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Abstract. We prove that the spin-boson system is ergodic, for arbitrary strengths of the
coupling between the spin and the boson bath, provided the spin tunneling matrix element is
small enough.

1. Introduction and main result

The Hilbert space of pure states of the spin-boson system is C2 ⊗F , where

(1.1) F =
⊕
n≥0

L2
sym(R3n, d3nk)

is the symmetric Fock space over the one-particle (momentum representation) space L2(R3, d3k).
The spin-boson Hamiltonian is the self-adjoint operator (see [25], equation (1.4))

(1.2) H = −1
2
∆σx + 1

2
εσz +HR + 1

2
q0σz ⊗ φ(h),

where σx and σz are Pauli matrices,

(1.3) σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
,

∆ ∈ R and ε ∈ R are the ‘tunneling matrix element’ and the ‘detuning parameter’, respectively.
We are using units in which ~ takes the value one. The free field Hamiltonian is given by

(1.4) HR =

∫
R3

|k|a∗(k)a(k)d3k,

where the creation and annihilation operators satisfy the canonical commutation relations
[a(k), a∗(l)] = δ(k − l) (Dirac delta distribution). q0 ∈ R is the coupling constant, and φ(h) is
the field operator, smeared out with a test function h ∈ L2(R3, d3k),

(1.5) φ(h) =
1√
2

(a∗(h) + a(h)) =
1√
2

∫
R3

(
h(k)a∗(k) + h(k)a(k)

)
d3k.

In [25], Leggett et al. consider (among many other things) the average of σz at time t > 0,
when the spin starts (at t = 0) in the state ‘up’ and the environment starts in its thermal
equilibrium. They call this quantity P (t). For arbitrary q0 fixed, they perform formal time-
dependent perturbation theory in ∆ (small) and establish the formula ((3.37) in [25])

(1.6) P (t) = P (∞) + [1− P (∞)] exp−t/τ,
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where P (∞) = − tanh(βε/2) is the equilibrium value and

(1.7) τ−1 = ∆2

∫ ∞
0

dt cos(εt) cos

[
q2

0

π
Q1(t)

]
e−

q20
π
Q2(t).

Here,

Q1(t) =

∫ ∞
0

dω
J(ω)

ω2
sin(ωt),(1.8)

Q2(t) =

∫ ∞
0

dω
J(ω)(1− cos(ωt))

ω2
coth(βω/2),(1.9)

where the spectral density of the reservoir is defined by

(1.10) J(ω) = π
2
ω2
∫
S2 |h(ω,Σ)|2dΣ, ω ≥ 0,

the integral being taken over the angular part in R3. The function h is the form factor in (1.2).1

Of course, it is assumed in [25] that the integral in (1.7) does not vanish, so that τ < ∞ is
a finite relaxation time. Assuming this as well in the present paper, we show in Corollary 1.2
that the spin-boson system has the property of return to equilibrium, for arbitrary q0 and small
∆. Our main result, Theorem 1.1, implies the corollary. It describes completely the spectrum
of the generator of dynamics, which is purely absolutely continuous covering R, except for a
simple eigenvalue at the origin.

The spin-boson system is a W ∗-dynamical system (H,M, α), where M is a von Neumann
algebra of observables acting on a Hilbert space H and where αt is a group of ∗automorphisms
of M. The “positive temperature Hilbert space” is given by

(1.11) H = C2 ⊗ C2 ⊗Fβ,
where Fβ is the Fock space

(1.12) Fβ =
⊕
n≥0

L2
sym((R× S2)n, (du× dΣ)n).

It differs from the ‘zero-temperature’ Fock space (1.1) in that the single-particle space at positive
temperature is the ‘glued’ space L2(R × S2, du × dΣ) [22] (dΣ is the uniform measure on S2).
Fβ carries a representation of the CCR algebra. The represented Weyl operators are given by
W (fβ) = eiφ(fβ), where φ(fβ) = 1√

2
(a∗(fβ) +a(fβ)). Here, a∗(fβ) and a(fβ) denote creation and

annihilation operators on Fβ, smoothed out with the function

(1.13) fβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
f(u,Σ), u ≥ 0
−f(−u,Σ), u < 0

belonging to L2(R× S2, du× dΣ). It is easy to see that the CCR are satisfied, namely,

(1.14) W (fβ)W (gβ) = e−
i
2

Im〈 f | g 〉W (fβ + gβ).

1The spectral density is related to the Fourier transform of the reservoir correlation function C(t) =

ωR,β(eitHRϕ(h)e−itHRϕ(h)) by J(ω) =
√
π/2 tanh(βω/2)[Ĉ(ω) + Ĉ(−ω)].
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The vacuum vector Ω represents the infinite-volume equilibrium state of the free Bose field,
determined by the formula

(1.15) 〈Ω |W (fβ)Ω 〉 = exp
{
−1

4
〈 f | coth(β|k|/2)f 〉

}
,

see also [3]. The CCR algebra is represented on (1.12) as W (f) 7→ W (fβ), for f ∈ L2(R3) such
that 〈 f | coth(β|k|/2)f 〉 < ∞. We denote the von Neumann algebra of the represented Weyl
operators by Wβ.

The doubled spin Hilbert space in (1.11) allows to represent any (pure or mixed) state of the
two-level system by a vector, again by the GNS construction. This construction is as follows.
Let ρ be a density matrix on C2. When diagonalized it takes the form ρ =

∑
i pi|ϕi〉〈ϕi|, to which

we associate the vector Ψρ =
∑

i

√
piϕi⊗ϕi ∈ C2⊗C2 (complex conjugation in any fixed basis –

we will choose the eigenbasis of HS given after (1.18) below). Then Tr(ρA) = 〈Ψρ | (A⊗1S)Ψρ 〉
for all A ∈ B(C2) and where 1S is the identity in C2. This is the GNS representation of the
state given by ρ [8, 27]. The von Neumann algebra of observables is

(1.16) M = B(C2)⊗ 1S ⊗Wβ ⊂ B(H).

The dynamics of the spin-boson system is given by

(1.17) αt(A) = eitLAe−itL, A ∈M.

It is generated by the self-adjoint Liouville operator acting on H,

L = L0 + 1
2
q0V − 1

2
q0JV J(1.18)

L0 = LS + LR,(1.19)

where LS = HS⊗1S−1S⊗HS with HS = −1
2
∆σx+ 1

2
εσz the free two-level part and LR = dΓ(u)

is the second quantization of multiplication by the radial variable u, i.e. the free Bose part.
The interaction operator in (1.18) is

(1.20) V = σz ⊗ 1S ⊗ φ(hβ),

where hβ is the image of the form factor h of (1.2) under the mapping (1.13). The operator J
in (1.18) is the modular conjugation, which acts as

(1.21) J(A⊗ 1S ⊗W (fβ(u,Σ)))J = 1S ⊗ A⊗W (fβ(−u,Σ)),

where A is the matrix obtained from A by taking entrywise complex conjugation (matrices are
represented in the eigenbasis ofHS). Note that by (1.13), we have fβ(−u,Σ) = −e−βu/2fβ(u,Σ).
By the Tomita-Takesaki theorem [8], conjugation by J maps the von Neumann algebra of
observables (1.16) into its commutant. In particular, V and JV J commute. For more detail
about this well-known setup we refer to [22, 5, 27] and references therein.

The vector representing the uncoupled (q0 = 0) KMS state is

(1.22) Ω0,KMS = ΩS,β ⊗ Ω,

where ΩS,β is the vector representative of the Gibbs density matrix ρS,β ∝ e−βHS . For ∆ = 0,
we have

(1.23) ΩS,β,∆=0 =
e−βε/4ϕ++ + eβε/4ϕ−−√

e−βε/2 + eβε/2
.
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According to Araki’s perturbation theory, the (αt, β)-KMS state on M is

(1.24) ΩKMS =
e−β(L0+ 1

2
q0V )/2Ω0,KMS

‖e−β(L0+ 1
2
q0V )/2Ω0,KMS‖

.

One shows that Ω0,KMS is in the domain of e−β(L0+ 1
2
q0V )/2 for any ∆, q0 ∈ R (see e.g. [13, 5, 8]).

Our analysis requires a regularity assumption on the form factor h. Let α > 0. We say h
satisfies the Condition (Aα) if

(1.25) (1 + |i∂u|α)(ih/u)β ∈ L2(R× S2, du× dΣ),

where (h/u)β is obtained from h/u via (1.13).

Theorem 1.1. The spectrum of L is all of R, for arbitrary q0,∆ ∈ R. For any q0 ∈ R, q0 6= 0,
there is a constant ∆0 such that if 0 < |∆| 6 ∆0, then we have the following.

(a) If (Aα), (1.25), holds for some α > 3/2, then L has no eigenvalues except for a simple
one at the origin, and LΩKMS = 0.
(b) If (Aα), (1.25), holds for some α > 2, then the absolutely continuous spectrum of L is

all of R and the singular continuous spectrum of L is empty.

Admissible form factors satisfying (Aα) with α > 2 are for instance h(u) = u1/2e−u
2
, h(u) =

up e−u or h(u) = up e−u
2

with p > 3. We mention that the ‘glueing’ of the function f into fβ
given in (1.13) can be done in various ways. In particular, the minus sign in the second line
(u < 0) can be changed into an arbitrary phase eiφ. This phase can be chosen to accommodate
different form factors to satisfy (Aα). A discussion of this has been given in [18].

The spectral properties of L given in Theorem 1.1 imply readily that any initial state con-
verges to the equilibrium state, see e.g. [22, 5].

Corollary 1.2 (Return to equilibrium). Assume the conditions of Theorem 1.1, (b). For any
normal state ω of M and any A ∈M, we have

lim
t→∞

ω(αt(A)) = 〈ΩKMS |AΩKMS 〉.

Remarks. 1. Here, a state ω of M is called normal if it is represented by a vector ψ ∈ H,
ω(A) = 〈ψ |Aψ 〉 (see [8] for more detail).

2. The corollary shows that limt→∞ P (t) = P (∞) + O(∆), in accordance with Leggett et
al.’s formula (1.6) (they only exhibit the lowest order term in ∆).

Outline of the strategy. The Liouvillean L (1.18) is unitarily equivalent to L (2.1). We
describe this transformation, inspired by [25], in Section 2. The advantage of working with L is
that the coupling constant q0 appears in L in a uniformly bounded way as opposed to a linear
function as in L (see (2.3)-(2.5)). This enables us to obtain results for all q0 ∈ R.

We analyze the eigenvalues of L in Section 3, using the conjugate operator method. We take
for the conjugate operator Aν a regularized version of the translation generator A = dΓ(−i∂u).
It is important to note that the “spectral deformation” technique cannot be applied here.
This is so since the interaction is essentially given by (a spin operator times) a Weyl operator
W (f) = eiφ(f). When applying a spectral translation with parameter θ ∈ C to the interaction,
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the Weyl operator transforms into Wθ(f) = eiθAW (f)e−iθA = e
i√
2

(a∗(fθ)+a(fθ̄))
. The operator

a∗(fθ) + a(fθ̄) is not self-adjoint for θ 6∈ R and hence the interaction becomes huge and is
not relatively bounded with respect to the number operator N . It is not known how to show
analyticity of (θ, z) 7→ eiθA(L− z)−1e−iθA ∈ B(H) in this situation. The idea is then to assume,
instead of analyticity in θ, that only the first few real derivatives ∂αt |t=0Wt(f) exist (we manage
with α = 1, 2). The α-th derivative is the α-fold commutator of W with A, which is relatively
bounded w.r.t. Nα/2, becoming more singular with increasing α. This presents a difficulty
we have to overcome in our analysis, which is not present in previous works, since there the
interaction term is linear in field operators.

Using a positive commutator argument, we show in Theorem 3.6 that L has no eigenvalues
except for a simple one at zero, with corresponding eigenvector the KMS state ψKMS. Two
important ingredients of the proof are: a regularity result on eigenvectors of L with the ensuing
virial identity (Theorem 3.3) and a usually called a Fermi Golden Rule Condition on the
effectiveness of the coupling. The latter is expressed here by the fact that Leggett et al.’s
“relaxation time” τ is finite (which is also assumed in [25]).

We show in Section 4 that the continuous spectrum of L is purely absolutely continuous. To
do so, we control the boundary values of the resolvent (L−z)−1, as Imz → 0+ (see (4.1)). More
precisely, we show that 〈ϕ | (L − z)−1ψ 〉 is bounded as Imz → 0+, for any ϕ, ψ in a dense set,
in the following way. Using the Feshbach map, we relate the resolvent to a “reduced resolvent”
(L̄ − z)−1 and a “Feshbach part” F(z)−1, see (4.3). The reduced resolvent acts on the reduced
Hilbert space RanP̄Ω, while F(z)−1 is an operator on RanPΩ (of dimension four). The control
(boundedness) of the boundary values of (L− z)−1 is implied by that of (L̄ − z)−1 and F(z)−1,
shown in Theorems 4.1 and 4.2, respectively. To prove Theorem 4.1, we analyze the reduced
resolvent based on a suitable approximation (L̄(η)− z)−1, η > 0, with L̄(0) = L̄. We show that
∂z(L̄(η)− z)−1 is Hölder continuous in η > 0, weakly on a dense set of vectors and uniformly in
Im z > 0. This implies that (L̄− z)−1 has a bounded extension to Im z = 0+. In order to prove
Theorem 4.2, namely boundedness of the boundary values of F(z)−1, we first use the proven
regularity of (L̄ − z)−1 to derive the existence of boundary values of F(z), as Im z → 0+. We
then show the invertibility of F(x), x ∈ R\{0}, by using the fact that the only eigenvalue of L
is zero and is simple.

Related works. As mentioned in the outline of our strategy above, the spectral deformation
method is not applicable to the problem at hand, so we do not further discuss the associated
literature. The Mourre-, positive commutator-, or conjugate operator method originated in [29].
It was further developed in [1, 7, 11, 12, 16, 17, 18, 21, 26, 28]. A detailed exposition is given in
the book [1]. These works differ from ours in that the system-reservoir interaction in the other
works is linear in field operators, while ours is proportional to a Weyl operator. Weyl operators
are bounded and field operators are only relatively N1/2-bounded. However, the technique
requires the control of commutators of the interaction with the conjugate operator (A). For the
field operator, those commutators of all orders are as wellN1/2-bounded, but for Weyl operators,
they become more singular with each commutation with A (see above). This results in the
breakdown of the analytic spectral deformation technique since the latter amounts to taking
infinitely many commutators. It also requires a modification of the conjugate operator method,
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relative to the above works. In particular, to show a limiting absorption principle, we use the
Feshbach map, which was also done in [11]. In the latter work, the authors establish existence
of ∂α1

η ∂
α2
z (L(η)− z)−1 (in a certain topology and for Imz > 0), for general α1,2 = 0, 1, 2, . . . In

the present work, we only show and use the existence of the derivatives ∂α1
η ∂

α2
z (L(η)− z)−1 for

α1,2 ∈ {0, 1}. This, however, suffices to show the limiting absorption principle, or the absence
of singular continuous spectrum of L. We need ‘two plus epsilon’ derivatives of the (unitarily
transformed) form factors to be square integrable (condition (Aα) with α > 2), while only ‘one
plus epsilon’ derivatives of the form factor need to be square integrable for the linearly coupled
system in [11].

Some results for Pauli-Fierz systems for arbitrary coupling strength have been given in [28].
It is shown in [28] that the spectrum of L is all of R (we also give a short Weyl-sequences
argument at the beginning of Section 4 to show this). Regularity of eigenvectors based on
positive commutator estimates (and for arbitrary coupling constants) has been shown before
for Pauli-Fierz type models, see e.g. [17] and afterwards also in [28] (the infra-red regularity
of form factors required in the latter paper is the same we require in the present work, namely
that h(k) should decay at least as |k|1+ε, and it is better than that in the original [17], which
was |k|2+ε).

Our approach to showing instability of eigenvalues under perturbation (Theorem 3.6) via a
positive commutator argument is inspired by [6, 26].

Regularizations of L of the type L(η), that we use in the analysis of the absolutely continuous
spectrum, are often used in Mourre theory. They have been introduced in [29] and have also
been used in [1, 7, 11, 16, 21].

An alternative treatment of the dynamics of spin-boson (Pauli-Fierz) type models has been
given in [14, 15]. The spectral analysis is traded in for a time-discretization, a Dyson series
expansion of the unitary propagator, time ordering and subsequent combinatorial arguments.
It also needs an analysis of the weak coupling limit. An advantage of this method is that
regularity conditions on the form factors coming from spectral deformation or Mourre theory
techniques are replaced by a condition of integrability of correlations. This leads to a generally
milder condition on the form factors (see the discussion in section 1.6.4. of [14]). It would be
interesting to see if this method can be modified to treat the problem at hand, but this has not
been done yet, to our knowledge.

2. Unitary transformation

By a suitable unitary transformation, the Hamiltonian (1.2) with ∆ = 0 can be diagonalized
explicitly, see (3.28) of [25]. We modify this idea for application to the Liouville operator (1.18).
The unitarily transformed Liouville operator is

L = ULU∗ = L0 + ∆I(2.1)

L0 = LS + LR = ε
2
(σz ⊗ 1S − 1S ⊗ σz) + LR(2.2)

I = −1
2
(V − JVJ)(2.3)

V = σ+ ⊗ 1S ⊗W (2fβ) + σ− ⊗ 1S ⊗W (−2fβ).(2.4)
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The raising and lowering operators are given by

σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
and

(2.5) fβ = (− i
2
q0h/u)β,

where h and q0 are the form factor and coupling constant given in the interaction in (1.2), with
f 7→ fβ given in (1.13). Note that V is self-adjoint and bounded and satisfies V2 = 1. Since
‖V‖ = 1, we have ‖I‖ 6 1. Define the unitary operator

(2.6) U = exp i
[
σz ⊗ 1S ⊗ φ(fβ)− J{σz ⊗ 1S ⊗ φ(fβ)}J

]
,

where the action of J is given in (1.21). Note that U depends on the coupling parameter q0.
For the uncoupled system q0 = 0, we have U = 1. The KMS vector associated to L0 is

(2.7) ψ0,KMS = ψS,β ⊗ Ω = UΩ0,KMS where ψS,β := ΩS,β,∆=0.

By Araki’s perturbation theory, the KMS vector associated to L is

(2.8) ψKMS =
e−β(L0− 1

2
∆V)/2ψ0,KMS

‖e−β(L0− 1
2

∆V)/2ψ0,KMS‖
= UΩKMS.

Theorem 2.1. The spectrum of L is all of R, for arbitrary q0,∆ ∈ R. For any q0 ∈ R, q0 6= 0,
there is a constant ∆0 such that if 0 < |∆| 6 ∆0, then we have the following.

(a) If (Aα), (1.25), holds for some α > 3/2, then L has no eigenvalues except for a simple
one at the origin, and LψKMS = 0.
(b) If (Aα), (1.25), holds for some α > 2, then the absolutely continuous spectrum of L is

all of R and the singular continuous spectrum of L is empty.

The proof of Theorem 1.1 follows immediately from this result and relation (2.1).

3. Proofs: Eigenvalues of L

3.1. Conjugate operator. We will assume throughout this section that (1.25) is satisfied for
α > 3/2. Let 0 < ν 6 1, 0 < ε < α− 3/2 and set

wν(u) =

∫ u

0

ds

(ν|s|+ 1)1+ε
, u ∈ R.

The derivative w′ν(u) = (ν|u|+1)−1−ε is strictly positive and converges to the constant function
one as ν tends to zero. We abbreviate

wν = wν(−i∂u), w′ν = w′ν(−i∂u).

The ε is arbitrary but fixed, determined by the regularity of the form factor, see (1.25). We
define the self-adjoint operators

Aν = dΓ(wν), Cν = dΓ(w′ν).
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The domains of both operators contain that of N = dΓ(1), and the inequalities 0 < Cν 6 N
and ±Aν 6 N/εν hold in the sense of quadratic forms on dom(N). Moreover, Aν , Cν and N
commute on dom(N) and as a quadratic form on dom(N) ∩ dom(LR), we have

(3.1) i[Aν ,LR] = Cν .

Lemma 3.1. 1. For g ∈ dom((w′ν)
−1/2) and ψ ∈ dom(C1/2

ν ),

‖a(g)ψ‖2 6 ‖(w′ν)−1/2g‖2 ‖C1/2
ν ψ‖2,(3.2)

‖a∗(g)ψ‖2 6 ‖(w′ν)−1/2g‖2 ‖C1/2
ν ψ‖2 + ‖g‖2 ‖ψ‖2.

2. For ψ ∈ dom(N),

(3.3) |〈ψ | i[Aν , I]ψ 〉| 6 c1‖C1/2
ν ψ‖ ‖ψ‖+ c2‖ψ‖2,

where c1 = 16 · 2ε/2‖(1 + |i∂u|3/2+ε/2)fβ‖ and c2 = c1(1 + ‖fβ‖).

The inequality (3.3) implies that for all α > 0, i[Aν , I] > −αc1Cν − ( c1
4α

+ c2), as a quadratic
form on dom(N). In combination with (3.1) we obtain that for any α > 0,

(3.4) i[Aν ,L] > (1− α|∆|c1)Cν − |∆|( c14α
+ c2),

as a quadratic form on dom(N) ∩ dom(LR).

Proof of Lemma 3.1. 1. The relative bounds (3.2) are most easily obtained by applying the
Fourier transform (so that functions of −i∂u become multiplication operators in the Fourier
variable). Their derivation is standard, see e.g. [4].

2. Let D be a self-adjoint operator on L2(R× S2) and let f ∈ dom(D). As a quadratic form
on dom(dΓ(D)) ∩ dom(N), we have

(3.5) [dΓ(D),W (f)] = W (f)
(
φ(iDf) + 1

2
〈 f |Df 〉

)
,

where φ is the field operator. This relation is readily obtained by taking the derivative −i∂t|t=0

of eitdΓ(D)W (f)e−itdΓ(D) = W (eitDf). According to (2.3), (2.4) the interaction I consists of four
similar terms. We treat the part −1

2
σ+ ⊗ 1S ⊗W (2fβ), the others are dealt with in the same

way. Taking into account (3.5) with D = wν , we obtain for ψ ∈ dom(N)

(3.6) 1
2
|〈ψ |σ+ ⊗ 1S ⊗ [Aν ,W (2fβ)]ψ 〉| 6 ‖ψ‖

(
‖φ(iwνfβ)ψ‖+ ‖ |wν |1/2fβ‖2 ‖ψ‖

)
.

Using (3.2) gives

‖φ(iwνfβ)ψ‖ 6
√

2‖wν(w′ν)−1/2fβ‖ ‖C1/2
ν ψ‖+ ‖wνfβ‖‖ψ‖.

Next, by the definition of wν given above and since ν 6 1,

|wν(u)(w′ν(u))−1/2| 6
(
ν|u|+ 1)3/2+ε/2 6 23/2+ε/2 max(|u|3/2+ε/2, 1) 6 23/2+ε/2(|u|3/2+ε/2 + 1)

and |wν(u)| 6 |u|. So both norms ‖wν(w′ν)−1/2fβ‖ and ‖wνfβ‖ are bounded above by 23/2+ε/2‖(1+
|i∂u|3/2+ε/2)fβ‖. Furthermore,

‖ |wν |1/2fβ‖2 6 ‖fβ‖ ‖ |i∂u|fβ‖ 6 ‖fβ‖ ‖(1 + |i∂u|)3/2+ε/2fβ‖.
This shows (3.3) and concludes the proof of Lemma 3.1. �
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3.2. Regularity of eigenvectors of L. Let 0 6 χ 6 1 be a smooth function which satisfies
χ(x) = 1 for |x| 6 1/2 and χ(x) = 0 for |x| > 1. We set

χµ = χ((N + 1)/µ), χ(n)
µ = χ(n)((N + 1)/µ),

where χ(n) denotes the n-th derivative of χ, and where µ > 1.

Lemma 3.2. 1. The k-fold commutator (k > 1) of N with L, ad
(k)
N (L) = [N, [N, . . . [N,L] . . .]],

is relatively Nk/2 bounded, and

(3.7) ‖ad(k)
N (L)(N + 1)−k/2‖ 6 |∆|c(k)(1 + ‖fβ‖)2k,

where c(k) is independent of fβ.
2. On dom(LR),

[χµ,L] = µ−1χ′µ [N,L]− 1
2
µ−2χ′′µ [N, [N,L]] + ∆µ−3/2Rµ,(3.8)

with supµ>1 ‖Rµ‖ <∞.

Proof. 1. The operators N and L0 commute, only the interaction contributes to the commuta-
tor. Using repeatedly (3.5) with D = 1, together with the form equality [N, a∗(f)] = a∗(f) (and

its adjoint), one readily sees that ad
(k)
N (L) is a sum of four terms, each of the form S⊗W (fβ)Tk,

where S is one of σ±⊗1S or 1S⊗σ±, and Tk is a polynomial in a∗(fβ), a(fβ) (of maximal joint
degree k). The relative bound follows.

2. By means of the Helffer-Sjöstrand formula [10],

χ(n)
µ = (−1)nn!

∫
C
∂z̄χ̃(z)(N+1

µ
− z)−1−ndz(3.9)

for n = 0, 1, 2 . . . We have, strongly on dom(L) = dom(LR),

[χµ,L] = ∆

∫
C
∂z̄χ̃(z)

[
(N+1

µ
− z)−1, I

]
dz.

Using the relations (3.9) and [A−1, B] = A−1[B,A]A−1, we arrive at

(3.10) [χµ,L] = ∆µ−1χ′µ [N, I] + 1
2
∆µ−2χ′′µ [N, [N, I]] + ∆µ−3/2Rµ,

where

(3.11) Rµ = µ−3/2

∫
C
∂z̄χ̃(z)(N+1

µ
− z)−3ad

(3)
N (I)(N+1

µ
− z)−1dz.

Invoking the relative bound (3.7) and that |Rez|, |Imz| 6 2 (since z is in the support of the
almost-analytic extension ∂z̄χ̃(z)), we get

‖(N+1
µ
− z)−3ad

(3)
N (I)(N+1

µ
− z)−1‖ 6 Cµ3/2|Imz|−4,

with a constant C independent of µ and of z. However, |∂z̄χ̃(z)| 6 C ′|Imz|4 for some constant
C ′ and so supµ>1 ‖Rµ‖ <∞. �
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Theorem 3.3 (Regularity of eigenvectors). Let ψ be a normalized eigenvector of L. Then
ψ ∈ dom(N1/2) and for every 0 < ξ < 1,

(3.12) ‖N1/2ψ‖2 6
ξ−1∆2c2

1/4 + |∆|c2

1− ξ
.

Let A ≡ Aν=0 ≡ dΓ(−i∂u). The commutator i[A,L] is well defined as a quadratic form on
dom(N1/2) and we have the virial identity

(3.13) 〈ψ | i[A,L]ψ 〉 = 0.

Remarks. 1. In (3.13), the commutator i[A,L] is understood as the closure of the sesquilinear
form, defined on dom(A) ∩ dom(L) by i〈Aϕ | Lψ 〉 − i〈 Lϕ |Aψ 〉. The self-adjoint operator
associated to the closure of this form is i[A,L] = N + ∆i[A, I], where

i[A, I] = −iσ+ ⊗ 1S ⊗W (2fβ)
(
φ(f ′β)− i〈 fβ | f ′β 〉

)
(3.14)

+i 1S ⊗ σ+ ⊗ JRW (2fβ)
(
φ(f ′β)− i〈 fβ | f ′β 〉

)
JR

+ adjoint.

The virial relation (3.13) needs a proof since ψ is generally not in dom(A).
2. This result does not require ∆ to be small.

Proof of Theorem 3.3. Since the operator Aν,µ := χµAνχµ is self-adjoint and bounded and
ψ ∈ dom(L), we have the virial identity

(3.15) 0 = 〈ψ | i[Aν,µ,L]ψ 〉 = t1 + t2,

with t1 = 〈χµψ | i[Aν ,L]χµψ 〉 and t2 = 2Re i〈ψ | [χµ,L]Aνχµψ 〉. Choosing α = ξ(|∆|c1)−1 in
(3.4) gives the lower bound

(3.16) t1 > (1− ξ) 〈χµψ | Cνχµψ 〉 − ∆2c21
4ξ
− |∆|c2.

The expansion (3.8), together with the bound ‖Aν(N + 1)−1‖ 6 1/εν implies that

|t2| 6 2|∆| µ−1 |〈ψ |χ′µ[N, I]Aνχµψ 〉|
+ 2|∆|(εν)−1 c(2) (1 + ‖fβ‖)4 ‖χ′′µψ‖+ 2|∆|(ενµ1/2)−1‖Rµ‖.

Recall that c(k) is defined in Lemma 3.2. Proceeding as in the proof of that lemma, point
1., one shows that for all ϕ ∈ dom(N1/2), ‖[N, I]ϕ‖ 6 8‖(φ(ifβ) + ‖fβ‖2)ϕ‖. Combining this
estimate with (3.2) gives

|〈ψ |χ′µ[N, I]Aνχµψ 〉| 6 ‖χ′µψ‖ ‖[N, I]Aνχµψ‖

6 8
√

2(‖f ′β‖+ ‖fβ‖) ‖χ′µψ‖ ‖C1/2
ν Aνχµψ‖+ 8µ(εν)−1‖χ′µψ‖ ‖fβ‖(1 + ‖fβ‖).

The Cν , χµ and Aν commute and ‖C1/2
ν χµAµψ‖ 6 µ(εν)−1‖C1/2

ν χµψ‖. We make use of

‖χ′µψ‖ ‖C1/2
ν χµψ‖ 6 α̃〈χµψ | Cνχµψ 〉+ (4α̃)−1‖χ′µψ‖2,
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with α̃ = κεν[16
√

2|∆|−1(‖fβ‖+ ‖f ′β‖)]−1, for an arbitrary κ > 0. This gives

|t2| 6 κ〈χµψ | Cνχµψ 〉+ C|∆|(εν)−1‖χ′′µψ‖
+ C|∆|(εν)−1‖χ′µψ‖(|∆|(ενκ)−1‖χ′µψ‖+ 1) + C|∆|(ενµ1/2)−1,(3.17)

where C is a constant independent of ∆, µ, ν, κ. The spectral support of the operators χ′µ, χ′′µ is
contained in µ/2 ≤ N + 1 ≤ µ. Thus we have limµ→∞ ‖χ′µψ‖ = 0 = limµ→∞ ‖χ′′µψ‖. It follows
from (3.17) that there exists a µ0(ν, κ) such that for µ > µ0, we have

(3.18) |t2| 6 κ〈χµψ | Cνχµψ 〉+ κ.

Combining (3.15), (3.16) and (3.18) gives

〈χµψ | Cνχµψ 〉 6 a ≡ ξ−1∆2c2
1/4 + |∆|c2 + κ

1− ξ − κ
whenever µ ≥ µ0. Note that Cν is self-adjoint and positive. Since a does not depend on µ, one

easily shows, by taking µ → ∞, that ψ ∈ dom(C1/2
ν ) and ‖C1/2

ν ψ‖ 6
√
a. Next we take ν ↓ 0.

According to the decomposition of Fock space into a direct sum of n-particle sectors, we have

〈ψ | Cνψ 〉 =
∑
n≥1

n∑
j=1

〈ψn | [w′ν ]j ψn 〉,

where [w′ν ]j is the operator (ν|i∂uj |+ 1)−1−ε, acting on the j-th radial variable, uj, of n-particle
sector ψn(u1,Σ1, . . . , un,Σn). Since [w′ν ]j ↑ 1 as ν ↓ 0 we invoke the monotone convergence
theorem to conclude that limν↓0〈ψ | Cνψ 〉 = 〈ψ |Nψ 〉 6 a. Upon taking κ → 0 we obtain the
bound (3.12).

Next we prove (3.13). We know from (3.18) that |t2| ≤ κ(a + 1), provided µ > µ0. Taking
first µ→∞ and then κ→ 0 in (3.15) gives

(3.19) lim
µ→∞
〈χµψ | i[Aν ,L]χµψ 〉 = 0.

We have i[Aν ,L] = Cν + i∆[Aν , I] and we know from the above that

lim
ν→0

lim
µ→∞
〈χµψ | Cνχµψ 〉 = 〈ψ |Nψ 〉.

Furthermore, as [Aν , I] is a well-defined operator on dom(N1/2) (see Lemma 3.2) and has the
strong limit (3.14) for ν → 0, relation (3.13) follows from (3.19) by first taking µ → ∞ and
then ν → 0. �

3.3. Eigenvalues of L.

Proposition 3.4. 1. Let ∆ be arbitrary and suppose ψ is a normalized eigenvector of L with
eigenvalue e. Then

‖P̄Ωψ‖ 6 10c2|∆|,(3.20)

dist
(
e, spec(LS)

)
6 2√

3
|∆|(1− ‖P̄Ωψ‖2)−1/2,(3.21)

where c2 is given in Lemma 3.1.
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2. Suppose that ∆ is small such that 2√
3
|∆|(1 − ‖P̄Ωψ‖2)−1/2 < ε/2, where ε is the distance

between the nearest eigenvalues of LS. Then, by (3.21), there is a unique e0 ∈ spec(LS) which
is closest to e. Let Pe0 be the eigenprojection associated to this e0 and denote P̄e0 = 1S − Pe0.
Then (writing Pe0PΩ for Pe0 ⊗ PΩ)

(3.22) ‖P̄e0PΩψ‖ 6 2|∆|ε−1.

Remark. In point 2., which e0 is closest to e may depend on ∆, and we are not proving that
e is continuously varying in ∆.

Proof. 1. Note that PΩi[A, I]PΩ = 0 since AΩ = dΓ(−i∂u)Ω = 0. The virial identity (3.13)
implies

(3.23) 0 = 〈 P̄Ωψ | (N + ∆i[A, I])P̄Ωψ 〉+ 2Re 〈 P̄Ωψ |∆i[A, I]PΩψ 〉.

Using ‖φ(h)N−1/2P̄Ω‖ 6 (1 + 1/
√

2)‖h‖ and relation (3.14) one obtains the bound

‖[A, I]N−1/2P̄Ω‖ 6 8(1 + 1/
√

2)‖f ′β‖ (1 + ‖fβ‖) 6 4c2.

It follows that

|〈 P̄Ωψ |∆i[A, I]P̄Ωψ 〉| 6 4|∆|c2‖P̄Ωψ‖ ‖N1/2P̄Ωψ‖,
2Re |〈 P̄Ωψ |∆i[A, I]PΩψ 〉| 6 8|∆|c2‖PΩψ‖ ‖N1/2P̄Ωψ‖.

We combine the last two inequalities with (3.23) to arrive at

0 > (1− α)‖N1/2P̄Ωψ‖2 − 24α−1∆2c2
2,

for any α > 0. The choice α = 1/2 gives (3.20).
Next we show (3.21). For any eigenvalue e0 of LS, set Qe0 := P̄e0PΩ. Projecting Lψ = eψ,
‖ψ‖ = 1, onto the range of Qe0 gives Qe0ψ = −∆(LS − e)−1Qe0Iψ. (The result to be proven is
clearly true if e = e0 so we may assume e 6= e0.) Therefore, for any eigenvalue e0 of LS,

(3.24) ‖Qe0ψ‖ 6
|∆|

dist(e, spec(LS)\{e0})
.

Since
∑

e0∈spec(LS) Qe0 = 3PΩ we have 3‖PΩψ‖2 =
∑

e0∈spec(LS) ‖Qe0ψ‖2 6 4‖Qe∗ψ‖2, where e∗
is an eigenvalue of LS maximizing the norm ‖Qe0ψ‖. Using the latter bound in (3.24) gives

dist(e, spec(LS)\{e∗}) 6
|∆|
‖Qe∗ψ‖

6
2|∆|

√
3
√

1− ‖P̄Ωψ‖2
.

Since dist(e, spec(LS)) 6 dist(e, spec(LS)\{e∗}), we have shown (3.21).
2. We have dist(e, spec(LS)\{e0}) > ε/2 and (3.22) follows from (3.24). This concludes the

proof of Proposition 3.4. �

Instability of eigenvalues of L0 under the perturbation ∆I can be shown provided a (“Fermi
Golden Rule”-)condition of effective coupling is satisfied.
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Proposition 3.5. Let Π0 be the rank-two spectral projection onto the kernel of L0 and set
Π̄0 = 1− Π0. The operator

Λ0 ≡ Π0IΠ̄0(L0 − i0+)−1IΠ0 ≡ lim
η→0+

Π0IΠ̄0(L0 − iη)−1IΠ0

exists and is anti self-adjoint (it equals i times a self-adjoint operator). The eigenvalues are
spec(Λ0) = {0, i∆−2τ−1}, where τ−1 is given in (1.7). Moreover, Λ0ψS,β = 0 (see (2.7)).

Proof of Proposition 3.5. We identify Λ0 with a 2 × 2 matrix relative to the orthonormal
basis {ϕ++ ⊗ Ω, ϕ−− ⊗ Ω} of RanΠ0. Here, ϕ++ = ϕ+ ⊗ ϕ+ and σzϕ± = ±ϕ±. We caclulate
explicitly

4Λ0ϕ++ = ϕ++

〈
W (2fβ)(LR − ε− i0+)−1W (2fβ)∗

〉
+ϕ++

〈
JW (2fβ)J(LR + ε− i0+)−1JW (2fβ)∗J

〉
−ϕ−−

〈
W (2fβ)∗(LR + ε− i0+)−1JW (2fβ)∗J

〉
−ϕ−−

〈
JW (2fβ)∗J(LR − ε− i0+)−1W (2fβ)∗

〉
.(3.25)

Here, 〈 · 〉 = 〈Ω, · Ω〉. Since JΩ = Ω, Je−βLR/2W (hβ)Ω = W (hβ)∗Ω (by properties of the
modular conjugation J and the modular operator e−βLR/2) and since Je−βLR/2 = eβLR/2J ,
we have 〈W (gβ)JW (hβ)J〉 = 〈W (gβ)e−βLR/2W (hβ)∗〉. A term 〈W (gβ)JW (hβ)J〉 can thus be
calculated as the holomorphic continuation of R 3 t 7→ 〈W (gβ)eitLRW (hβ)∗〉 at t = iβ/2. For
real values of t, the latter average is easy to calculate using that (1) the exponential generates
a Bogoliubov dynamics (t 7→ eiuthβ), (2) the CCR (1.14) and (3) that the thermal average is
given by (1.15). The result is

〈W (gβ)JW (hβ)J〉 = e
1
4(〈 g | e−β|k|/2h 〉−〈h | eβ|k|/2g 〉) e−

1
4(〈 g | cg 〉+〈h | ch 〉−〈h | ceβ|k|/2g 〉−〈 g | ce−β|k|/2h 〉),

where, for short,

(3.26) c = coth(β|k|/2).

Using the representation (LR − ε − i0+)−1 = i limη↓0
∫∞

0
eit(ε+iη)e−itLRdt, we cast (3.25) in the

form Λ0ϕ++ = x(ε)ϕ++ + z(ε)ϕ−−, where

x(ε) = 1
2
iRe

∫ ∞
0

eitε e−2i〈 f | sin(|k|t)f 〉 e−2〈 f | c(1−cos(|k|t))f 〉 dt

z(ε) = −1
2
i

∫ ∞
0

cos(εt)e
−2〈 f | {c− 2 cos(|k|t)

eβ|k|/2−e−β|k|/2
}f 〉

dt,(3.27)

with c given in (3.26). The symmetry σx⊗σx Λ0(ε, f) σx⊗σx = Λ0(−ε,−f) (where we display
the dependence on ε and f explicitly) implies immediately that Λ0ϕ−− = z(ε)ϕ++ +x(−ε)ϕ−−.
(Note that z(ε) = z(−ε).) Therefore, the level shift operator takes the matrix form

(3.28) Λ0 =

(
x(ε) z(ε)
z(ε) x(−ε)

)
.

By a deformation of the path of integration, it is not hard to verify that x(ε) = −eβε/2z(ε) (see
also Appendix E of [25]). This implies that the Gibbs state ψS,β, (2.7), is in the kernel of Λ0.



14 M. KÖNENBERG, M. MERKLI, AND H. SONG

The other eigenvalue of Λ0 is hence its trace,

TrΛ0 = x(ε) + x(−ε) = i

∫ ∞
0

cos(εt) cos (2〈 f | sin(|k|t)f 〉) e−2〈 f | c(1−cos(|k|t))f 〉dt.

Using the relation (2.5) shows that TrΛ0 = i∆−2τ−1, see (1.7). This completes the proof of
Proposition 3.5. �

Theorem 3.6. Suppose 0 < |∆| < ∆0, for some constant ∆0 given in (3.38). Then L has no
eigenvalues except for a simple one at the origin. Moreover, LψKMS = 0, where ψKMS is the
coupled KMS state (2.8).

Proof. Let e be an eigenvalue of L with associated normalized eigenvector ψ, and define, for
η > 0,

Xη = η ((L0 − e)2 + η2)−1 = Im (L0 − e− iη)−1.

We derive an upper bound and a lower bound for

qe(ψ) = ∆2〈PΩψ | IP̄Ω XηIPΩψ 〉.

Upper bound. Since ∆P̄ΩIPΩψ = P̄Ω(L − e)PΩψ = −P̄Ω(L − e)P̄Ωψ, we have

qe(ψ) = −∆〈 P̄Ωψ | (L0 − e)P̄ΩXηIPΩψ 〉 −∆2〈 P̄Ωψ | IP̄Ω XηIPΩψ 〉.(3.29)

The bounds ‖I‖ 6 1, ‖X1/2
η ‖ 6 η−1/2 and ‖X1/2

η (L0 − e)‖ 6 η1/2 then imply that

qe(ψ) 6 η1/2 ‖P̄Ωψ‖ qe(ψ)1/2 + |∆|η−1/2‖P̄Ωψ‖ qe(ψ)1/2.(3.30)

Dividing by qe(ψ)1/2 and squaring gives

(3.31) qe(ψ) 6 (η + 2|∆|+ η−1∆2) ‖P̄Ωψ‖2.

The lower bound. Let e = 0. With Π0 = P0PΩ (recall the notation P0 from Proposition 3.4)
we get the lower bound

q0(ψ) > ∆2‖P̄ΩX
1/2
η IΠ0ψ‖2 + ∆2‖P̄ΩX

1/2
η IP̄0PΩψ‖2 − 2∆2‖P̄ΩX

1/2
η IΠ0ψ‖ ‖P̄ΩX

1/2
η IP̄0PΩψ‖

(3.32)

> 1
2
∆2‖P̄ΩX

1/2
η IΠ0ψ‖2 −∆2‖P̄ΩX

1/2
η IP̄0PΩψ‖2

> 1
2
∆2〈Π0ψ | IP̄ΩXηIΠ0ψ 〉 − η−1∆2‖P̄0PΩψ‖2.

We link the first term on the right side to the level shift operator Λ0 given in Proposition 3.5.
Recalling that Xη = Im(L0 − iη)−1 and P̄Ω = Π̄0 + P̄0PΩ we see that

(3.33) ‖Π0IP̄ΩXηIΠ0 − Im Π0IΠ̄0(L0 − iη)−1IΠ0‖ 6 ηε−2,

since ‖Im Π0IP̄0PΩ(L0 − iη)−1IΠ0‖ 6 ‖Im P̄0(LS − iη)−1‖ 6 ηε−2, where ε is the gap in the
spectrum of LS. It follows from (3.33) and the definition of Λ0 given in Proposition 3.5 that
Im Λ0 = limη→0+ Π0IP̄ΩXηIΠ0. The convergence speed is estimated in Lemma 4.5, (4.17).
Namely, ∣∣〈Π0ψ | IP̄ΩXηIΠ0ψ 〉 − Im 〈ψ |Λ0ψ 〉

∣∣ 6 cη1/3‖(1 + Ā2)1/2P̄ΩIΠ0ψ‖2 ≡ c5η
1/3,
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where c5 does not depend on ψ (which is normalized). Combining the last bound with (3.32)
and with

Im Λ0 = ∆−2τ−1Π0(1− |ψS,β〉〈ψS,β|) = ∆−2τ−1(Π0 − |ψ0,KMS〉〈ψ0,KMS|)

(see Proposition 3.5 and where ψ0,KMS = ψS,β ⊗ Ω is the unperturbed KMS state, (2.7)), we
obtain

(3.34) q0(ψ) > 1
2
τ−1
(
‖Π0ψ‖2 − |〈ψ0,KMS |ψ 〉|2

)
− 1

2
c5∆2η1/3 −∆2η−1‖P̄0PΩψ‖2.

We further decompose ‖Π0ψ‖2 = ‖ψ‖2−‖P̄Ωψ‖2−‖P̄0PΩψ‖2. Since ψ is normalized, we arrive
at the lower bound

(3.35) q0(ψ) > 1
2
τ−1(1−‖P̄Ωψ‖2−‖P̄0PΩψ‖2−|〈ψ0,KMS |ψ 〉|2)− 1

2
c5∆2η1/3−∆2η−1‖P̄0PΩψ‖2.

The contradiction. τ−1 is proportional to ∆2, see (1.7). We write τ−1 = ∆2τ−1
0 , with τ0 <∞

independent of ∆. Combining the bounds (3.31) and (3.35) and dividing by ∆2 gives

1
2
τ−1

0 6 1
2
τ−1

0 |〈ψ0,KMS |ψ 〉|2 + [1
2
∆2τ−1

0 + η + 2|∆|+ η−1∆2] ∆−2‖P̄Ωψ‖2

+[1
2
∆2τ−1

0 + η−1∆2] ∆−2‖P̄0PΩψ‖2 + 1
2
c5η

1/3.(3.36)

Suppose that Lψ = 0, ‖ψ‖ = 1 and ψ ⊥ ψKMS, where ψKMS is given in (2.8). Then

(3.37) |〈ψ0,KMS |ψ 〉| = |〈ψ0,KMS − ψKMS |ψ 〉| 6 ‖ψKMS − ψ0,KMS‖ 6 |∆|cKMS.

Here, an upper bound on cKMS is readily obtained by estimating the power series expansion in ∆
which relates ψKMS and ψ0,KMS, see e.g. [2] (cKMS is proportional to β, the inverse temperature).
Choosing η = |∆|3/2 and using the bound (3.37) together with (3.20) and (3.22) in (3.36) gives

1
2
τ−1

0 6 ∆2 1
2
τ−1

0 (c2
KMS + c2

3 + 4/ε2) + |∆|3/2c2
3 + 2|∆|c2

3 + |∆|1/2(c2
3 + 4/ε2 + 1

2
c5).

The latter inequality is violated for |∆| < ∆0, where

(3.38) ∆0 := min
{

1,
[
c2

KMS + c2
3 + 4/ε2 + 2τ0(4c2

3 + 4/ε2 + c5/2)
]−2}

.

This shows that L has a simple kernel if |∆| < ∆0.
To complete the proof one can proceed in two ways. One can either adapt the above argument

to show directly instability of all nonzero eigenvalues of L0 under the perturbation ∆I. Or one
can invoke a general result, saying that if L has a simple kernel, then it does not have any
nonzero eigenvalues [23]. �

4. Proofs: Absolutely continuous Spectrum of L

To show that spec(L) = R, we can use the Weyl criterion (see e.g. [20], Theorem 5.10): s ∈ R
is in the spectrum of L if and only if there is a sequence {ψn}n of normalized vectors in the
domain of L, satisfying limn→∞ ‖Lψn − sψn‖ = 0. An explicit choice of ψn, for any s ∈ R, is

ψn ∝ a∗(fn)ψKMS. Here, ψKMS is given in (2.8) and fn(u,Σ) =
√
n/8π 1[s−1/n,s+1/n](u).

We now show absolute continuity. The spectrum of L in an interval (a, b) ⊂ R is purely
absolutely continuous provided that for each vector ϕ in some dense set, there is a constant
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C(ϕ) <∞ such that

(4.1) lim inf
ε↓0

sup
x∈(a,b)

〈ϕ | Im(L − x− iε)−1ϕ 〉 ≤ C(ϕ).

See for instance Proposition 4.1 of [9]. In order to control the boundary values of the resolvent,
we expand it using the Feshbach map in (4.3) below. For an operator X acting on H we denote
by X̄ = P̄XP̄ �RanP̄ its restriction to the range of P̄ = 1− P , where P = 1C2⊗C2 ⊗ |Ω〉〈Ω| and
Ω is the vacuum of (1.12). For z ∈ C with Imz > 0, we define

(4.2) F(z) = P
(
L − z −∆2IP̄ (L̄ − z)−1P̄ I

)
P,

which we view as an operator on the range of P . The resolvent and reduced resolvent are
related by

(L − z)−1 = (L̄ − z)−1 + F(z)−1 + (L̄ − z)−1P̄LPF(z)−1PLP̄ (L − z)−1

−F(z)−1PLP̄ (L̄ − z)−1 − (L̄ − z)−1P̄LPF(z)−1.(4.3)

Here, (L̄ − z)−1 is interpreted as an operator on RanP̄ . We have P (L − z)−1P = F(z)−1.
We introduce the family of norms

(4.4) ‖ϕ‖κ = ‖N̄−1/2(1 + Ā2)κ/2ϕ‖, ϕ ∈ P̄H, κ > 0.

Theorem 4.1. Let ϕ, ψ ∈ dom(Ā2) ∩ dom(N̄1/2), where A = dΓ(−i∂u). Then∣∣∂z〈ϕ | (L̄ − z)−1ψ 〉
∣∣ 6 C

(
‖ϕ‖2 + ‖N̄ϕ‖1

)(
‖ψ‖2 + ‖N̄ψ‖1

)
,

where C is independent of z ∈ C+ and ϕ, ψ.

Theorem 4.1, together with the fact that RanIP ⊂ dom(A2)∩dom(N1/2), implies that F(z),
(4.2), extends continuously to Imz > 0 (as a function with values in the operators on RanP ).
We denote its value for x ∈ R by F(x).

Theorem 4.2. For any real x0 6= 0 there exist r(x0) > 0 and c(x0) <∞ such that

(4.5) ‖F(x)−1‖ 6 c(x0) for all x such that |x− x0| < r(x0).

Theorems 4.1 and 4.2, together with the expansion (4.3), show that (4.1) is satisfied for
all (a, b) not containing the origin. This means that the absolutely continuous spectrum of L
(which is a closed set) is R and that the singular continuous spectrum is empty.

4.1. Proof of Theorem 4.1. Let a and b be expressions depending on the quantities z ∈ C+,
η > 0, ∆ ∈ R. We use the notation

(4.6) a ≺ b

to mean that there is a constant c which does not depend on any of the above quantities, such
that a 6 cb. We introduce a regularization L̄(η), η > 0, defined as follows. The domain is
dom(L̄(η)) = dom(L̄0) ∩ dom(N̄) and

(4.7) L̄(η) = L̄0 − iηN̄ + ∆Ī(η), with Ī(η) = (2π)−1/2

∫
R
f̂(s)τηs(Ī)ds,
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and where τt(X) = eitĀXe−itĀ. Here, f is a Schwartz function satisfying f(0) = f ′(0) =
f ′′(0) = f ′′′(0) = 1. In terms of the Fourier transform, this means

(4.8) (2π)−1/2

∫
R
(is)kf̂(s)ds = 1, for k = 0, 1, 2, 3.

We show in the next result some properties of L̄(η). In particular, L̄(η) − z is invertible for
η > 0, Imz > −η/2. We denote the resolvent by

Rz(η) := (L̄(η)− z)−1.

Lemma 4.3. There is a ∆0 > 0, independent of η > 0, such that for |∆| < ∆0:
(1) −2ηN̄ 6 ImL̄(η) 6 −η

2
N̄ . In particular, any z with Imz > −η/2 is in the resolvent set

of L̄(η). Moreover, for such z, ‖(L̄(η)− z)−1‖ 6 (η/2 + Imz)−1.
(2) For η > 0 and Imz > −η/2, we have RanRz(η) ⊂

(
dom(N̄)∩dom(L̄0)

)
and Rz(η) leaves

dom(Ā) invariant.
(3) For all ψ ∈ P̄H and all z ∈ C+, we have limη→0+ Rz(η)ψ = (L̄ − z)−1ψ.

(4) For all ψ ∈ P̄H and all z ∈ C+, we have ‖N̄1/2Rz(η)ψ‖ 6
√

2η−1/2 |〈ψ |Rz(η)ψ 〉|1/2 and
‖N̄1/2Rz(η)ψ‖ 6 2η−1‖N̄−1/2ψ‖. The same estimates hold for Rz(η) replaced by Rz(η)∗.

Proof of Lemma 4.3. (1) Using (4.8) with k = 0 we can write

(4.9) ImL̄(η) = −ηN̄1/2
(
1 +

∆√
2π η

Im

∫
R
f̂(s)N̄−1/2(τηs(Ī)− Ī)N̄−1/2ds

)
N̄1/2.

Now τηs(Ī)−Ī =
∫ ηs

0
∂s′τs′(Ī)ds′ = i

∫ ηs
0
τs′([Ā, Ī])ds′. Thus we have ‖N̄−1/2(τηs(Ī)−Ī)N̄−1/2‖ 6

η|s| ‖N̄−1/2[A, I]N̄−1/2‖. The expression (3.14) shows that the latter norm is bounded above
by a constant C ′. Therefore, (4.9) implies −η(1 + C|∆|)N̄ 6 ImL̄(η) 6 −η(1− C|∆|)N̄ for ∆

small and where C = C ′(2π)−1/2
∫

R |sf̂(s)|ds. This gives the bound on ImL̄(η). Now

(4.10) ‖ψ‖ ‖(L̄(η)− z)ψ‖ > |〈ψ | (L̄(η)− z)ψ 〉| > |Im〈ψ | (L̄(η)− z)ψ 〉| > (η/2 + Imz)‖ψ‖2.

In the same way ‖(L̄(η) − z)∗ψ‖ > (η/2 + Imz)‖ψ‖. For Imz > −η/2, (L̄(η) − z)∗ has trivial
kernel and so Ran(L̄(η) − z) is dense. However, due to (4.10) and since L̄(η) − z is a closed
operator, Ran(L̄(η) − z) is also closed, so it is all of P̄H. Therefore, the inverse of L̄(η) − z
is defined on the whole space and by the closed graph theorem it is bounded. The bound is
obtained from (4.10). This shows (1).

To prove the first part of (2), note that (L̄0− iηN̄ − i)Rz(η) = 1+ (−∆I(η) + z− i)Rz(η) is
bounded. Hence L̄0Rz(η) = L̄0(L̄0− iηN̄ − i)−1(L̄0− iηN̄ − i)Rz(η) is bounded as well. In the
same way, N̄Rz(η) is bounded. It remains to show that Rz(η) leaves dom(Ā) invariant. For
this, it suffices to prove that the derivative ∂t|t=0 of

eitARz(η)ψ =
(
L̄0 + (t− iη)N̄ + ∆τt(Ī(η))− z

)−1

eitAψ

exists, for any ψ ∈ dom(Ā). One only needs to check that the derivative of the resolvent, at
t = 0, is bounded. This can be done easily by writing the derivative as the limit of the difference
quotient and using the second resolvent equation for the numerator of the quotient. (2) follows.
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(3) It suffices to show the result for any single, fixed z0 in the upper half plane, e.g. z0 = i.
This fact is seen by proceeding as in the proof of Theorem VIII.19 of [30], by expanding the
resolvents in a power series in z − z0. (Note that in the above reference, only self-adjoint
operators are considered, but all that counts in the argument is the bound on the resolvent
which we have established in point (1) of the present lemma). Let us show the result for z = i
now. First we note that (L̄ − i)−1 leaves dom(N̄) invariant. A proof of this is obtained by
expanding (L̄ − i)−1 into its Neumann series (in powers of ∆) and using that N̄ commutes
with (L̄0 − i)−1 and N̄−1ĪN̄ is bounded, so that N̄−1(L̄ − i)−1N̄ is bounded. Therefore, for
ψ ∈ dom(N̄),

(4.11)
(
(L̄(η)− i)−1 − (L̄ − i)−1

)
ψ = (L̄(η)− i)−1

(
iηN̄ −∆Ī(η) + ∆Ī

)
(L̄ − i)−1ψ → 0,

as η → 0+. Finally, since dom(N̄) is dense in P̄H and ‖(L̄(η) − i)−1 − (L̄ − i)−1‖ 6 2, (4.11)
is valid for all ψ ∈ P̄H. This proves (3).

(4) Due to (1), we have N̄ 6 −2η−1ImL̄(η), so

‖N̄1/2Rz(η)ψ‖2 6 2η−1 |〈Rz(η)ψ | Im (L̄(η)− z)Rz(η)ψ 〉|
6 2η−1 |〈ψ |Rz(η)ψ 〉| 6 2η−1 ‖N̄1/2Rz(η)ψ‖ ‖N̄−1/2ψ‖.

The estimate for Rz(η) replaced by Rz(η)∗ is obtained in the same way. This shows (4) and
concludes the proof of Lemma 4.3. �

The operator

(4.12) K(η) := [Ā, Ī(η)]− ∂η Ī(η) = (2π)−1/2

∫
R
(1− is)f̂(s)τηs([Ā, Ī])ds,

defined on dom(N̄1/2), has the following properties.

Lemma 4.4. Let ϕ, ψ ∈ P̄H.
(a) Assume ‖|∂u|αfβ‖ <∞ for some 1 6 α 6 2. Then

(4.13) |〈ϕ |K(η)ψ 〉| 6 c ηα−1 ||N̄1/2ϕ‖ ||N̄1/2ψ‖.

(b) Assume ‖|∂u|αfβ‖ <∞ for some 2 6 α 6 3. Then

(4.14) |〈ϕ |K(η)ψ 〉| 6 c η3 ||N̄3/2ϕ‖ ||N̄1/2ψ‖+ c ηα−1 ||N̄1/2ϕ‖ ||N̄1/2ψ‖.

The constant c does not depend on η. Both (a) and (b) hold if K(η) is replaced by K(η)∗.

Denote

Gϕ,ψ,z(η) := 〈ϕ | (L̄(η)− z)−1ψ 〉 = 〈ϕ |Rz(η)ψ 〉.

Lemma 4.5. Assume ‖ |∂u|αfβ‖ < ∞ for some α > 1. There is a constant c independent of
z ∈ C+, η > 0 and ∆ with |∆| < ∆0, such that, for any ϕ, ψ ∈ dom(Ā),

|Gϕ,ψ,z(η)| 6 c ‖ϕ‖1 ‖ψ‖1(4.15)

‖N̄1/2Rz(η)ϕ‖, ‖N̄1/2Rz(η)∗ϕ‖ 6 c η−1/2 ‖ϕ‖1.(4.16)
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For any x ∈ R, 〈ϕ | (L̄−x− iy)−1ψ 〉 has a limit as y → 0+, denoted by 〈ϕ | (L̄−x− i0+)−1ψ 〉,
and

(4.17) |〈ϕ | (L̄ − x− i0+)−1ψ 〉 − 〈ϕ | (L̄ − x− iy)−1ψ 〉| 6 c yγ/(1+γ)‖ψ‖1 ‖ϕ‖1,

uniformly in x ∈ R, y ∈ (0, 1) and with γ = min{1/2, α− 1}.

Proof of Lemma 4.5. Using Lemma 4.3(2) we obtain

∂ηGϕ,ψ,z(η) = −〈ϕ |Rz(η)
[
∂ηL̄(η)

]
Rz(η)ψ 〉

= 〈ϕ | [Ā, Rz(η)]ψ 〉+ ∆〈ϕ | Rz(η)K(η)Rz(η)ψ 〉,(4.18)

where K(η) is defined in (4.12). Using the estimate (4.13) in (4.18) yields (recall the notation
(4.6))

|∂ηGϕ,ψ,z(η)| ≺ ‖ϕ‖1 ‖N̄1/2Rz(η)ψ‖+ ‖ψ‖1 ‖N̄1/2Rz(η)∗ ϕ‖
+ ηα−1|∆| ‖N̄1/2Rz(η)∗ϕ‖ ‖N̄1/2Rz(η)ψ‖.(4.19)

Using Lemma 4.3(1) in (4.19) gives

|∂ηGϕ,ψ,z(η)| ≺ η−1/2
(
‖ϕ‖2

1 + ‖ψ‖2
1

)
+ (η−1/2 + ηα−2)

(
|Gϕ,ϕ,z(η)|+ |Gψ,ψ,z(η)|

)
.(4.20)

By Lemma 4.3(4) we have ‖N̄1/2Rz(1)N̄1/2‖ 6 2 and hence |Gϕ,ψ,z(1)| 6 ‖ψ‖0 ‖φ‖0. Taking
ϕ = ψ in (4.20) gives a differential inequality for Gϕ,ϕ,z(η) which implies (4.15) for ϕ = ψ by
the standard Gronwall estimate [19]. Combining (4.15) for ϕ = ψ with Lemma 4.3(4) gives
(4.16). We can now use (4.16) in (4.19) to obtain

(4.21) |∂ηGϕ,ψ,z(η)| ≺ (η−1/2 + ηα−2)‖ϕ‖1‖ψ‖1.

Integrating gives (4.15).
We now prove (4.17). Let 0 < µ� η and z, w ∈ C+. By the triangle inequality,

(4.22) |〈ϕ | (Rz(µ)−Rw(µ))ψ 〉| 6 |〈ϕ | (Rz(η)−Rw(η))ψ 〉|+
∑
v=w,z

|Gϕ,ψ,v(µ)−Gϕ,ψ,v(η)|.

Using the resolvent identity and (4.16) gives |〈ϕ | (Rz(η)− Rw(η))ψ 〉| ≺ |z − w|η−1‖ψ‖1 ‖ϕ‖1.
Next, it follows from (4.21) and (4.15) that

|Gϕ,ψ,v(µ)−Gϕ,ψ,v(η)| 6
∫ η

µ

∣∣∂ξGϕ,ψ,v(ξ)
∣∣dξ ≺ ηγ‖ψ‖1 ‖ϕ‖1.

Therefore,

(4.23) |〈ϕ | (Rz(µ)−Rw(µ))ψ 〉| ≺ (η−1|z − w|+ ηγ) ‖ψ‖1 ‖ϕ‖1.

Thanks to Lemma 4.3(3) we may send µ→ 0 and choose η = |w − z|1/(1+γ) to obtain

(4.24) |〈ϕ | (L̄ − z)−1ψ 〉 − 〈ϕ | (L̄ − w)−1ψ 〉| ≺ |z − w|γ/(1+γ) ‖ψ‖1 ‖ϕ‖1.

This shows the existence of limy→0+〈ϕ | (L̄ − x− iy)−1ψ 〉 and proves (4.17). �
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For ϕ, ψ ∈ dom(Ā), z ∈ C+, η > 0, we define

(4.25) Hϕ,ψ,z(η) := ∂z〈ϕ |Rz(η)ψ 〉 = 〈ϕ |Rz(η)2ψ 〉.
Due to Lemma 4.3 and (4.12),

(4.26) ∂ηHϕ,ψ,z(η) = 〈ϕ | [Ā, Rz(η)2]ψ 〉+ S1 + S2,

where S1 = 〈ϕ |Rz(η)K(η)Rz(η)2ψ 〉 and S2 = 〈ϕ |Rz(η)2K(η)Rz(η)ψ 〉. Taking into account
‖N̄1/2Rz(η)‖ ≺ η−1 (see Lemma 4.3(4)), (4.4) and (4.16) we have

(4.27) |〈ϕ | [Ā, Rz(η)2]ψ 〉| ≺ η−3/2‖ϕ‖1 ‖ψ‖1.

Next, due to (4.14),

|S1| ≺ η3‖N̄3/2Rz(η)∗ϕ‖ ‖N̄1/2Rz(η)2ψ‖+ ηα−1‖N̄1/2Rz(η)∗ϕ‖ ‖N̄1/2Rz(η)2ψ‖.
Since ‖N̄1/2Rz(η)N̄1/2‖ ≺ η−1 (Lemma 4.3(4)) and using (4.16), we get

(4.28) |S1| ≺ η3/2 ‖N̄3/2Rz(η)∗ϕ‖ ‖ψ‖1 + ηα−3 ‖ϕ‖1 ‖ψ‖1.

A similar upper bound is obtained for |S2|. We show the following result below.

Lemma 4.6. Let l ≥ 0, η > 0, z ∈ C+ and ψ ∈ dom(Ā) ∩ dom(N̄ l/2−1). Then

(4.29) ‖N̄ l/2Rz(η)ψ‖ 6 C
(
‖ψ‖1 + η1/2‖N̄ l/2−1ψ‖

){ η−(l+1)/2, l even
η−l/2, l odd

The same statement holds if Rz(η) is replaced by Rz(η)∗.

To shorten notation we set

(4.30) ‖ψ‖′1 := ‖ψ‖1 + ‖N̄1/2ψ‖.
Combining (4.29), for l = 3, with (4.28) gives

(4.31) |S1|+ |S2| ≺ ηα−3 ‖ϕ‖′1 ‖ψ‖′1.
With (4.26) and (4.27) we obtain |∂ηHϕ,ψ,z(η)| ≺ (η−3/2 + ηα−3)‖ϕ‖′1 ‖ψ‖′1 ≺ η−3/2‖ϕ‖′1 ‖ψ‖′1
(as α > 2). We integrate this estimate and obtain

(4.32) |Hϕ,ψ,z(η)| ≺ η−1/2‖ϕ‖′1 ‖ψ‖′1.
Finally, we consider again (4.26), but this time we write 〈ϕ | [Ā, Rz(η)2]ψ 〉 = HĀϕ,ψ,z(η) −
Hϕ,Āψ,z(η). Then, due to (4.32),

(4.33) |〈ϕ | [Ā, Rz(η)2]ψ 〉| ≺ η−1/2‖(1 + Ā2)1/2ϕ‖′1 ‖(1 + Ā2)1/2ψ‖′1.
According to (4.4) and (4.30), ‖(1 + Ā2)1/2ϕ‖′1 = ‖ϕ‖2 + ‖N̄ϕ‖1. We use the improved
bound (4.33), together with (4.31), in (4.26) to obtain |∂ηHϕ,ψ,z(η)| ≺ (η−1/2 + ηα−3)(‖ϕ‖2 +
‖N̄ϕ‖1)(‖ψ‖2 + ‖N̄ψ‖1). Integration gives the Hölder continuity

|Hϕ,ψ,z(η)−Hϕ,ψ,z(η
′)| ≺ |η − η′|min{1/2,α−2} (‖ϕ‖2 + ‖N̄ϕ‖1)(‖ψ‖2 + ‖N̄ψ‖1).

It follows that Hϕ,ψ,z(η) extends continuously to η = 0, the extension satisfying |Hϕ,ψ,z(0)| 6
C(‖ϕ‖2 + ‖N̄ϕ‖1)(‖ψ‖2 + ‖N̄ψ‖1), with C independent of ϕ, ψ and z ∈ C+. By Lemma 4.3(3),
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the extension is Hϕ,ψ,z(0) = 〈ϕ | (L̄ − z)−2ψ 〉 = ∂z〈ϕ | (L̄ − z)−1ψ 〉. This concludes the proof
of Theorem 4.1, modulo the proofs of Lemmas 4.4 and 4.6, which we give now.

Proof of Lemma 4.4. Due to the definition (4.12) of K(η) and the expression (2.3) for I, it is
enough to show the estimates (a) and (b) for τηs([Ā, Ī]) in (4.12) replaced by τηs([A,W (g)]) =
W (eηs∂ug)

(
φ(eηs∂ug′) − i

2
〈 g | g′ 〉

)
, where ‖|∂u|αg‖ < ∞ (see also (3.5)). Hence it suffices to

show the bounds (a) and (b) for 〈ϕ | K̃(η)ψ 〉, where

(4.34) K̃(η) =

∫
R
W (eηs∂ug)

(
φ(eηs∂ug′)− i

2
〈 g | g′ 〉

)
dµ(s),

with dµ(s) = (2π)−1/2(1 − is)f̂(s)ds. By (4.8), K̃(0) = 0, so the value of the integral (4.34)
stays the same if we replace the integrand by

I = W (eηs∂ug)
(
φ(eηs∂ug′)− i

2
〈 g | g′ 〉

)
−W (g)

(
φ(g′)− i

2
〈 g | g′ 〉

)
.

Proof of (a). We write

(4.35) I =
(
W (eηs∂ug)−W (g)

) (
φ(eηs∂ug′)− i

2
〈 g | g′ 〉

)
+W (g) φ(eηs∂ug′ − g′)

and estimate

(4.36) ‖(W (eηs∂ug)∗ −W (g)∗)ϕ‖ 6
∫ ηs

0

∥∥∂tW (−et∂ug)ϕ
∥∥dt ≺ η|s|‖N̄1/2ϕ‖.

The last bound is obtained from ∂tW (−et∂ug) = i[A,W (−et∂ug)] and an application of (3.5)
(with D = −i∂u). It follows that

(4.37)
∣∣〈ϕ | (W (eηs∂ug)−W (g)

) (
φ(eηs∂ug′)− i

2
〈 g | g′ 〉

)
ψ 〉
∣∣ ≺ η|s|‖N̄1/2ϕ‖ ‖N̄1/2ψ‖.

Next we consider the remaining term in (4.35). By the spectral theorem,

‖φ(eηs∂ug′ − g′)ψ‖ ≺ ‖eηs∂ug′ − g′‖ ‖N̄1/2ψ‖ ≺ (|s|η)γ sup
r 6=0

|eir−1|
|r|γ ‖|∂u|

γg′‖ ‖N̄1/2ψ‖

and thus for any γ ∈ [0, 1], if ‖ |∂u|1+γg‖ <∞, then

(4.38) ‖φ(eηs∂ug′ − g′)ψ‖ ≺ ηγ |s|γ ‖N̄1/2ψ‖.
It follows that |〈ϕ |W (g)φ(eηs∂ug′− g′)ψ 〉| ≺ ηγ|s|γ‖ϕ‖ ‖N̄1/2ψ‖. Combining this last estimate

with (4.37) yields |〈ϕ | K̃(η)ψ 〉| ≺ (η + ηγ)‖N̄1/2ϕ‖ ‖N̄1/2ψ‖, which proves (4.13).

Proof of (b). We write I = T1 + T2 + T3, with

T1 =
(
W (eηs∂ug)−W (g)

)(
φ(eηs∂ug′)− φ(g′)

)
,(4.39)

T2 =
(
W (eηs∂ug)−W (g)

)(
φ(g′)− i

2
〈 g | g′ 〉

)
,(4.40)

T3 = W (g)
(
φ(eηs∂ug′)− φ(g′)

)
.(4.41)

Using the bounds (4.36) and (4.38) with γ = 1 gives |〈ϕ |T1ψ 〉| ≺ η2s2‖N̄1/2ϕ‖ ‖N̄1/2ψ‖, so

(4.42)

∣∣∣∣∫
R
〈ϕ |T1ψ 〉dµ(s)

∣∣∣∣ ≺ η2‖N̄1/2ϕ‖ ‖N̄1/2ψ‖.
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Next, since W (eηs∂ug)−W (g) =
∫ ηs

0
∂tW (et∂ug)dt =

∫ ηs
0
W (et∂ug){iφ(et∂ug′) + 1

2
〈 g | g′ 〉}dt, we

obtain

(4.43)

∫
R
〈ϕ |T2ψ 〉dµ(s) =

∫
R
dµ(s)

∫ ηs

0

dt 〈 (T ′2 + T ′′2 )ϕ | (φ(g′)− i
2
〈 g | g′ 〉)ψ 〉,

where

T ′2 = W (−et∂ug){−iφ(et∂ug′) + iφ(g′)},(4.44)

T ′′2 =
(
W (−et∂ug)−W (−g)

)(
− iφ(g′) + 1

2
〈 g | g′ 〉

)
.(4.45)

Note that due to (4.8),
∫

R dµ(s)
∫ ηs

0
dt〈W (−g)(−iφ(g′) + 1

2
〈 g | g′ 〉)ϕ | (φ(g′)− i

2
〈 g | g′ 〉)ψ 〉 = 0.

In order to estimate the contribution to (4.43) coming from (4.44), we use (4.38) with γ = 1.
The contribution of T ′2 to (4.43) is ≺ η2‖N̄1/2ϕ‖ ‖N̄1/2ψ‖. Next we consider the contribution
to (4.43) coming from (4.45). The double integral in (4.43) stays unchanged if we replace T ′′2
by

T ′′′2 =

∫ t

0

(
∂rW (−er∂ug)− ∂r|r=0W (−er∂ug)

)(
− iφ(g′) + 1

2
〈 g | g′ 〉

)
dr,

since again, due to (4.8), the term containing ∂r|r=0W (−er∂ug) vanishes. As ∂rW (−er∂ug) −
∂r|r=0W (−er∂ug) =

∫ r
0
∂2
xW (−ex∂ug)dx and ∂2

xW (−ex∂ug) = −τx([A, [A,W (−g)]]), which is an
operator of the form τx(W (−g)P ), where P is a polynomial of degree two in field operators
(φ(g′) and φ(g′′)), we obtain ‖T ′′′2 ϕ‖ ≺ t2‖N̄3/2ϕ‖. It follows that the contribution to (4.43)
coming from T ′2 is ≺ η3‖N̄3/2ϕ‖ ‖N̄1/2ψ‖. Hence

(4.46)

∣∣∣∣∫
R
〈ϕ |T2ψ 〉dµ(s)

∣∣∣∣ ≺ η2‖N̄1/2ϕ‖ ‖N̄1/2ψ‖+ η3‖N̄3/2ϕ‖ ‖N̄1/2ψ‖.

Up to now, only two derivatives of g are assumed to exist. Finally we estimate the term with
T3,

(4.47)

∫
R
dµ(s)

∫ ηs

0

dt 〈W (−g)ϕ |
(
∂tφ(et∂ug′)− ∂t|t=0φ(et∂ug′)

)
ψ 〉

where we inserted the term containing ∂t|t=0φ(et∂ug′) for free, once again due to (4.8). Since
∂tφ(et∂ug′)− ∂t|t=0φ(et∂ug′) = φ(et∂ug′′− g′′) we can apply the estimate (4.38) (with g′ replaced
by g′′ and ηs replaced by t) to obtain

(4.48)

∣∣∣∣∫
R
〈ϕ |T3ψ 〉dµ(s)

∣∣∣∣ ≺ ηγ+1‖ϕ‖ ‖N̄1/2ψ‖,

for any γ ∈ [0, 1] and provided ‖ |∂u|γ+2g‖ <∞. Combining (4.42), (4.46) and (4.48) yields the
bound (4.14). The estimate for K(η)∗ is obtained in the same way. �

Proof of Lemma 4.6. For l > 0 we have

(4.49) N̄ l/2Rz(η)ψ = N̄1/2Rz(η)N̄1/2N̄ (l−2)/2ψ + N̄1/2[N̄ (l−1)/2, Rz(η)]ψ.
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The second term on the right side is

N̄1/2[N̄ (l−1)/2, Rz(η)]ψ = ∆ N̄1/2Rz(η)[I(η), N̄ (l−1)/2]Rz(η)ψ

= ∆ N̄1/2Rz(η)N̄1/2
(
N̄−1/2I(η)N̄1/2 − N̄ (l−2)/2I(η)N̄−(l−2)/2

)
N̄ (l−2)/2Rz(η)ψ.(4.50)

Using that ‖N̄1/2Rz(η)N̄1/2‖ 6 Cη−1 (see Lemma 4.3(4)) and that, as we show below,

(4.51) sup
η>0
‖N̄αĪ(η)N̄−α‖ <∞,

for all α ∈ R, we obtain from (4.49) and (4.50) that

(4.52) ‖N̄ l/2Rz(η)ψ‖ ≺ η−1‖N̄ (l−2)/2Rz(η)ψ‖+ η−1‖N̄ (l−2)/2ψ‖.
We now iterate (4.52). For l even, we obtain after l/2 iterations

‖N̄ l/2Rz(η)ψ‖ ≺ η−(l+1)/2‖ψ‖1 +

l/2∑
j=1

η−j‖N̄ (l−2j)/2ψ‖ ≺
(
‖ψ‖1 + η1/2‖N̄ (l−2)/2ψ‖

)
η−(l+1)/2.

We use ‖N̄1/2Rz(η)ψ‖ 6 cη−1/2‖ψ‖1 (see (4.16)) in the last iteration step. This gives (4.29) for
l even. The estimate for l odd is obtained in the same way, iterating (4.52).

It remains to show the bound (4.51), which is equivalent to ‖N̄αWN̄−α‖ < ∞, where W =
W (2ifβ). Relation (3.5) (with D = 1) gives, for any integer m > 1,

(4.53) N̄mWN̄−m = N̄m−1W
(
1 + (φ+ c)N̄−1

)
N̄−(m−1) = N̄m−1WN̄−(m−1)Bm,

where c is a constant, φ = φ(2ifβ) and Bm = N̄m−1(1 + (φ + c)N̄−1)N̄−(m−1). By using
repeatedly the commutation relation Nφ = φN + 2−1/2(a∗(2ifβ) − a(2ifβ)) one sees that
Bm is bounded. Next, we show that N̄1/2BmN̄

−1/2 is bounded. It suffices to prove that
N̄1/2[Bm, N̄

−1/2] is bounded. The representation N̄−1/2 = π−1
∫∞

0
x−1/2(N̄ + x)−1dx (see [24],

equation (3.53)) gives

(4.54) N̄1/2[Bm, N̄
−1/2] = π−1

∫ ∞
0

x−1/2N̄1/2(N̄ + x)−1[N̄ , Bm](N̄ + x)−1dx.

Next, ‖N̄1/2(N̄+x)−1‖ 6 (1+x)−1/2, ‖(N̄+x)−1‖ 6 (1+x)−1 and [N̄ , Bm] = N̄m−1[N̄ , φ]N̄−m,
which is easily seen to be bounded. The norm of the integrand in (4.54) is thus bounded above
by a constant times x−1/2(1 + x)−3/2, which is integrable in x ∈ [0,∞). Thus the operator
(4.54) is bounded.

Iterating (4.53) gives N̄mWN̄−m = WB1 · · ·Bm. Let α > 0 and set α = m + ξ, with
m = 0, 1, . . . and 0 6 ξ < 1. Then

(4.55) N̄αWN̄−α = N̄ ξN̄mWN̄−mN̄−ξ = N̄ ξWB1 · · ·BmN̄
−ξ.

To show boundedness of N̄αWN̄−α it suffices to show it for N̄ ξ[WB1 · · ·Bm, N̄
−ξ], asWB1 · · ·Bm

is bounded. The representation N̄−ξ = π−1 sin(πξ)
∫∞

0
x−ξ(N̄ + x)−1dx (see [24], equation

(3.53)) gives

(4.56) N̄ ξ[WB1 · · ·Bm, N̄
−ξ] = π−1 sin(πξ)

∫ ∞
0

x−ξN̄ ξ(N̄ +x)−1[N̄ ,WB1 · · ·Bm](N̄ +x)−1dx.
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Using that ‖N̄ ξ(N̄ + x)−1‖ 6 (1 + x)−1+ξ, ‖N̄1/2(N̄ + x)−1‖ 6 (1 + x)−1/2, and, as we show
below,

(4.57) ‖[N̄ ,WB1 · · ·Bm]N̄−1/2‖ <∞,
we see that the norm of the integrand in (4.56) is bounded from above by a constant times
x−ξ(1 + x)−3/2+ξ, which is integrable. To complete the proof of Lemma 4.6, we show (4.57).

Expanding the commutator gives a sum of terms, each being of the form either T1 =
[N̄ ,W ]B1 · · ·BmN̄

−1/2 or T2 = WB1 · · ·Bk[N̄ , Bk+1]Bk+2 · · ·BmN̄
−1/2. T1 is bounded since

[N̄ ,W ]N̄−1/2 and N̄1/2BkN̄
−1/2 (k = 1, . . . ,m) are. Finally, T2 is bounded since [N̄ , Bk+1] =

N̄k[N̄ , φ]N̄−k−1 is. This shows (4.51) (for α > 0; for α 6 0 the derivation is the same). The
proof of Lemma 4.6 is complete. �

4.2. Proof of Theorem 4.2. We want to prove that F(x), x 6= 0, is invertible. For y > 0,

(4.58) F(x)− iy = F(x+ iy)
{
1 + F(x+ iy)−1

(
F(x)− iy − F(x+ iy)

)}
,

where F(x + iy)−1 = P (L − x− iy)−1P . By Theorem 4.1, z 7→ PIP̄ (L̄ − z)−1P̄ IP extends to
a Hölder continuous map in z ∈ C̄+, with exponent one. Hence

(4.59) ‖F(x)− iy − F(x+ iy)‖ 6 ∆2‖PIP̄
(
(L̄ − x− iy)−1 − (L̄ − x)−1

)
P̄ IP‖ 6 C∆2y,

uniformly in x ∈ R. Moreover, x 6= 0 is not an eigenvalue of L, so w−limy→0+ iy(L−x−iy)−1 =
0, from which it follows that

(4.60) lim
y→0+

iyF(x+ iy)−1 = 0.

Combining this with (4.59) and (4.58) shows for any x 6= 0 there is a y0 s.t. if |y| < y0, then
F(x)− iy is invertible, and

(4.61) ‖(F(x)− iy)−1‖ 6 2‖F(x+ iy)−1‖ 6 (2y)−1.

In the last step, we have again used (4.60). This implies that the kernel of F(x) is {0}. Indeed,
if F(x)ψ = 0 for some ψ ∈ RanP , ‖ψ‖ = 1, then ‖(F(x) + iy)−1ψ‖ = 1/y. But (4.61) gives
‖(F(x) + iy)−1ψ‖ 6 1/(2y), a contradiction.

Since F(x) is invertible (x 6= 0) there is a constant cx s.t. ‖F(x)−1‖ 6 cx. We have F(x)−1 =
F(x′)−1[1− (F(x)− F(x′))F(x)−1] and for x′ close enough to x, ‖(F(x)− F(x′))F(x)−1‖ < 1/2.
It follows that ‖F(x′)−1‖ 6 2cx. This completes the proof of Theorem 4.2 �
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