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M. KÖNENBERG AND M. MERKLI

Abstract. We consider the dynamics of quantum systems which possess stationary states
as well as slowly decaying, metastable states arising from the perturbation of bound states.
We give a decomposition of the propagator into a sum of a stationary part, one exponentially
decaying in time and a polynomially decaying remainder. The exponential decay rates and the
directions of decay in Hilbert space are determined, respectively, by complex resonance energies
and by projections onto resonance states. Our approach is based on an elementary application
of the Feshbach map. It is applicable to open quantum systems and to situations where spectral
deformation theory fails. We derive a detailed description of the dynamics of the spin-boson
model at arbitrary coupling strength.

1. Introduction and main result

1.1. General setup. Let L0 be a self-adjoint operator on a Hilbert space H and consider

(1.1) L = L0 + ∆I,

where ∆ ∈ R is a perturbation parameter and I is a self-adjoint operator. It is assumed that L
is self-adjoint. We suppose that the spectrum of L0 is absolutely continuous (possibly, but not
necessarily semi-bounded) and that L0 has finitely many eigenvalues e with finite multiplicities
me. All the eigenvalues of L0 are embedded in the continuous spectrum. The general problem
we consider is how the stability or partial stability or instability of these embedded eigenvalues
under the perturbation affect the dynamics generated by L. One may readily incorporate into
our results and proofs the case where L0 has also isolated eigenvalues by using ordinary analytic
perturbation theory on the corresponding subspaces.

In the setting of usual analytic perturbation theory [23] an isolated eigenvalue e of L0 with
multiplicity me splits, under perturbation, into a group of eigenvalues Ee,1, . . . , Ee,`e of L (1 6
`e 6 me), in the sense that Ee,j = Ee,j(∆) → e as ∆ → 0, for j = 1, . . . , `e. For fixed e, the
sum of the multiplicities of the eigenvalues Ee,j equals me. On the other hand, it is well known
that embedded eigenvalues can be unstable, or partially stable, under perturbation. Instability
means that L does not have any eigenvalues in a neighbourhood of e for small, non-vanishing
∆. Partial stability means that the embedded eigenvalue e of L0 splits, for small ∆ 6= 0, into a
group of eigenvalues of L whose sum of multiplicities are strictly smaller than that of e.

In this paper, we consider the situation where L0 has unstable and partially stable eigenvalues,
and where the partially stable ones undergo a reduction to dimension one under perturbation.
Namely, close to any eigenvalue e of L0, the operator L (with ∆ 6= 0 small) either does not
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have any eigenvalue (e unstable) or L has exactly one simple eigenvalue Ee close to e, meaning
that lim∆→0Ee = e. It is supposed that all eigenvalues of L are of this form. One may develop
the arguments of the present paper in the more general setting where close to every e, L has
several eigenvalues E1, . . . , E` and each of them may be degenerate. We do not do this here to
keep the exposition simpler.

The dependence of Ee on ∆ is not governed by usual analytic perturbation theory, since the
unperturbed e is an embedded eigenvalue of L0. However, suitably modified expressions from
analytic perturbation theory of isolated eigenvalues will still play a role in the present setting.
Let Pe be the spectral projection of L0 associated to the eigenvalue e. If e was an isolated
eigenvalue of L0, then the first and the second order corrections (in ∆) of eigenvalues would
be given, according to analytic perturbation theory [23], by the eigenvalues of PeIPe and of
PeIP

⊥
e (L0 − e)−1IPe, respectively. We assume

(A1) For all eigenvalues e of L0,

(1.2) PeIPe = 0.

For embedded e, the resolvent P⊥e (L0−e)−1 does not exist as a bounded operator, so PeIP
⊥
e (L0−

e)−1IPe is not defined, typically. Nevertheless, we can replace e by e− iε and consider ε small.
This suggests that the second order eigenvalue corrections to e are linked to the level shift
operator

(1.3) Λe = −PeIP⊥e (L0 − e+ i0+)−1IPe,

where i0+ indicates the limit of the resolvent (L0 − e + iε)−1, as ε → 0+. The existence of
the limit is guaranteed by assumption (A2) below (take ∆ = 0 in the resolvent in (1.5)). The
operator Λe is represented by an me ×me matrix.

Let Q be an orthogonal projection and denote

(1.4) Rz = (L− z)−1 and RQ
z = (Q⊥LQ⊥ − z)−1 �RanQ⊥ .

In the following, we denote by C(φ, ψ) a constant which is independent of z and ∆ but which
may depend on φ, ψ ∈ H. We assume

(A2) (Limiting Absorption Principle.) There is a dense set D ⊂ H with Ran IPe ⊂ D (∀e; in
particular RanPe ⊂ DomI) and there is an α > 0 such that the following hold.
(1) Let Se = {z ∈ C− : |Rez − e| 6 α}. Here, C− denotes the (open) lower complex
half plane. For all e and all φ, ψ ∈ D, we have

(1.5) sup
z∈Se
| dk
dzk
〈φ,RPe

z ψ〉| 6 C(φ, ψ) <∞, k = 0, . . . 3.

(2) Let S∞ = {z ∈ C− : |Rez − e| > α for all e}. For all φ, ψ ∈ D, we have

(1.6) sup
z∈S∞

| dk
dzk
〈φ,Rzψ〉| 6 C(φ, ψ) <∞, k = 0, 1.

Assumption (A2)(1) implies that PeIR
Pe
z IPe extends as a twice continuously differentiable

function to real z with |z − e| 6 α. Moreover, the estimates (1.5) and (1.6) with k = 0 imply
that P⊥e LP

⊥
e and L have purely absolutely continuous spectrum in the interval (e − α, e + α)
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and in the region {x ∈ R : |x− e| > α for all e}, respectively (see e.g. [24] or [10], Proposition
4.1). We also assume the following.

(A3) The operators d
d∆
PeIR

Pe
z IPe are bounded, uniformly for z ∈ C− with |Rez− e| 6 α and

for all |∆| 6 ∆0.

The Feshbach map associated to an orthogonal projection Q, applied to L− z, is defined by

(1.7) F(L− z;Q) = Q(L− z − LRQ
z L)Q.

It follows from assumptions (A1) and (A2) that

lim
ε→0+

F(L− Ee + iε;Pe) ≡ F(L− Ee;Pe) = Pe(e− Ee −∆2IRPe
Ee−i0+

I)Pe.

Let ψEe = ψEe(∆) be s.t. LψEe = EeψEe . Note that PeψEe 6= 0 for otherwise P⊥e LP
⊥
e ψEe =

EeP
⊥
e ψEe , which cannot hold for small ∆, since P⊥e LP

⊥
e has purely absolutely continuous

spectrum in a neighbourhood of e due to Condition (A2)(1). We normalize ψEe as ‖PeψEe‖ = 1.
By the isospectrality property of the Feshbach map (see Appendix B, Proposition B.2), we

have

(1.8) 0 = F(L− Ee;Pe)PeψEe =
(
e−Ee

∆2 − PeIRPe
Ee−i0+

IPe)PeψEe .

This, together with Conditions (A2)(1) and (A3), implies that ξ∆ := e−Ee
∆2 is bounded in ∆

for small ∆ and that PeIR
Pe
Ee−i0+

IPe = Λe + O(|∆| + |e − Ee|) = Λe + O(|∆|). On a suitable

sequence ∆n → 0, we have ξ∆n → ξ0 and PeψEe(∆n) → Peψ0 for some ξ0 ∈ R and some unit
vector Peψ0 (Bolzano-Weierstrass). Consequently, taking ∆ → 0 in (1.8) along this sequence
gives

(1.9) ΛePeψ0 = ξ0Peψ0,

showing that ξ0 is a real eigenvalue of Λe. For ease of presentation, we assume the following.

(A4) (Fermi Golden Rule Condition.) The eigenvalues of all the level shift operators Λe are
simple. Moreover,

(1) If e is an unstable eigenvalue of L0, then all the eigenvalues λe,0, . . . , λe,me−1 of
Λe have strictly positive imaginary part.

(2) If e is a partially stable eigenvalue of L0, then Λe has a single real eigenvalue λe,0.
All other eigenvalues λe,1, . . . , λe,me−1 have strictly positive imaginary part.

Under condition (A4)(2), the set {ξ∆ = e−Ee
∆2 } for ∆ small has a unique limit point ξ0 and

we have λe,0 = ξ0. Having only simple eigenvalues, Λe is diagonalizable and has the spectral
representation

(1.10) Λe =
me−1∑
j=0

λe,jPe,j,

where Pe,j are the (rank one) spectral projections. We introduce the notation

(1.11) a ≺ b,



4 M. KÖNENBERG AND M. MERKLI

where a is a complex number, a vector or a bounded operator and b > 0, to mean that
|a| 6 const.b, where | · | is the appropriate norm and const. is a constant which does not depend
on the coupling parameter ∆, nor on time t.

Theorem 1.1 (Resonance expansion of propagator). There is a constant c > 0 s.t. for 0 <
|∆| < c the following holds. Denote the spectral projection of L associated to the eigenvalue Ee
by ΠEe. Let t > 0, φ, ψ ∈ D s.t. Lφ, Lψ ∈ D. Then

〈φ, eitLψ〉 =
∑

e partially stable

{
eitEe〈φ,ΠEeψ〉+

me−1∑
j=1

eit(e+∆2ae,j)〈φ,Π′e,jψ〉
}

(1.12)

+
∑

e unstable

me−1∑
j=0

eit(e+∆2ae,j)〈φ,Π′e,jψ〉+R(t),

where

(1.13) R(t) ≺ 1

t
.

The exponents ae,j and the operators Π′e,j are close to the spectral data of the level shift operator
Λe, (1.10). Namely,

(1.14) ae,j = λe,j +O(∆), Π′e,j = Pe,j +O(∆).

Remarks and discussion.

1. For an expansion of 〈φ, e−itLψ〉 for t > 0, simply take the complex conjugate of (1.12).
2. The exponents ae,j are the eigenvalues of an explicit matrix. They can be calculated to

all orders in ∆ (see Lemma 3.1). The operators Π′e,j have also expressions calculable to all
orders in ∆ (see (3.8)). Those “complex energies” ae,j are called resonances. They coincide
with the eigenvalues of the spectrally deformed generator of dynamics in situations where the
latter exists.

3. The remainder term is small relative to the contributions of the exponentially decaying
terms in (1.12) for times t satisfying e−γ∆2t >> 1/t, where

(1.15) γ = min
e,j

{
Imae,j

}
.

The inequality e−γ∆2t > C/t, for some (large) C is equivalent to ln(t)−ln(C)
t

> γ∆2. For small ∆,
it is valid for intermediate times, t0 < t < t1, with t0 = C +O(γ∆2) and t1 ∼ 1/(γ∆2). During
this time-interval, the decay of (1.12) behaves as exponential, to leading order.

4. The Fermi Golden Rule Condition (A4) guarantees that instability (and partial stability)
of eigenvalues is visible at lowest order, O(∆2), in the perturbation. It may happen that
resonances acquire non-vanishing imaginary parts only at higher orders in ∆. Our method can
be adapted to describe this situation. The dynamical consequence is a slower decay of the
corresponding directions in Hilbert space, see also [32].

5. Increasing the regularity assumptions on the vectors φ, ψ allows to show a faster poly-
nomial decay of the remainder than (1.13) (this amounts to taking higher z derivatives of the
resolvent, c.f. (1.17)).
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1.2. History, relation to other work. The analysis of resonance phenomena has a long his-
tory and plays an important role in quantum physics [9, 22, 37, 42]. Its modern description,
involving dilation analytic Hamiltonians ([1, 3]), was given in [39] and further developed in
[40, 38, 20]. We refer to [19] for a textbook presentation and many more references. A time-
dependent theory of quantum resonances was established in [33], inspired by [41] and further
developed in [25]. In these works, as well as in [11], a variant of the Mourre theory in combi-
nation with the Feshbach projection method is used to link dynamical properties of quantum
systems to spectral objects. The approach of the present work is, in spirit, similar to [11];
see the end of this paragraph for a comparison. Nevertheless, all the above-mentioned works
require regularity conditions within Mourre theory that do not allow the treatment of open
quantum systems at positive temperature. In the context of open quantum systems at positive
temperature, the link between quantum resonances and approach of an equilibrium state has
been pioneered, using complex deformation theory, in [21, 7]. The work [7] is based on a sophis-
ticated renormalization group method initiated in [4, 5, 6]. Recently, a method based on graph
expansions of the propagator rather than purely spectral considerations was given in [12]. The
spectral approach has been further developed to yield a detailed description of open systems
dynamics in terms of resonances in [34, 35, 36], with applications to quantum information the-
ory [28, 31] and quantum chemistry [29, 30]. The spectral analysis and its consequences for
“return to equilibrium” based on Mourre theory and positive commutators was carried out in
[13, 27, 18, 14]. These papers tough are limited to the study of the spectrum of the Liouville
operator with the goal (typically) of showing that it has a single, simple eigenvalue at zero (and
absolutely continuous spectrum otherwise). This information alone does not provide any detail
about the dynamics other than ergodicity. However, one is interested in information such as
directions of decay and decay rates which describe, for example the speed of thermalization,
decoherence and the dynamics of entanglement. In the method of complex deformation, com-
plex resonance energies are linked “automatically” to the decay rates of reduced density matrix
elements [35]. The same expressions describing those decay rates appear as well in Mourre
theory as a consequence of the Fermi Golden Rule (see also [17]), however, linking them to the
dynamics, and in particular to time decay, is more delicate and has not been done previously
for open systems. We show in the present paper how to extract the detailed dynamical infor-
mation from the Mourre theory in a technical setup that includes positive temperature open
quantum systems. It is important to be able to handle these questions using a softer approach
than the spectral deformation one. Indeed, the applicability of the latter demands much more
regularity from the models and, in some physically relevant situations, the spectral deformation
technique is not applicable at all. This happens for the spin-boson model at arbitrary coupling,
whose ergodicity has been shown recently in [24] using Mourre theory. As an application of our
method, we give a detailed expansion of the propagator of this model in the present paper.

The philosophies of [11] and the present paper are similar, in that the common main idea is to
write the propagator as a contour integral over the resolvent and subsequently use the Feshbach
map to analyze the latter. However, right from the start, the technical assumptions are very
different. A core assumption of [11] is that multicommutators of the Hamiltonian H with the
(Mourre theory) conjugate operator A are relatively H-bounded. While this is typically true
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for, say, for Schrödinger operators, it is not so for open quantum systems. The problem comes
from the fact that the number operator is not bounded relatively to the free field Hamiltonian
(so already relation (2) of [11] is not valid). The situation even is worse for the spin-boson
model at arbitrary coupling, where each successive commutation of the Liouvillian with the
conjugate operator produces a more singular operator, as explained in [24] (this is the reason
why the spectral deformation theory fails).

The dissipative character of the system is guaranteed in [11] by assuming a Mourre estimate,
localized spectrally on a subspace around the embedded eigenvalue in question. Accordingly,
the main result of [11] describes the dynamics of an initial state (wave function) which is
spectrally localized close to the embedded eigenvalue. This makes good physical sense in
the context of, say, Schrödinger operators, where long lived initial states are expected to lie
close to unperturbed bound states. However, in open systems problems, one considers initial
states which are spatial perturbations of equilibrium states and which are not at all spectrally
localized relative to the Liouville operator. Our dissipation assumption (A2) is thus a Limiting
Absorption Principle which is not spectrally localized and which produces results for initial
vectors which are not spectrally localized. Condition (A2) can be heuristically understood in
the context of open systems as saying that the reservoir stays essentially in its equilibirum state
during the dynamical process (the Born approximation).

We mention that the main result of [11] is stated and proven for a simple unperturbed eigen-
value. In open systems however, the origin is always a degenerate eigenvalue of the unperturbed
Liouville operator and so we have put in place a formalism that works for the degenerate case
as well.

1.3. Outline of the proof of Theorem 1.1. For ψ ∈ dom(L), we have ([16], Corollary II
3.6)

(1.16) eitLψ = − 1

2πi

∫
R−iw

eitzRzψ dz,

where w > 0 is arbitrary and Rz = (L − z)−1, see (1.4). We write eitz = 1
it
d
dz

eitz and integrate
by parts in (1.16) to obtain

(1.17) eitLψ =
1

it

1

2πi

∫
R−iw

eitz d
dz
Rzψ dz.

The boundary terms in the integration by parts vanish since Rzψ → 0 as |z| → ∞.
We analyze separately the contributions to the integral in (1.17) coming from z in different

regions on the line of integration. Define the gap of all the clusters of resonances by

(1.18) δ = min
e,i,j

{
|λe,i − λe,j| : i 6= j

}
> 0

and denote the eigenvalue gap of L0 by

(1.19) g = min
e,e′
{|e− e′| : e 6= e′} > 0.

Let

(1.20) α = 1
2

min
{
cδ, g, Imλe,j : (e, j) s.t. Imλe,j > 0

}
> 0.
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Here, c is a constant not depending on ∆, w (its origin is explained in Lemma 3.1). For any
eigenvalue e of L0, set

(1.21) Ge = {x− iw : |x− e| 6 α}

and set

(1.22) G∞ =
{
x− iw : x ∈ R

}
\ ∪e Ge.

It follows from (1.17) that

(1.23) 〈φ, eitLψ〉 =
∑
e

Je(t) + J∞(t),

where

(1.24) J#(t) =
1

it

1

2πi

∫
G#

eitz〈φ, d
dz
Rzψ〉dz.

We now apply a suitable Feshbach map to the resolvent Rz in (1.24), with a projection depend-
ing on the region of integration. Let P be an orthogonal projection and recall the notation
(1.4). The resolvent has the representation

(1.25) Rz = F(z)−1 + B(z) +RQ
z ,

where F(z) ≡ F(L− z,Q), see (1.7), and

(1.26) B(z) = −F(z)−1QLRQ
z −RQ

z LQF(z)−1 +RQ
z LQF(z)−1QLRQ

z .

We explain these relations and some properties of the Feshbach map in Appendix B. For z ∈ Ge,
we choose the projection Q in the Feshbach map to be Pe. For z ∈ G∞, the argument is simpler,
see Section 3.3.

Let us assume that the unperturbed, partially stable eigenvalue of L0 is at the origin, e = 0.
(Otherwise see section 3.) Then L has a simple eigenvalue E ≡ E0 with E → 0 as ∆→ 0. To
analyze J0(t), we write, according to (1.25),

(1.27) J0(t) =
1

it

1

2πi

∫
G0

eitz
{
〈φ, d

dz
F(z)−1ψ〉+ 〈φ, d

dz
B(z)ψ〉+ 〈φ, d

dz
RP0
z ψ〉

}
dz.

The Feshbach term is F(z) = −z + ∆2Az, where Az = −P0IR
P0
z IP0. For z = 0 and ∆ = 0,

Az is just the level shift operator Λ0, (1.3). We show in Lemma 3.1 that Az is diagonalizable,
Az =

∑me−1
j=0 a0,j(z)Qj(z), and that the eigenvalues a0,j(z) of Az satisfy a0,0(E) = E/∆2 for all

∆ 6= 0 (this follows from the isospectrality property of the Feshbach map and the fact that E
is an eigenvalue of L) and a0,j(z) = λ0,j + O(∆2 + |z|), j = 1, . . . ,me − 1 (since Az is close to
Λ0). Then we can write

(1.28) d
dz
F(z)−1 = d

dz

me−1∑
j=0

Qj(z)

−z + ∆2a0,j(z)
.
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We are interested in the singularities of this function as z is close to the real axis. They come
from the denominator. To understand the nature of the singularities, and since z 7→ Qj(z) is
regular, consider Qj(z) ≈ Qj(0) for a moment. Then

(1.29) d
dz
F(z)−1 ≈

me−1∑
j=0

1−∆2a′0,j(z)

(z −∆2a0,j(z))2
Qj(0).

For j = 0 we have −E + ∆2a0,0(E) = 0 (see above) and the corresponding summand is

1

(z − E)2

1−∆2a′0,0(z)

{1−∆2[a0,0(z)− a0,0(E)]/(z − E)}2
Q0(0)

≈ 1

(z − E)2

1−∆2a′0,0(E)

(1−∆2a′0,0(E))2
Q0(0) =

1

(z − E)2

Q0(0)

1−∆2a′0,0(E)
.

By using that the projection associated to the eigenvalue E of L is given by

(1.30) ΠE = lim
ε→0+

(iε)(L− E + iε)−1

and decomposing the resolvent in this limit according to (1.25) with projection P0, we identify
(see (3.38))

Q0(E)

1−∆2a′0,0(E)
= P0ΠEP0.

For j > 0 we have a0,j(0) = λ0,j + O(∆2) which is in the open upper complex half plane and
the corresponding summand in (1.29) is

1−∆2a′0,j(z)

(z −∆2a0,j(z))2
Qj(0) ≈ Qj(0)

(1−∆2a0,j(0))2
.

In Section 3 we make these arguments rigorous. Namely, we show that

(1.31) d
dz
F(z)−1 =

1

(z − E)2
P0ΠEP0 +

me−1∑
j=1

Qj(0)

(z −∆2a0,j(0))2
+ T̃ (z),

where
∫
G0 eitzT̃ (z)dz ≺ 1. Now we have to multiply (1.31) by eitz and integrate over z ∈ G0 =

[−α, α] − iw. Having in mind a standard argument from complex analysis, we complete the
path G0 into a closed contour (a rectangle with a ‘roof’ parallel to G0 but shifted far into the
upper complex half plane). We then use the Cauchy formula for contour integrals to get

(1.32)

∫
G0

eitz

(z − E)2
dz = 2πi · iteitE +O(1/t).

The O(1/t) term is the contribution from the parallel vertical sides of the rectangular closed
integration path (see (3.21)). In a similar way, we treat the sum in (1.31). Here the poles are
at z = ∆2a0,j(0) and so

(1.33)

∫
G0

eitz

(z −∆2a0,j(0))2
dz = 2πi · it eit∆2a0,j(0) +O(1/t).
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Combining (1.31) with (1.32) and (1.33) yields

(1.34)
1

it

1

2πi

∫
G0

eitz〈φ, d
dz
F(z)−1ψ〉dz = eitE〈φ, P0ΠEP0ψ〉+

me−1∑
j=1

eit∆2a0,j(0)〈φ,Qj(0)ψ〉+O(1/t).

Next we deal with the second integrand in (1.27). Using again the spectral representation of
F(z)−1, we have from (1.26)

(1.35) d
dz
B(z) = d

dz

me−1∑
j=0

qj(z)

−z + ∆2a0,j(z)
,

where

(1.36) qj(z) = −∆
[
Qj(z)P0IR

P0
z +RP0

z IP0Qj(z)−∆RP0
z IP0Qj(z)P0IR

P0
z

]
.

The expression (1.35) has the same structure as (1.28). We readily obtain, in analogy with
(1.34),

1

it

1

2πi

∫
G0

eitz〈φ, d
dz
B(z)ψ〉dz = eitE〈φ, q0(E)

1−∆2a′0,0(E)
ψ〉+

me−1∑
j=1

eit∆2a0,j(0)〈φ, qj(0)ψ〉+O(|∆|/t).

Proceeding as above, after (1.30), we identify P0ΠEP0 + q0(E)
1−∆2a′0,0(E)

= ΠE (see also (3.43)).

Finally, since by Assumption (A2)(1),∫
G0

eitz〈φ, d
dz
RP0
z ψ〉dz ≺ 1,

we obtain

(1.37) J0(t) = 〈φ,ΠEψ〉+
me−1∑
j=1

eit∆2a0,j(0)〈φ,Π′0,jψ〉+O(1/t),

where Π′0,j = Q0(0) +O(|∆|) = P0,j +O(|∆|). This explains the contribution of a term on the
right side of (1.12) coming from a partially stable eigenvalue e (= 0). The analysis for unstable
e follows using the same arguments. Finally, to deal with J∞(t), we write

(1.38) Rzψ = (z + i)−2Rz(L+ i)2ψ − (z + i)−1ψ − (z + i)−2(L+ i)ψ,

which is valid for ψ ∈ dom(L2). The negative powers of z help the convergence of the z-integral
over G∞. The bound J∞(t) ≺ 1/t is then easily reached using (A2)(2).

2. Application to open quantum systems

2.1. Setup. The Hilbert space is the product of a system and a reservoir part,

(2.1) H = HS ⊗HR.

The self-adjoint generator of dynamics, called Liouvillean, is of the form (1.1), where L0, the
free (non interacting) Liouvillean, is a sum of a system and a reservoir contribution,

(2.2) L0 = LS + LR,



10 M. KÖNENBERG AND M. MERKLI

and I is the system-reservoir interaction operator. We consider the system to be finite-
dimensional and the reservoir to be an infinitely extended free Bose gas at positive temperature,
as we explain now.

Let S be a quantum system with pure state space HS of dimension d0 <∞. For instance, for
a spin 1/2, d0 = 2. Then the Hilbert space HS in (2.1) is the GNS space (Liouville space)

(2.3) HS = HS ⊗ HS,

so that d = dimHS = d2
0. The doubling of the pures state system Hilbert space in (2.3)

allows to represent any (pure or mixed) state of S by a vector. Namely, let ρ be a density
matrix on HS. It has the diagonalized form ρ =

∑
i pi|ψi〉〈ψi|, to which we associate the vector

Ψρ =
∑

i

√
piψi ⊗ ψi ∈ HS ⊗ HS (complex conjugation in any fixed basis – we will choose the

eigenbasis of the system Hamiltonian). Then Tr(ρA) = 〈Ψρ, (A⊗ 1S)Ψρ〉 for all A ∈ B(HS) and
where 1S is the identity in HS. This is the GNS representation of the state given by ρ [8, 35].
Let HS =

∑
j Ej|ϕj〉〈ϕj| be the Hamiltonian of S, acting on HS. The equilibrium density matrix

is ρS = e−βHS/Tr e−βHS , which is represented on HS by the vector

(2.4) ΩS,β = (Tr e−βHS)−1
∑
j

e−βEj/2ϕj ⊗ ϕj.

The (GNS) Hilbert space of the spatially infinitely extended free bose gas, for states normal
w.r.t. the equilibrium (KMS) state, is the Fock space

(2.5) HR = Fβ =
⊕
n≥0

L2
sym((R× S2)n, (du× dΣ)n),

taken over the single-particle space L2(R× S2, du× dΣ), where dΣ is the uniform measure on
S2 [2, 21]. Fβ carries a representation of the CCR algebra in which the Weyl operators are
given by W (fβ) = eiφ(fβ), where φ(fβ) = 1√

2
(a∗(fβ) + a(fβ)). Here, a∗(fβ) and a(fβ) denote

creation and annihilation operators on Fβ, smoothed out with the function

(2.6) fβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
f(u,Σ), u ≥ 0
−f(−u,Σ), u < 0

belonging to L2(R× S2, du× dΣ). It is easy to see that the CCR are satisfied, namely,

(2.7) W (fβ)W (gβ) = e−
i
2

Im〈f,g〉W (fβ + gβ).

The vacuum vector Ω ∈ Fβ represents the infinite-volume equilibrium state of the free Bose
field, determined by the formula

(2.8) 〈Ω,W (fβ)Ω〉 = exp
{
−1

4
〈f, coth(β|k|/2)f〉

}
.

The Weyl algebra is represented on Fβ as W (f) 7→ W (fβ), for functions f ∈ L2(R3) such
that 〈f, coth(β|k|/2)f〉 < ∞. We denote the von Neumann algebra of the represented Weyl
operators by Wβ.

The combined system-reservoir Hilbert space is then H, (2.1), and the von Neumann algebra
of observables is

(2.9) M = B(HS)⊗ 1S ⊗Wβ ⊂ B(H).



ON THE IRREVERSIBLE DYNAMICS EMERGING FROM QUANTUM RESONANCES 11

The coupled dynamics is given by

(2.10) αt(A) = eitLAe−itL, A ∈M.

It is generated by the self-adjoint Liouville operator acting on H,

L = L0 + ∆I(2.11)

L0 = LS + LR,(2.12)

I = V − JV J.(2.13)

Here, LS = HS ⊗ 1S − 1S ⊗HS and HS is the system Hamiltonian acting on HS. LR = dΓ(u) is
the second quantization of multiplication by the radial variable u. The interaction I in (2.13)
is “in standard form”, involving a self-adjoint interaction operator V acting on H and the
modular conjugation J , which acts as

(2.14) J(A⊗ 1S ⊗W (fβ(u,Σ)))J = 1S ⊗ A⊗W (fβ(−u,Σ)),

where A is the matrix obtained from A by taking entrywise complex conjugation (matrices are
represented in the eigenbasis of HS). Note that by (2.6), we have fβ(−u,Σ) = −e−βu/2fβ(u,Σ).
By the Tomita-Takesaki theorem [8], conjugation by J maps the von Neumann algebra of
observables (2.9) into its commutant. In particular, V and JV J commute (strongly on a
suitable domain). For more detail about this well-known setup we refer to [21, 7, 35] and
references therein. We have in mind two commonly used forms for V ,

(2.15) V1 = G⊗ 1S ⊗ φ(hβ) + h.c. or V2 = G⊗ 1S ⊗W (hβ) + h.c.,

for some matrix G on HS and where hβ is a (represented) form factor, obtained from an
h ∈ L2(R3) by (2.6). The interaction V1 is standard. V2 comes about when considering the
spin-boson system at arbitrary coupling strength [24], see Section 2.2.

The vector representing the uncoupled (αt, β)-KMS state (∆ = 0) on M is

(2.16) Ω0,KMS = ΩS,β ⊗ Ω,

where ΩS,β is given in (2.4).
In this setup of open systems, one can derive Condition (A2) from a global limiting absorption

principle as follows.

Theorem 2.1. Let PR = 1S⊗|Ω〉〈Ω|. Suppose that there is a dense set D ⊂ H with RanIPR ⊂
D, s.t. for all ϕ, ψ ∈ D,

(2.17) sup
z∈C−
| dk
dzk
〈φ,RPR

z ψ〉| 6 C(φ, ψ), k = 0, . . . , 3.

Then Condition (A2) holds with α = g/2 = mine6=e′{|e− e′|}/2.

We prove Theorem 2.1 in Appendix A. (The constant C(φ, ψ) in (2.17) may differ from that
in (A2).)
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2.2. The spin-boson model for arbitrary coupling strength. The spin-boson Hamilton-
ian is [26]

(2.18) H = −1
2
∆σx + 1

2
εσz +HR + 1

2
q0σz ⊗ φ(h),

where σx and σz are the Pauli matrices

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
and ∆, ε ∈ R are the ‘tunneling matrix element’ and the ‘detuning parameter’, respectively. (We
use units so that ~ takes the value one.) The reservoir Hamiltonian is HR =

∫
R3 |k|a∗(k)a(k)d3k.

The coupling constant is q0 ∈ R. Associated to the Hamiltonian H is the Liouvillean

(2.19) L = LS + LR + q0I

with

LS = HS ⊗ 1C2 − 1C2 ⊗HS,(2.20)

LR = dΓ(u)(2.21)

where HS = −1
2
∆σx + 1

2
εσz, and I given in (2.13) with V = 1

2
σz ⊗ φ(h). The total Hilbert

space is given by (2.1), (2.3) with HS = C2 and (2.5).
In order to be able to analyze the spectrum of L for arbitrarily large couplings q0 ∈ R, one

applies the unitary (‘polaron’-) transformation U (see [24])

(2.22) U = u JuJ, where u = eiσz⊗1S⊗φ(fβ),

resulting in a new Liouvillean [26, 24]

(2.23) L = ULU∗ = L0 + ∆I,

where

(2.24) L0 = LS + LR = ε
2

(
σz ⊗ 1S − 1S ⊗ σz

)
+ LR

and

(2.25) I = −1
2

(
V − JVJ

)
, V = σ+ ⊗ 1S ⊗W (2fβ) + σ− ⊗ 1S ⊗W (−2fβ).

Here, σ+ and σ− are the raising and lowering operators and

(2.26) fβ = (− i
2
q0h/u)β.

The non-interacting KMS state associated to L0 is

(2.27) Ψ0,KMS = ΨS,β ⊗ Ω, ΨS,β =
e−βε/4ϕ+ ⊗ ϕ+ + eβε/4ϕ− ⊗ ϕ−√

e−βε/2 + eβε/2

and the interacting KMS state associated to L is (Araki’s perturbation theory of KMS states)

(2.28) ΨKMS =
e−β(L0+∆V)/2Ψ0,KMS

‖e−β(L0+∆V)/2Ψ0,KMS‖
.
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Note that the spectrum of L0 consists of a purely absolutely continuous part covering all of
R, in which are embedded the eigenvalues e = ±ε (each simple) and the doubly degenerate
eigenvalue e = 0. The following is the main result of [24]:

Theorem 2.2 ([24]). Recall that (·)β is defined in (2.6). Assume that (1 + |i∂u|η)(ih/u)β ∈
L2(R× S2, du× dΣ) for some η > 2. Then, for any q0 ∈ R, q0 6= 0, there is a constant ∆0 > 0
s.t. if 0 < |∆| 6 ∆0, then L has purely absolutely continuous spectrum covering R and a single,
simple eigenvalue at zero. The associated eigenvector is ΨKMS, (2.28).

Remarks 1. The eigenvalues e = ±ε of L0 are unstable, while e = 0 is partially stable. The
associated (simple) eigenvalue of L is E = 0.

2. The spectral properties of L and L are the same, as the operators are unitarily equivalent
to each other.

3. The KMS state associated to L is given by

(2.29) ΩKMS = U∗ΨKMS =
e−β(L0+q0σz⊗1C2⊗φ(hβ))/2Ω0,KMS

‖e−β(L0+q0σz⊗1C2⊗φ(hβ))/2Ω0,KMS‖
,

where L0 = LS(∆) + LR, see (2.20), (2.21). One shows that Ω0,KMS is in the domain of
e−β(L0+q0σz⊗1C2⊗φ(hβ))/2 for any q0, ∆ ∈ R (see e.g. [15, 7, 8]).

We now verify assumptions (A1)-(A4) for the spin-boson system, i.e., for the operator L,
(2.23). The eigenprojections of L0 are given, for e ∈ spec(LS),by

Pe = 1[LS = e]⊗ |Ω〉〈Ω|.
Since 1[LS = e]

(
σ± ⊗ 1S

)
1[LS = e] = 0 = 1[LS = e]

(
1S ⊗ σ±

)
1[LS = e], condition (A1) holds.

To verify the limiting absorption principle (A2), let N = dΓ(1) be the number operator on
Fock space (2.5) and put N̄ = P⊥RN . Let A = dΓ(i∂u) and put Ā = P⊥RA. For α, ν > 0, define
the norms

(2.30) ‖ξ‖α,ν = ‖N̄ ν/2(1 + Ā2)α/2ξ‖.
We have the following regularity properties of the resolvent RPR

z .

Theorem 2.3. Let µ > 1 and suppose that ∂jufβ ∈ L2(R× S2, du× dΣ), for j = 0, . . . , 2µ+ 1.
We have

sup
z∈C−
| dµ−1

dzµ−1 〈φ,RPR
z ψ〉| ≺ ‖φ‖µ,2µ ‖ψ‖µ,2µ(2.31)

sup
z∈C−
| d
d∆
〈φ,RPR

z ψ〉| ≺ ‖φ‖3,1‖ψ‖3,1.(2.32)

We give a proof of Theorem 2.3 in Appendix A. The bound (2.31) with µ = 4 implies (2.17),
with the dense set

(2.33) D = {ψ : ‖ψ‖4,8 <∞}.
To see that RanIPR ⊂ D, it suffices to check that

(2.34) ‖N4(1 + A4)W (2fβ)Ω‖ <∞.
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It is not hard to use the relation

(2.35) [dΓ(D),W (f)] = W (f)(φ(iDf) + 1
2
〈f,Df〉)

(where φ is the field operator, see the proof of Lemma 3.1 in [24] for technical details) for
D = −i∂u and D = 1 to see that (2.34) holds provided ∂jufβ ∈ L2(R × S2), j = 0, . . . , 4.
Therefore, Theorem 2.3 combined with this last observation shows that the assumptions of
Theorem 2.1 are satisfied. Thus, by the latter theorem, assumption (A2) holds.

Next, assumption (A3) is shown to hold in Theorem A.1, (A.2). Namely, the regularity in ∆

of dk

d∆kPeIR
Pe
z IPe is derived from that of dk

d∆kPeIR
PR
z IPe, given in Theorem 2.3, (2.32).

The Fermi Golden Rule Assumption (A4) is verified by examining the level shift operators
Λ0 and Λ±ε. Λ0 is two-dimensional, given by (see [24], Proposition 3.5)

(2.36) Λ0 = iτ−1P⊥S,β

where P⊥S,β is the complement of PS,β = |ΩS,β〉〈ΩS,β| in Ran1[LS = 0] and where ΩS,β ∝
e−βε/4ϕ+ ⊗ ϕ+ + eβε/4ϕ− ⊗ ϕ− (see (2.4) and (2.24)). Also,

(2.37) τ−1 =

∫ ∞
0

dt cos(εt) cos

[
q2

0

π
Q1(t)

]
e−

q20
π
Q2(t)

with

Q1(t) =

∫ ∞
0

dω
J(ω)

ω2
sin(ωt) and Q2(t) =

∫ ∞
0

dω
J(ω)(1− cos(ωt))

ω2
coth(βω/2).

Here, J(ω) is the spectral density of the reservoir, defined by

(2.38) J(ω) = π
2
ω2
∫
S2 |h(ω,Σ)|2dΣ, ω ≥ 0,

the integral being taken over the angular part in R3. The function h is the form factor in the
interaction (2.18).1 Relation (2.36) gives

(2.39) λ0,0 = 0 and λ0,1 = iτ−1.

Hence assumption (A4)(2) holds. The resonances λ±ε,0 are the eigenvalues of the one-dimensional
level shift operators Λ±ε, which are easily calculated to be

(2.40) λ±ε,0 = ±x+ 1
2
iτ−1,

where ±x is the real part. Assumption (A4)(1) thus holds.
Set ϕ+− = ϕ+ ⊗ ϕ− etc. and

X0 = W (fβ)JW (fβ)Ω, X∗0 = W (fβ)∗JW (fβ)∗Ω,

X+ = W (fβ)∗JW (fβ)Ω, X− = JX+ = W (fβ)JW (fβ)∗Ω.

The dynamics of the spin-boson system at arbitrary coupling is then explicitly given as follows.

1The spectral density is related to the Fourier transform of the reservoir correlation function C(t) =

ωR,β(eitHRϕ(h)e−itHRϕ(h)) by J(ω) =
√
π/2 tanh(βω/2)[Ĉ(ω) + Ĉ(−ω)]. Of course, it is assumed here, as

it is in [26], that the integral in (2.37) does not vanish, so that τ <∞ is a finite relaxation time.
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Corollary 2.4 (Dynamics of the spin-boson system at arbitrary coupling strength). Suppose
that ufβ, ∂

j
ufβ ∈ L2(R × S2) for j = 0, . . . , 4. For any q0 ∈ R there is a ∆0 > 0 s.t. if

0 < |∆| < ∆0 then the following holds.
Denote by Π0 = |ΩKMS〉〈ΩKMS| the projection onto the coupled KMS state, (2.29). Let φ, ψ ∈

dom(LR) ∩ dom(N17/2 + 1)(A4 + 1). We have for all t > 0

〈φ, eitLψ〉 = 〈φ,Π0ψ〉+ eit∆2a0〈φ,Π′0ψ〉(2.41)

+eit(ε+∆2aε)〈φ,Π′εψ〉+ eit(−ε+∆2a−ε)〈φ,Π′−εψ〉+R(t),

where R(t) ≺ 1
t

and

a0 = iτ−1 +O(∆), a±ε = ±x+ i
2
τ−1 +O(∆),

Π′0 = (eβε/2 + e−βε/2)−1
(
eβε/2|ϕ++〉〈ϕ++| ⊗ |X0〉〈X0| − |ϕ++〉〈ϕ−−| ⊗ |X0〉〈X∗0 |

−|ϕ−−〉〈ϕ++| ⊗ |X∗0 〉〈X0|+ e−βε/2|ϕ−−〉〈ϕ−−| ⊗ |X∗0 〉〈X∗0 |
)

+O(∆),(2.42)

Π′ε = |ϕ+−〉〈ϕ+−| ⊗ |X+〉〈X+|+O(∆),(2.43)

Π′−ε = |ϕ−+〉〈ϕ−+| ⊗ |X−〉〈X−|+O(∆).(2.44)

Note that the dynamics in Corollary 2.4 is expressed with respect to the original Liouville
operator L (not the unitarily equivalent L).

Proof of Corollary 2.4. We have 〈φ, eitLψ〉 = 〈Uφ, eitLUψ〉. Theorem 1.1 gives the resonance
expansion for 〈Uφ, eitLUψ〉 provided Uφ, Uψ ∈ D s.t. LUφ,LUψ ∈ D, where D is the set of
vectors with finite ‖ · ‖4,8 norm (see after Theorem 2.3).One can easily show the bound

‖Uψ‖2α,ν ≺ ‖ψ‖2α,ν .

We conclude from (2.45) that if ψ ∈ dom(N ν+1/2 + 1)(A2α + 1) for some ν > 1/2 and α > 0,
and if (i∂u)

jfβ ∈ L2(R× S2) for j = 0, . . . , 2α, then ‖Uψ‖2α,ν <∞.
We infer that if ψ ∈ dom(LR) ∩ dom(N17/2 + 1)(A4 + 1), then Uψ ∈ D and LUψ ∈ D. (To

see the latter inclusion, we use (2.35) with D = u and proceed as in (2.45).)
The operators Π′0 and Π′±ε are given by

(2.45) Π′0 = U∗P⊥S,βPRU +O(∆), Π′±ε = U∗P±εU +O(∆),

where P±ε are the eigenprojections of L0 associated to the eigenvalues ±ε, P⊥S,β is defined after
(2.36) and PR = 1S ⊗ |Ω〉〈Ω|. It is easy to calculate Uϕ+− ⊗ Ω = ϕ+− ⊗W (fβ)∗JW (fβ)JΩ,
which shows (2.43). Similarly one obtains (2.44). For (2.42), we first calculate

P⊥S,β = (eβε/2 + e−βε/2)−1
(
eβε/2|ϕ++〉〈ϕ++| − |ϕ++〉〈ϕ−−| − |ϕ−−〉〈ϕ++|+ e−βε/2|ϕ−−〉〈ϕ−−|

)
.

Then we use (2.45) to arrive at (2.42). This completes the proof of Corollary 2.4. �

Being a KMS state, ΩKMS given in (2.29) is separating for M, which means that M′ΩKMS is
dense in H, where M′ is the commutant of M, see [8]. Any (normal) state ω on M is given by
a normalized vector Ψ ∈ H via ω(A) = 〈Ψ, AΨ〉. We introduce the dense set

(2.46) D0 = dom(LR) ∩ dom(N17/2 + 1)(A4 + 1).
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The set of states ω arising from vectors in

(2.47)
{

Ψ ∈ H : ‖Ψ‖ = 1, Ψ = BΩKMS for some B ∈M′, s.t. B∗Ψ ∈ D0

}
is dense (in the norm of states on M). We call it the set of regular states, Sreg. We also
introduce the regular observables,

(2.48) Mreg =
{
A ∈M : AΩKMS ∈ D0

}
.

Let us denote the coupled equilibrium state by

(2.49) ωKMS(A) = 〈ΩKMS, AΩKMS〉.

Corollary 2.5 (Return to equilibrium). For any ω0 ∈ Sreg, A ∈Mreg, t > 0, we have

(2.50)
∣∣ω0(αt(A))− ωKMS(A)

∣∣ 6 CA,ω0

[
e−∆2t/2τ + 1/t

]
.

The constant CA,ω0 depends on the initial state ω0 and the observable A, but not on t,∆.

One readily verifies that all states of the form ωS ⊗ ωR, where ωS is arbitrary and ωR is the
reservoir equilibrium, belong to Sreg. Moreover, all observables on the system alone belong to
Mreg, since ΩKMS ∈ D0.

Proof of Corollary 2.5. Let Ψ = BΩKMS, B ∈ M′, be the vector representing ω0. Since
B commutes with αt(A) and ΩKMS is in the kernel of L, we have αt(A)Ψ = Bαt(A)ΩKMS =
BeitLAΩKMS. Thus,

(2.51) ω0(αt(A)) = 〈Ψ, eitLAe−itLΨ〉 = 〈B∗Ψ, eitLAΩKMS〉.
Now we apply (2.41) and, using that Π0 = |ΩKMS〉〈ΩKMS|, obtain directly (2.50). �

3. Proof of Theorem 1.1

For z ∈ C−, |Rez − e| 6 α we define the operator

(3.1) Az = −PeIRPe
z IPe.

As z → e and ∆ → 0, Ae approaches the level shift operator Λe. More precisely, we have the
following result, in which δ is, recall, given by (1.18).

Lemma 3.1. There is a constant c such that if |∆|, |Rez − e| < cδ, and z ∈ C−, then
1. All eigenvalues of Az are distinct. Call them ae,j = ae,j(z), j = 0, . . . ,me − 1. Each ae,j

satisfies |λe,j − ae,j| < δ/2 for exactly one eigenvalue λe,j of Λe.
2. The eigenvalues ae,j(z) of Az, and the associated Riesz projections Qj(z) are analytic in

z ∈ C−, |Rez − e| < cδ and continuous as Imz → 0−. They satisfy the bounds dk

dzk
ae,j(z),

dk

dzk
Qj(z) ≺ 1 for k = 0, . . . , 3, uniformly for |Rez − e| < cδ and Imz 6 0.

The simplicity of the spectrum implies the spectral representation

(3.2) Az =
me−1∑
j=0

ae,j(z)Qj(z).
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Proof of Lemma 3.1. When necessary, we display the ∆-dependence of Az by Az(∆). (Here,
Ax for x ∈ R is understood as the limit of Az, as z → x, z ∈ C−.) We have Ae(0) = Λe and, by
assumption (A3),

(3.3) ‖Λe − Az(∆)‖ ≺ |∆|+ |z − e|.

Assumption (A4) implies that

(3.4) ‖(Λe − ζ)−1‖ ≺ 1

dist(ζ, spec(Λe))
.

Using the standard Neumann series for resolvents, together with the estimates (3.3) and (3.4),
yields

(3.5) (Az(∆)− ζ)−1 = (Λe − ζ)−1 +O

(
|∆|+ |z − e|

dist(ζ, spec(Λe))2

)
,

provided |∆|, |z − e| < c0 dist(ζ, spec(Λe)), for some constant c0 independent of ∆, z. Let Cj
be the circle centered at λe,j with radius δ/2 and define

(3.6) Qj(∆, z) =
−1

2πi

∮
Cj

(Az(∆)− ζ)−1dζ.

Note that Qj(0, e) is the Riesz eigenprojection of Λe associated to the eigenvalue λe,j. Using
(3.5) and (3.6) we obtain that ‖Qj(∆, z) − Qj(0, e)‖ < 1, provided |∆|, |z − e| < c0δ/2 and
|∆|+ |z − e| < c1δ

2/4, for some c1 independent of ∆, z. This proves point 1. of Lemma 3.1.
Next,

(3.7) Q′j = d
dz
Qj =

1

2πi

∮
Cj

(Az(∆)− ζ)−1A′z(∆)(Az(∆)− ζ)−1dζ ≺ 1.

Since ae,j(z) = TrAzQj(z) we get a′e,j(z) = Tr(A′zQj(z) +AzQ
′
j(z)) ≺ 1. The statements about

the higher derivatives follow in the same manner. This shows point 2 and completes the proof
of Lemma 3.1. �

3.1. Estimates for z in a vicinity of a partially stable eigenvalue e. We introduce the
operators

(3.8) Q̃j = −Qj(e)PeIR
Pe
e−i0+

−RPe
e−i0+

IPeQj(e) + ∆RPe
e−i0+

IPeQj(e)PeIR
Pe
e−i0+

, j > 1,

where Qj(e) is determined by (3.1) and RPe
e−i0+

is the limit of RPe
z = (L̄− z)−1 as z approaches

e through the lower half plane. Note that Qj(e) = Pe,j +O(|∆|), see also (1.10).

Proposition 3.2. Let ΠEe be the orthogonal projection associated to the eigenvalue Ee of L.
We have, for φ, ψ ∈ D,

(3.9) Je(t) = eitEe〈φ,ΠEeψ〉+
me−1∑
j=1

eit(e+∆2ae,j(e))〈φ, (Qj(e) + ∆ Q̃j)ψ〉+Re(t)
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where (recall that w > 0 is the arbitrary parameter in (1.17))

|Re(t)| 6 C
1 + ewt/t

t
,

for a constant C independent of ∆, t, w, and where

(3.10) ae,j(e) = λe,j +O(|∆|), Qj(e) = Pe,j +O(|∆|).

Proof of Proposition 3.2. We apply the Feshbach map with projection Pe (having rank me),

(3.11) F(z) ≡ F(L− z;Pe) = e− z + ∆2Az,

where Az is given in (3.1). Due to Condition (A2), z 7→ Az is analytic for z ∈ C−, |z − e| < α,
and its z-derivatives up to degree 3 stay bounded as Imz → 0−. According to the decomposition
(1.25), we have

(3.12)

∫
Ge

eitz〈φ, d
dz
Rzψ〉dz =

∫
Ge

eitz
[
〈φ, d

dz
F(z)−1ψ〉+ 〈φ, d

dz
B(z)ψ〉+ 〈φ, d

dz
RPe
z ψ〉

]
dz,

where

(3.13) B(z) = −∆F(z)−1PeIR
Pe
z −∆RPe

z IPeF(z)−1 + ∆2RPe
z IPeF(z)−1PeIR

Pe
z .

To examine F(z)−1, we use the spectral representation of the operator Az.

3.1.1. The contribution to (3.12) from d
dz
F(z)−1. In this subsection, we will simply write

aj ≡ ae,j, 0 6 j 6 me − 1,

to ease the notation. Due to (3.11) and Lemma 3.1,

(3.14) F(z)−1 =
me−1∑
j=0

1

e− z + ∆2aj
Qj.

We analyze the first term on the right side of (3.12), using that

(3.15) d
dz
F(z)−1 =

me−1∑
j=0

Tj, where Tj =
1−∆2a′j

(z − e−∆2aj)2
Qj +

1

e− z + ∆2aj
Q′j.

We examine the singularities of Tj in z. By the isospectrality of the Feshbach map, we know
that e−Ee + ∆2AEe has an eigenvalue zero (see also (1.8)). Therefore, e−Ee + ∆2a0(Ee) = 0.
Also, aj(z) = λe,j +O(|∆|+ |z − e|) for j = 1, . . . ,me − 1. Consider first T0. We have

z − e−∆2a0(z) = z − e−∆2a0(Ee) + ∆2(a0(Ee)− a0(z)) = z − Ee + ∆2(a0(Ee)− a0(z))

and so

1−∆2a′0
(z − e−∆2a0)2

=
1

(z − Ee)2

1−∆2a′0(z)

[1−∆2(a0(z)− a0(Ee))/(z − Ee)]2
(3.16)

=
1

(z − Ee)2

1

1−∆2a′0(Ee)
+

h(z)

(z − Ee)2
,
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where

(3.17) h(z) =
1−∆2a′0(z)

[1−∆2(a0(z)− a0(Ee))/(z − Ee)]2
− 1−∆2a′0(Ee)

[1−∆2a′0(Ee)]2
= O(∆2|z − Ee|2).

To arrive at (3.17), we expand h(z) around a point z0 ∈ C− which is very close to Ee,

h(z) = h(z0) + (z − z0)h′(z0) +

∫
[z0,z]

ds

∫
[s,z0]

ds′h′′(s′).

The integrals are over paths (straight lines) in the lower complex plane. Then, sending z0 → Ee,
using that h(Ee) = h′(Ee) = 0 and controlling the double integral with the third derivative of
h, we arrive at (3.17). In this argument, we assume the derivatives up to order three to have a
continuous extension as Imz → 0−.

Thus

T0 =
1

(z − Ee)2

Q0(Ee)

1−∆2a′0(Ee)
+

1

z − Ee
[Q0(z)−Q0(Ee)]/(z − Ee)

1−∆2a′0(Ee)
(3.18)

− 1

z − Ee
Q′0(z)

1−∆2[a0(z)− a0(Ee)]/(z − Ee)
+O(∆2).

An expansion of the sum of the second and third term on the right side of (3.18) shows that
this term is O(1) uniformly in z ∈ Ge, giving the bound

(3.19) T0 =
1

(z − Ee)2

Q0(Ee)

1−∆2a′0(Ee)
+O(1 + ∆2).

Therefore,

(3.20)

∫
Ge

eitz〈φ, T0ψ〉 =
〈φ,Q0(Ee)ψ〉
1−∆2a′0(Ee)

∫
Ge

eitz

(z − Ee)2
dz +O(1).

The remaining integral on the right side is estimated using the standard Cauchy formula from
complex analysis. Namely, we complete Ge into a rectangular closed path, adding the vertical
pieces C± = {e±α+ iy : y ∈ [−w,R]} and the horizontal roof {x+ iR : e−α 6 x 6 e+α}.
Then we obtain from the Cauchy integral formula of basic complex analysis, upon taking
R→∞, that

(3.21)

∫
Ge

eitz

(z − Ee)2
dz = 2πi(eitz)′|z=Ee +O(ewt/t) = it 2πi eitEe +O(ewt/t).

The remainder term comes from the integrals along the two vertical pieces of the path, which
are bounded above by

∫∞
−w e−ytdy. Note that w > 0 is arbitrary (see (1.16)) and we will take

w → 0 which will make the remainder in (3.21) to be O(1/t). Combining (3.20) and (3.21)
yields

(3.22)
1

it

1

2πi

∫
Ge

eitz〈φ, T0ψ〉dz = eitEe
〈φ,Q0(Ee)ψ〉
1−∆2a′0(Ee)

+O(1/t+ ewt/t2).
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Next, we analyze Tj in (3.15), for j > 1. Recall that aj(e)|∆=0 = λe,j are the eigenvalues
with strictly positive imaginary part of the level shift operator Λe. The integrands behave in a
different way now, since Imaj(e) > 0 (while before, a0(Ee) = 0). The following bound is useful,

|z − e−∆2aj(z)| =
∣∣z − e−∆2λe,j −∆2(aj(e)− λe,j)−∆2(aj(z)− aj(e))

∣∣
> |z − e−∆2λe,j| − c1∆2(|∆|+ |z − e|)
> 1

2
|z − e−∆2λe,j|,(3.23)

provided that |∆|, |z − e| 6 c2Imλe,j, where c1 and c2 = 1/(2c1) are independent of ∆ and z.
To arrive at the last inequality, (3.23), we proceed as follows: the inequality is equivalent to
2c1∆2(|∆|+ |z − e|) 6 |z − e−∆2λe,j|. Now |z − e−∆2λe,j| > |Imz −∆2Imλe,j| > ∆2Imλe,j,
since Imz < 0 and Imλe,j > 0.

We have

Tj =
Qj(e)

(z − e−∆2aj(e))2
−

∆2a′j(z)Qj(z)

(z − e−∆2aj(z))2
+Rj + Sj,(3.24)

where

Rj =
1

z − e−∆2aj(z)

[
z − e

z − e−∆2aj(z)

Qj(z)−Qj(e)

z − e
−Q′j(z)

]
=

1

z − e−∆2aj(z)

[
Qj(z)−Qj(e)

z − e
−Q′j(z) +

∆2aj(z)

z − e−∆2aj(z)

Qj(z)−Qj(e)

z − e

]
= O

(
|z − e|

|z − e−∆2λe,j|
+

∆2

|z − e−∆2λe,j|2

)
(3.25)

and
(3.26)

Sj =
−2∆2(z − e)(aj(e)− aj(z)) + ∆4[aj(e)

2 − aj(z)2]

[z − e−∆2aj(z)]2[z − e−∆2aj(e)]2
Qj(0) = O

(
∆2|z − e|2 + ∆4|z − e|
|z − e−∆2λe,j|4

)
.

To arrive at the estimates (3.25) and (3.26) we have used (3.23). Similarly, the second term on
the right side of (3.24) is O(∆2/|z − e−∆2λe,j|2) and so we obtain

(3.27) Tj =
Qj(e)

(z − e−∆2aj(e))2
+ T̃j,

with

(3.28) ‖T̃j‖ ≺
|z − e|

|z − e−∆2λe,j|
+

∆2

|z − e−∆2λe,j|2
+

∆2|z − e|2 + ∆4|z − e|
|z − e−∆2λe,j|4

.

Note that, with λe,j = ξj + iηj and w, ηj > 0, we have

|z − e|
|z − e−∆2λe,j|

6 1 +
∆2|λe,j|

|z − e−∆2λe,j|
6 1 +

|λe,j|
ηj
≺ 1,

so

(3.29)

∫
Ge

|z − e|
|z − e−∆2λe,j|

dx ≺ 1.
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Also,

(3.30)

∫
Ge

∆2

|z − e−∆2λe,j|2
dx 6 2

∫ α+∆2|ξj |

0

∆2

x2 + ∆4η2
j

dx 6 2

∫ ∞
0

dy

y2 + η2
j

≺ 1.

Very similarly, one sees that

(3.31)

∫
Ge

∆2|z − e|2 + ∆4|z − e|
|z − e−∆2λe,j|4

dx ≺ 1

and it follows that

(3.32)

∫
Ge

eitzT̃j dz ≺ 1.

Next, using Cauchy’s integral formula as above ((3.19)-(3.21)), we obtain that

(3.33)

∫
Ge

eitz Qj(e)

(z − e−∆2aj(e))2
dz = it 2πi eit(e+∆2aj(e))Qj(e) +O(ewt/t).

Combining (3.33) with (3.27) and (3.32), we see that for all j ≥ 1,

(3.34)
1

it

1

2πi

∫
Ge

eitz〈φ, Tjψ〉dz = eit(e+∆2aj(e))〈φ,Qj(e)ψ〉+O(1/t+ ewt/t2).

At this point, it is instructive to explain the coefficient (1 − ∆2a′0(Ee))
−1 in front of the

non-decaying term in (3.22). Let ΠEe be the projection onto the embedded eigenvalue Ee of L.
We have (in the strong sense) ΠEe = limε→0+(iε)(L− Ee + iε)−1, so by (1.25),

(3.35) ΠEe = lim
ε→0+

(iε)
{
F(L− Ee + iε;Pe)

−1 + B(Ee − iε) +RPe
Ee−iε

}
.

The Pe-block of the decomposition is, by (3.14),
(3.36)

PeΠEePe = lim
ε→0+

(iε)F(L− Ee + iε;Pe)
−1 = lim

ε→0+

me−1∑
j=0

iε

e− Ee + iε+ ∆2aj(Ee − iε)
Qj(Ee − iε).

For j > 1, we have Imaj(Ee) > 0 and the corresponding term in the sum vanishes in the limit
ε→ 0. Hence

(3.37) PeΠEePe = lim
ε→0+

(iε)
Q0(Ee − iε)

e− Ee + iε+ ∆2a0(Ee − iε)
=

Q0(Ee)

1−∆2a′0(Ee)
.

We have used the relation e−Ee+∆2a0(Ee) = 0 (see after (3.15)). Therefore, the non-decaying,
oscillating term on the right side in (3.22) is

(3.38)
eitEe

1−∆2a′0(Ee)
〈φ,Q0(Ee)ψ〉 = eitEe〈φ, PeΠEePeψ〉.
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Finally, we combine (3.22), (3.34) and (3.38) to arrive at

1

it

1

2πi

∫
Ge

eitz〈φ, d
dz
F(z)−1ψ〉dz = eitEe〈φ, PeΠEePeψ〉+

me−1∑
j=1

eit(e+∆2aj(e))〈φ,Qj(e)ψ〉

+O(1/t+ ewt/t2).(3.39)

On the right side appears the Pe-block PeΠEePe of the projection ΠEe . The contributions of
the terms in (3.12) with B(z) and RPe

z will add the remaining blocks to finally give the full
expression 〈φ,ΠEeψ〉.

3.1.2. The contribution to (3.12) from d
dz
B(z). From (3.13) and (3.14), we have

(3.40) d
dz
〈φ,B(z)ψ〉 = ∆

me−1∑
j=0

1−∆2a′j
(z − e−∆2aj)2

qj +
1

e− z + ∆2aj
q′j,

where

(3.41) qj(z) = −〈φ, [QjPeIR
Pe
z +RPe

z IPeQj −∆RPe
z IPeQjPeIR

Pe
z ]ψ〉.

The summand in (3.40) is of the same form as Tj in (3.15), with Qj replaced by qj. We may
thus repeat the analysis leading to (3.22) and (3.34), giving

1

it

1

2πi

∫
Ge

eitz d
dz
〈φ,B(z)ψ〉dz = eitEe

∆ q0(Ee)

1−∆2a′0(Ee)
+ ∆

me−1∑
j=1

eit(e+∆2aj(e))qj(e)(3.42)

+C(φ, ψ) · O
(
|∆|/t+ |∆|ewt/t2

)
.

Recalling (3.35), (3.37) and using that RPe
Ee−iε stays bounded as ε→ 0+, we get

〈φ,ΠEeψ〉 = lim
ε→0+

(iε)〈φ,
{
F(L− Ee + iε;Pe)

−1 + B(Ee − iε)
}
ψ〉

= 〈φ, PeΠEePeψ〉+
∆ q0(Ee)

1−∆2a′0(Ee)
.(3.43)

3.1.3. The contribution to (3.12) from d
dz
RPe
z . By assumption (A2), (1.5), we have 〈φ, d

dz
RPe
z ψ〉 ≺

1 and so we get

(3.44)
1

it

1

2πi

∫
Ge

eitz〈φ, d
dz
RPe
z ψ〉dz ≺

C(φ, ψ)

t
.

Combining (3.12), (3.39), (3.42), (3.43) and (3.44) gives (3.9). This concludes the proof of
Proposition 3.2. �
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3.2. Estimates for z in a vicinity of an unstable eigenvalue e. The analysis is the
same, actually somewhat easier, than the one presented in Section 3.1. Indeed, for an unstable
eigenvalue e, all the λe,j have strictly positive imaginary part (see Assumption (A4), (1)).
Therefore, we can proceed as in Section 3.1, and in (3.15), all the terms Tj (even for j = 0) are
now treated as above, after (3.22). We immediately obtain the following result.

Proposition 3.3. We have, for φ, ψ ∈ D,

(3.45) Je(t) =
me−1∑
j=0

eit(e+∆2ae,j(e))〈φ, (Qj(e) + ∆ Q̃j)ψ〉+Re(t)

where (recall that w > 0 is the arbitrary parameter in (1.17))

|Re(t)| 6 C
1 + ewt/t

t
,

for a constant C independent of ∆, t, w and

(3.46) ae,j(e) = λe,j +O(|∆|), Qj(e) = Pe,j +O(|∆|).

Also Q̃j is defined in (3.8).

3.3. Estimates for z away from the eigenvalues e. On the unbounded set G∞ we use the
relation (1.38). This will help to ensure that the integrand is decaying sufficiently quickly at

infinity. Setting φ̃ = (L− i)φ and ψ̃ = (L+ i)ψ,∫
G∞

eitz〈φ, d
dz
Rzψ〉dz =

∫
G∞

eitz

{
−2〈φ̃, Rzψ̃〉

(z + i)3
+
〈φ̃, d

dz
Rzψ̃〉

(z + i)2

}
dz(3.47)

+

∫
G∞

eitz

{
〈φ, ψ〉

(z + i)2
+

2〈φ, ψ̃〉
(z + i)3

}
dz.(3.48)

The integral (3.48) is ≺ ‖φ‖ ‖Lψ‖. The terms on the right side of (3.47) involving Rz and d
dz
Rz

are estimated using Assumption (A2)(2). Thus

(3.49)
1

it

1

2πi

∫
G∞

eitz〈φ, d
dz
Rzψ〉dz ≺

C(φ̃, ψ̃)

t
.

We have proven the following result.

Proposition 3.4. We have

(3.50) J∞(t) ≺ C((L− i)φ, (L+ i)ψ)

t
.

3.4. Proof of Theorem 1.1. We combine the estimates in Propositions 3.2, 3.3 and 3.4 to
obtain the expansion (1.12) with the bound

|R(t)| ≺ 1 + ewt/t

t

for the remainder. Since w > 0 is arbitrary, we have |R(t)| ≺ 1/t. �
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Appendix A

A.1. From the global to the local limiting absorption principles. In this appendix,
we derive the limiting absorption principle with projection Pe, e ∈ spec(LS), from that with
projection PR given in Theorem 2.1, (2.17). Let

RPe
z = (P⊥e LP

⊥
e − z)−1 �RanP⊥e

and recall the definition of the energy gap g, (1.19).

Theorem A.1. Assume the conditions of Theorem 2.1. Then, for ϕ, ψ ∈ D,

(A.1) sup
z∈C− : |z−e|6g/2

| dk
dzk
〈φ,RPe

z ψ〉| = C(φ, ψ) <∞, k = 0, . . . , 3.

Furthermore, (1.6) holds. Moreover, suppose that for φ, ψ ∈ D, supz∈C− |
dk

d∆k 〈φ,RPR
z ψ〉| 6

C(φ, ψ), k = 0, 1. Then, for all e,

(A.2) sup
z∈C−
| dk
d∆k 〈φ,RPe

z ψ〉| 6 C(φ, ψ), k = 0, 1.

(Note: the constants C(φ, ψ) may differ from the one in (2.17).)
Proof. We first show (A.1) by expressing RPe

z in terms of RPR
z and then using the bound

(2.17). To do so, consider the operator

(A.3) K = P⊥e LP
⊥
e + iPe,

where i is the imaginary unit. We have (K − z)−1 = (i− z)−1Pe ⊕RPe
z P⊥e and therefore

(A.4) RPe
z = (K − z)−1P⊥e = P⊥e (K − z)−1P⊥e .

Next, denote

(A.5) Fz ≡ F(K − z;PR).

Then by (B.2) (with Q = PR ≡ 1S ⊗ |ΩR〉〈ΩS|)

(A.6) (K − z)−1 =

(
1 0

−∆RPR
z P⊥R IP̄e 1

)(
F−1
z 0
0 RPR

z

)(
1 −∆P̄eIP

⊥
RR

PR
z

0 1

)
,

where we have set

(A.7) P̄e = 1[LS 6= e]PR = P⊥e PR.

Due to (A.7) and Theorem 2.1, ∀ψ ∈ D the maps z 7→ P̄eIP
⊥
RR

PR
z ψ and z 7→ 〈ψ|RPR

z P⊥R IP̄e are
three times differentiable with bounded derivatives for z ∈ C−.

Next, since P⊥e P
⊥
R = P⊥R and P⊥R Pe = 0, we have (P⊥RKP

⊥
R − z)−1 �RanP⊥R

= RPR
z and so

(A.8) Fz = (i− z)Pe ⊕ P̄e
(
LS − z + ∆ I −∆2 IRPR

z I
)
P̄e.

Since PRIPR ≺ 1 and PRIR
PR
z IPR ≺ 1, we have

(A.9) F−1
z = (i− z)−1Pe ⊕ (LS − z)−1P̄e

(
1 +O(∆)

)
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provided z ∈ C− and |Rez − e| 6 1
2
g. The remainder term in (A.9) is uniform in these z and

thus, for ∆ small enough, F−1
z ≺ 1. We obtain d

dz
F−1
z = −F−1

z

[
d
dz
Fz
]
F−1
z ≺ 1 and, taking further

z-derivatives,

(A.10) dk

dzk
Fz ≺ 1, k = 0, . . . , 3.

Combining (A.4), (A.6), (A.10) and the regularity (first three z-derivatives bounded for z ∈ C−)
of the matrices to the left and right in (A.6) discussed above yields the result (A.1).

To prove (1.6), the limiting absorption principle away from the eigenvalues of L0, we apply
the Feshbach map with projection PR = 1S ⊗ |ΩR〉〈ΩR|,
(A.11) F(z) ≡ F(L− z, PR) = PR(LS + ∆I − z −∆2IRPR

z I)PR.

According to the decomposition (1.25),

(A.12) 〈φ, d
dz
Rzψ〉 = 〈φ, d

dz
F(z)−1ψ〉+ 〈φ, d

dz
B(z)ψ〉+ 〈φ, d

dz
RPR
z ψ〉,

where

(A.13) B(z) = −∆F(z)−1PRIR
PR
z −∆RPR

z IPRF(z)−1 + ∆2RPR
z IPRF(z)−1PRIR

PR
z .

For any z ∈ S∞, we have ‖(LS − z)−1‖ 6 1/α and therefore

(A.14) F(z)−1 = (LS − z)−1
[
1 + ∆PR(I −∆IRPR

z I)PR(LS − z)−1
]−1 ≺ 1.

We then obtain at once from (A.14), (A.13) and (2.17) that

(A.15) d
dz
F(z)−1 ≺ 1, 〈φ, d

dz
B(z)ψ〉 6 |∆|C(φ, ψ), 〈φ, d

dz
RPR
z ψ〉 ≺ C(φ, ψ).

The bounds (A.15) together with (A.12) imply (1.6).
Finally, we prove (A.2). We use again relations (A.4) and (A.6) to express RPe

z in terms of
RPR
z . Taking the ∆-derivative in (A.6) results in taking ∆-derivatives of RPR

z and F−1
z . The

first one is controlled by the assumption in Theorem A.1, the second one is controlled by (A.8)
(as for the z-derivatives above). �

A.2. Proof of Theorem 2.3. For η > 0, we introduce the regularized Liouville operator (see
[24])

(A.16) L(η) = L0 + iηN + ∆I(η), with I(η) = (2π)−1/2

∫
R
f̂(s)τηs(I)ds,

and where τt(X) = e−itAXeitA with A = dΓ(i∂u). Here, f is a Schwartz function satisfying
f (k)(0) = 1, k = 0, 1, . . . L(η) is a closed operator on dom(L0) ∩ dom(N).

The strategy of the proof is to derive estimates (2.31), (2.32) for L replaced by the regularized
L(η), namely,

sup
z∈C−
| dµ−1

dzµ−1 〈φ,RPR
z (η)ψ〉| ≺ ‖φ‖µ,2µ ‖ψ‖µ,2µ(A.17)

sup
z∈C−
| d
d∆
〈φ,RPR

z (η)ψ〉| ≺ ‖φ‖3,1‖ψ‖3,1.(A.18)

Here, ≺ means (1.11) with a constant not depending on η > 0. We have dµ−1

dzµ−1 〈φ,RPR
z (η)ψ〉 →

dµ−1

dzµ−1 〈φ,RPR
z ψ〉 and d

d∆
〈φ,RPR

z (η)ψ〉 → d
d∆
〈φ,RPR

z ψ〉 as η → 0+ (this follows from the fact that
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Rz(η)→ Rz(0) strongly as η → 0+, see [24], Lemma 4.3). Therefore, (2.31), (2.32) follow from
(A.17), (A.18).

Throughout this proof, we will not indicate the dependence of L and I on η and ∆. We will
also simply write P instead of PR. In particular, RP

z = (L̄(η)−z)−1, where X̄ = P⊥RXP
⊥
R �RanP⊥R

.

Let Xη be an η-dependent bounded operator in B(P̄H) which is sufficiently regular in η > 0.
We define adA(Xη) = [A,Xη] and ∂Xη = d

dη
Xη − adA(Xη). Note that ∂L0 = 0 (recall that we

write L0 ≡ L0(η)). Since ∂ is a derivation we have, according to Leibniz’ rule,

(A.19) ∂RP
z = −∆RP

z (∂I)RP
z ,

and for µ > 1,

(A.20) ∂[RP
z ]µ = −∆

µ∑
j=1

[RP
z ]j(∂I)[RP

z ]µ−j+1.

Equations (A.19) and (A.20) hold as equalities of bounded operators (note that ∂I is relatively
N -bounded and ranRP

z ⊂ dom(N), see [24], Lemma 4.3). It follows that

d
dη
〈φ, [RP

z ]µψ〉 = 〈φ, adA[RP
z ]µψ〉+ 〈φ, ∂[RP

z ]µψ〉(A.21)

= 〈Aφ, [RP
z ]µψ〉 − 〈[RP

z ]∗µφ,Aψ〉+ 〈φ, ∂[RP
z ]µψ〉.(A.22)

We are going to establish bounds on the right hand side.

Proposition A.2 ([24]). (1) Suppose the form factor fβ (see (2.26)) satisfies ∂jufβ ∈ L2(R ×
S2, du× dΣ), for j = 0, . . . , `+ 1. Then, for ` > 1,

(A.23) ‖N̄−1/2(∂I)N̄−`/2‖ ≺ η`.

(2) We have

‖N̄1/2RP
z N̄

1/2‖ ≺ η−1,(A.24)

‖N̄1/2RP
z ψ‖ ≺ η−1/2 ‖N̄−1/2(1 + A2)1/2ψ‖,(A.25)

‖N̄ `/2RP
z ψ‖ ≺ η−1‖N̄ (`−2)/2RP

z ψ‖+ η−1‖N̄ (`−2)/2ψ‖, ` > 2.(A.26)

In the arguments below in this proof, the biggest value of ` in (A.23) we will use is ` = 2µ.
Hence the regularity condition on fβ in the Theorem 2.3. Combining (A.24) with (A.25) we
get for j = 1, 2, . . .

(A.27) ‖N̄1/2[RP
z ]jψ‖ ≺ η−j+1/2‖N̄−1/2(1 + A2)1/2ψ‖.

Moreover, from (A.26) we obtain for j, ` = 1, 2, . . .

(A.28) ‖N̄ `/2[RP
z ]jψ‖ ≺ η−b`/2c

j∑
k=1

‖N̄1/2[RP
z ]kψ‖+

b`/2c∑
k=1

η−k‖N̄ (`−2k)/2ψ‖.

Since N̄ > 1 and because of (A.27) we obtain for j, ` = 0, 1, . . .

‖N̄ `/2[RP
z ]jψ‖ ≺ η−b`/2c−j+1/2‖N̄−1/2(1 + A2)1/2ψ‖+ η−b`/2c‖N̄ `/2ψ‖.(A.29)
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From (A.20) and (A.23) follows that

(A.30) |〈φ, ∂[RP
z ]µψ〉| ≺ η`

µ∑
j=1

‖N̄1/2[RP
z ]∗jφ‖‖N `/2[RP

z ]µ−j+1ψ‖.

Since (A.27) holds with [RP
z ] replaced by [RP

z ]∗, we may apply (A.27) and (A.29) to (A.30) and
obtain

|〈φ, ∂[RP
z ]µψ〉| ≺ η`

µ∑
j=1

η−j+1/2‖N̄−1/2(1 + A2)1/2φ‖(A.31)

×
(
η−b`/2c−µ+j−1/2‖N̄−1/2(1 + A2)1/2ψ‖+ η−b`/2c‖N̄ `/2ψ‖

)
≺ ηd`/2e−µ‖φ‖1,` ‖ψ‖1,`.

By (A.22) we have

(A.32) d
dη
〈φ, [RP

z ]µψ〉 = 〈Aφ, [RP
z ]µψ〉 − 〈[RP

z ]∗µφ,Aψ〉+ 〈φ, ∂[RP
z ]µψ〉

and hence

| d
dη
〈φ, [RP

z ]µψ〉| ≺ ‖N̄−1/2Aφ‖ ‖N̄1/2[RP
z ]µψ‖+ ‖N̄1/2[RP

z ]∗µφ‖ ‖N̄−1/2Aψ‖(A.33)

+‖φ‖1,2µ ‖ψ‖1,2µ.

By (A.27) we easily get

(A.34) | d
dη
〈φ, [RP

z ]µψ〉| ≺ η−µ+1/2‖φ‖1,2µ ‖ψ‖1,2µ.

Since 〈φ, [RP
z ]µψ〉 = 〈φ, [RP

z (η = 1)]µψ〉−
∫ 1

η
d
dη′
〈φ, [RP

z (η′)]µψ〉dη′, we conclude from (A.34) and

from (A.27) for η = 1 that

(A.35) |〈φ, [RP
z ]µψ〉| ≺ (1 + η−µ+3/2)‖φ‖1,2µ ‖ψ‖1,2µ.

Let us now consider again (A.32), but instead of using (A.27) for an upper bound apply (A.35)
to 〈Aφ, [RP

z ]µψ〉 and 〈φ, [RP
z ]µAψ〉. In this way we get for (A.32) the upper bound

(A.36) | d
dη
〈φ, [RP

z ]µψ〉| ≺ (1 + η−µ+3/2)‖φ‖2,2µ ‖ψ‖2,2µ.

Now we integrate (as before (A.35)) and obtain

(A.37) |〈φ, [RP
z ]µψ〉| ≺ (1 + η−µ+5/2)‖φ‖2,2µ ‖ψ‖2,2µ.

The right side of (A.37) has a power of η reduced by one, as compared to the right side of
(A.35), but φ and ψ contribute in a stronger norm. We continue this procedure to conclude
the proof of (A.17) as well as the bound

(A.38) sup
z∈C−
| d
dη

dµ−1

dzµ−1 〈φ,RPR
z ψ〉| ≺ ‖φ‖µ+1,2µ ‖ψ‖µ+1,2µ.

We now prove the bound (A.18). Note that

(A.39) d
d∆
〈φ,RP

z ψ〉 = −〈φ, [RP
z IR

P
z ]ψ〉.
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We have (see (A.19))

(A.40) ∂[RP
z IR

P
z ] = −∆RP

z (∂I)RP
z IR

P
z +RP

z (∂I)RP
z −∆RP

z IR
P
z (∂I)RP

z .

Next, we use (A.23),(A.24) and ‖I‖ 6 1 to get

|〈φ, ∂[RP
z IR

P
z ]ψ〉| ≺ η`−1‖N̄ `/2[RP

z ]∗φ‖ ‖RP
z ψ‖+ η`‖N̄ `/2[RP

z ]∗φ‖ ‖N̄1/2RP
z ψ‖(A.41)

+η`−1‖[RP
z ]∗φ‖ ‖N̄ `/2RP

z ψ‖.(A.42)

By (A.29) we have

(A.43) |〈φ, ∂[RP
z IR

P
z ]ψ〉| ≺ η`−1η−b`/2c‖φ‖1,`‖ψ‖1,`.

Recall that

(A.44) d
dη
〈φ, [RP

z IR
P
z ]ψ〉 = 〈Aφ, [RP

z IR
P
z ]ψ〉 − 〈[RP

z IR
P
z ]∗φ,Aψ〉+ 〈φ, ∂[RP

z IR
P
z ]ψ〉.

Due to (A.25), the first and the second expression on the right side are bounded above by a
constant times η−1‖φ‖2,0‖ψ‖2,0. Thus we get from (A.43), (A.44)

(A.45) | d
dη
〈φ, [RP

z IR
P
z ]ψ〉| ≺ η−1‖φ‖2,1‖ψ‖2,1.

We integrate from η to 1 to obtain the estimate

(A.46) |〈φ, [RP
z IR

P
z ]ψ〉| ≺ | ln(η)|‖φ‖2,1‖ψ‖2,1.

Next, we use (A.46) in (A.44) to get the better upper bound

(A.47) | d
dη
〈φ, [RP

z IR
P
z ]ψ〉| ≺ | ln(η)|‖φ‖3,1‖ψ‖3,1.

Integration from η to 1 yields |〈φ, [RP
z IR

P
z ]ψ〉| ≺ ‖φ‖3,1‖ψ‖3,1, which, combined with (A.39),

implies (A.18). This completes the proof of Theorem 2.3. �

Appendix B

Let Q be an orthogonal projection and let Q⊥ = 1−Q. Let H be a densely defined, closed
operator satisfying RanQ ⊂ dom(H). Let H̄Q be the operator on RanQ⊥, given by Q⊥HQ⊥.
For z 6∈ σ(H̄Q) we set RQ

z = (H̄Q−z)−1 and we assume that ‖RQ
z HQ‖ <∞ and ‖QHRQ

z ‖ <∞.
Then we define

(B.1) Fz ≡ F(H − z;Q) = Q
(
H − z −HQ⊥RQ

z Q
⊥H
)
Q.

Theorem B.1 (Feshbach-theorem, [5]). Let z 6∈ σ(H̄Q).

(1) We have

z ∈ σ(H)⇔ 0 ∈ σ(Fz)

z ∈ σp(H)⇔ {0} 6= kerFz

If z 6∈ σ(H) we have for Rz = (H − z)−1 that

QRzQ = F−1
z , Q⊥RzQ = −RQ

z Q
⊥HQF−1

z , QRzQ
⊥ = −F−1

z QH Q⊥RQ
z ,

Q⊥RzQ
⊥ = RQ

z +RQ
z Q

⊥H QF−1
z QH Q⊥RQ

z .
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(2) If Q has finite rank, we have the additional characterization

z ∈ σ(H)⇔ z ∈ σp(H)⇔ det(Fz) = 0.

(3) Let HE be the eigenspace of H for E ∈ σp(H). The restricted projection Q|HE is a
bijection from HE to kerFE. Its inverse is

φ 7→ φ⊕−RQ
z Q
⊥HQφ.

The previous theorem is proven in [5]. Point (1) of the theorem gives the block representation

Rz =

(
F−1
z −F−1

z QHQ⊥RQ
z

−RQ
z Q
⊥HQF−1

z RQ
z +RQ

z Q
⊥HQF−1

z QHQ⊥RQ
z

)
(B.2)

=

(
1 0

−RQ
z Q
⊥HQ 1

)(
F−1
z 0
0 RQ

z

)(
1 −QHQ⊥RQ

z

0 1

)
.

Note that the three matrices on the last line are both invertible. Thus (recall (B.1))

H − z =

(
1 QHQ⊥RQ

z

0 1

)(
F(H − z;Q) 0

0 Q⊥(H − z)Q⊥

)(
1 0

RQ
z Q
⊥HQ 1

)
.

Remark. If Q′ is another projection, satisfying Q′Q = Q′ = QQ′, then

(B.3) F
(
F(H − z;Q);Q′

)
= F(H − z;Q′).

Indeed, from point (1) in the theorem, we know that

[F(F(H − z;Q);Q′)]−1 = Q′[F(H − z;Q)]−1Q′ = Q′QRzQQ
′ = Q′RzQ

′ = [F(H − z;Q′)]−1,

which implies (B.3).

Proposition B.2 (Weak Feshbach Theorem). Assume that H is self-adjoint, E ∈ R \σp(H̄Q),
and that limε→0+ F(H−E+iε;Q) ≡ F(H−E;Q) exists (as a weak limit). If E is an eigenvalue
of H with eigenvector ψ, then 0 is an eigenvalue of F(H − E;Q) with eigenvector Qψ.

Proof. Applying the projections Q and Q⊥ to the eigenvalue equation, we get for any ε > 0

Q(H − E + iε)Qψ +QHQ⊥ψ = iεQψ(B.4)

Q⊥HQψ +Q⊥(H − E + iε)Q⊥ψ = iεQ⊥ψ.

Applying the resolvent RQ
E−iε to the second equality in (B.4) gives

(B.5) Q⊥ψ = −RQ
E−iεQ

⊥H Qψ + iεRQ
E−iεQ

⊥ψ.

Using (B.5) in the first equation of (B.4), then letting ε → 0+ and taking into account that

iεRQ
E−iεQ

⊥ψ → 1[H̄Q = E]Q⊥ψ = 0, gives F(H − E;Q)ψ = 0. (Note that Qψ 6= 0 for
otherwise, one easily obtains from the second equality in (B.4) that Q⊥ψ = 0 as well.) �
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