2

m)
〈
g, ω−1g

〉
(D.9)

+1
2 iλ2(γn − γm)2 lim

ǫ↓0

〈
g, coth

(
βω

2

)
ǫ

ω2 + ǫ2
g

〉
+O(λ4).

The Cm,n(ψ0) in (D.8) are given by the following expression (see also the calculation

leading to (7.6))

Cm,n(ψ0)

= 〈(B∗ψ0) ⊗ ΩR,β, ϕn ⊗ ϕm ⊗ (1l + Tn,m)ΩR,β〉
e−βEm/2

√
ZS,β

1 + 〈T̃ ∗
n,m〉ΩR,β

wn,m

= [ρ0]m,n(1 +O(λ2)). (D.10)
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Relations (D.8), (D.9) and (D.10) show assertion (7.3) of the proposition, where

δEn−Em := −1
2λ

2(γ2
n − γ2

m)
〈
g, ω−1g

〉

+1
2 iλ2(γn − γm)2 lim

ǫ↓0

〈
g, coth

(
βω

2

)
ǫ

ω2 + ǫ2
g

〉
.

�

Proof of Proposition 7.4. We absorb the coupling constant λ into the matrix

G (rescale G so that λ = 1). The reduced density matrix is given by

ρt = TrR
[
e−itL(ρ0 ⊗ |ΩR,β〉〈ΩR,β|) eitL

]
,

where the trace is taken over HR, (2.14) with L2(R3,d3k) replaced by L2(Rd,ddk), and

where L = HS + LR + G ⊗ ϕβ(g) acts on the Hilbert space H = C
N ⊗ HR. Thus we

have

[ρt]m,n = [ρ0]m,n e−it(Em−En) ωR,β

(
e−it(γnϕβ(g)+LR) eit(γmϕβ(g)+LR)

)
, (D.11)

where we denote the equilibrium state of R by ωR,β(·) = TrR(|ΩR,β〉〈ΩR,β| · ). Now we

apply the Trotter product formula,

ωR,β

(
e−it(γnϕβ(g)+LR) eit(γmϕβ(g)+LR)

)
= lim

M→∞
ωR,β

(
[Xn(M)]M [Xm(M)∗]M

)
,

where Xn(M) := e−itLR/M e−itγnϕβ(g)/M . Using that

[Xn(M)]M [Xm(M)∗]M

= [Xn(M)]M−1Wβ

(
− it

M
(γn − γm) e−iωt/Mg

)
[Xm(M)∗]M−1,

where Wβ(f) := eiϕβ(f) is the thermal Weyl operator, and using the relation

Wβ(f)Wβ(g) = e−
i
2
Im〈f,g〉Wβ(f + g),

we obtain by induction the formula

[Xn(M)]M [Xm(M)∗]M = exp

{
− i

2

M∑

K=1

SK

}
W (gM ), (D.12)

where gM = − t
M (γn − γm)

∑K
k=1 e−ikω t

M and

SK =
t2

M2
(γn − γm)(γn + γm)

K−1∑

k=1

Im
〈
g, e−ikω t

M g
〉
.
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It follows from (D.12) and ωR,β(Wβ(f)) = e−
1
4
〈f,coth(βω/2)f 〉 (see e.g. [13]) that in the

limit M → ∞ (where the sums over M turn into easy integrals which can be evaluated

explicitly), we get

lim
M→∞

ωR,β

(
[Xn(M)]M [Xm(M)∗]M

)

= exp
[
−i(γn − γm)(γn + γm)S(t) − (γn − γm)2Γ(t)

]
, (D.13)

with S(t) and Γ(t) defined in Proposition 7.4. The proof of this proposition is now

completed by combining (D.11) and (D.13). �

Proof of Proposition 7.7. We first notice that the Feshbach map (6.6) for e = 0

and with spectral parameter z = 0 vanishes,

FP0,0(Kλ(ω)) = −λ2P0I(ω)P 0

(
Kλ(ω)

)−1
P 0I(ω)P0 = 0. (D.14)

This is a simple consequence of the facts that RanP0 is spanned by {ϕs ⊗ ϕs ⊗ ΩR,β}
and that

I(ω) ϕs ⊗ ϕs ⊗ ΩR,β = 0. (D.15)

To see (D.15), simply use (B.2), (B.3), (B.10) and (B.11), and that JS∆
1/2
S (G ⊗

1lS)JS∆
1/2
S = 1lS ⊗G, which holds since [HS, G] = 0 = [∆S, G] and G is self-adjoint.

Relation (D.14) implies that dim KerKλ = N . To obtain a basis for KerKλ we use

the reconstruction formula (6.5) and notice that, again due to (D.15), only the term

with P0 survives.

Proceeding as in the proof of Lemma 6.1 it is readily seen that

FP0,0([Kλ(ω)]∗) = [FP0,0(Kλ(ω))]∗ = 0,

so dim Ker[Kλ(ω)]∗ = N and we reconstruct a basis for Ker[Kλ(ω)]∗ using (6.5),

χ̃
(s)
0 =

[
P0 − λP 0([Kλ(ω)]∗)−1P 0[I(ω)]∗P0

]
ϕs ⊗ ϕs ⊗ ΩR,β.

Since all the operators commute with the spectral projections of LS we may “pull”

ϕs ⊗ ϕs through the operator [· · · ] to the left, and it is easy to identify the Ts having

the properties given in the proposition. Note though that equation (D.15) is not correct

if we replace I(ω) by [I(ω)]∗, so Ts 6= 0. �
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[8] Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral

problems in quantum field theory. Adv. Math. 137, no. 2, 205 -298 (1998)
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