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We study the stationary states of a quantum mechanical system describing an
atom coupled to black-body radiation at positive temperature. The stationary
states of the non-interacting system are given by product states, where the
particle is in a bound state corresponding to an eigenvalue of the particle
Hamiltonian, and the field is in its equilibrium state. We show that if Fermi’s
Golden Rule predicts that a stationary state disintegrates after coupling to the
radiation field then it is unstable, provided the coupling constant is sufficiently
small (depending on the temperature). The result is proven by analyzing the
spectrum of the thermal Hamiltonian (Liouvillian) of the system within the
framework of Wg-dynamical systems. A key element of our spectral analysis is
the positive commutator method.

KEY WORDS: Open quantum system; black-body radiation; CCR algebra;
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1. INTRODUCTION

In this paper, we study a quantum mechanical model of an atom interact-
ing with black-body radiation. The atom is described by an electron
moving in a potential, e.g., the Coulomb potential of a static nucleus.

Our goal is to show that when the atom is coupled to the quantized
radiation field in the state of black-body radiation at sufficiently high
temperature, it is ionized. We describe this ionization process by showing
that stationary states of the system become unstable when the atom is



coupled to the radiation field. Each bound state of the atom leads to a sta-
tionary state of the uncoupled system, where the field is in an equilibrium
state. We consider a class of small interactions localized in space which
couple finitely many bound states of the atom to the field. We show that
the stationary states for the coupled system correspond to those eigen-
values of the atomic Hamiltonian which are not coupled to the field.
In other words, all stationary states arising from atomic bound states
which are coupled to the field by the interaction are unstable, provided the
coupling constant is small enough.

This instability is explained by the following mechanism. If the elec-
tron is in a bound state with energy E < 0, it will be hit, after some time, by
a quantum (photon) of energy w \ −E, and hence will make a transition
to a scattering state of energy E+w. In other words, the atom is ionized.

The average time, tE, it takes for an atom in a bound state of energy E
to be ionized is given, to second order in the perturbation, by the Fermi
Golden Rule. Heuristically, for an inverse temperature b of the field, it
satisfies

tE 3 eb |E| |p(E)|−2, (1.1)

where |p(E)|2 is the probability for the electron to make a transition from
the bound state to a scattering state by absorbing a photon of energy > E.
The factor eb |E| in (1.1) can be explained by Planck’s law, which says that
the probability density for a photon to have energy w is 1

ebw−1
. At zero

temperature, b=., one finds that tE=., and thermal ionization does not
occur. For a given strength of the interaction, as measured by the size of a
coupling constant l ¥ R, we are able to show that thermal ionization takes
place, provided 0 < |l| < ke−2b |E0|, where E0 < 0 is the minimal energy of the
electron in a bound state coupled to the radiation field, and k is some con-
stant. This restriction is of technical nature; physically, thermal ionization
is expected to be observed for arbitrarily small temperatures, provided the
coupling constant is small enough independently of b.

Next, we describe the system and our main results in some more detail.
The atomic Hamiltonian is a Schrödinger operator Hp=−D+v on the
Hilbert space Hp=L2(R3, d3x), where v belongs to a certain class of
potentials including the Coulomb potential regularized at the origin. The
operator Hp generates the Heisenberg dynamics

apt (A)=e itHpAe−itHp

on the von Neumann algebra Ap=B(Hp) of bounded operators onHp.
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The field is conveniently described in terms of a Cg-algebra Af, which
can be viewed as a time-averaged Weyl algebra. The dynamics is given by a
f-automorphism group of Af describing free massless bosons.

The combinded system is described in terms of the algebra

A=Ap éAf,

and the uncoupled dynamics is given by the automorphisms

at, 0=a
p
t é aft .

To define the coupled dynamics, we specify a (regularized) interaction
term lV (E), whose form is motivated by standard models of atoms interact-
ing with the radiation field. The regularization is introduced to guarantee
that V (E) ¥A, for all E ] 0. The interacting dynamics, a (E)t, l, is then defined as
the f-automorphism group of A obtained by the Schwinger–Dyson series.

At zero temperature, the dynamics of the model is generated by the
formal Hamiltonian

H=Hp+Hf+lV,

where Hf=dC(|k|) is the free-field Hamiltonian, i.e., the second quantized
multiplication operator |k|, acting on bosonic Fock space F(L2(R3, d3k)),
and the interaction term V is given by

V=C
a

Ga é (a(ga)+ag(ga)).

The sum is over a finite set, Ga are bounded selfadjoint operators on
B(Hp), and the form factors ga are in L2(R3, d3k).

We introduce a reference state

w ref=wp é wf
b

on A, where wp is given by a (strictly positive) density matrix, and wf
b is the

(b, aft )-KMS state of Af, i.e., the state of black-body radiation at inverse
temperature b. We are interested in the time evolution of states on A which
are close to (normal w.r.t.) w ref, i.e., which are represented by a density
matrix on the GNS Hilbert space H of (A, w ref). The GNS representation
provides us with a representation map pb: AQB(H) and a vector
W ref ¥H s.t. w ref(A)=OW ref, pb(A) W refP. There is a selfadjoint operator
L (E)
l onH generating the coupled time evolution in the representation pb,

pb(a
(E)
t, l(A))=e itL

(E)
l pb(A) e−itL

(E)
l ,
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for all A ¥A and t ¥ R. We will show that

s− lim
EQ 0

e itL
(E)
l =e itLl

exists, for all t, and defines a f-automorphism group

st, l(A)=e itLlAe−itLl

of the von Neumann algebra

Mb=pb(A)œ …B(H).

The pair (Mb, st, l) is called a Wg-dynamical system. Our results concern
the structure of the set of normal (s-weakly continuous) time-translation
(st, l-) invariant states onMb.

The general theory of von Neumann algebras shows that there is a one-
to-one correspondence between normal st, l-invariant states on Mb and
normalized vectors in the set

P 5 ker Ll, (1.2)

where P is a certain cone in H, the so-called natural cone associated to
(Mb, W ref), provided we choose the thermal Hamiltonian (Liouvillian) Ll in
such a way that the unitary one-parameter group {e itLl | t ¥ R} leaves P
invariant. Let M be a labelling of the eigenvalues of Hp, including mul-
tiplicities. An element m ¥M is called a mode and the corresponding
eigenvalue of Hp is denoted by E(m). We will see that

P 5 ker L0=P 5 span{jm é jn é W | m, n ¥M, E(m)=E(n)}, (1.3)

where jm is the eigenvector of Hp corresponding to the mode m, and W is
the vector representative of wf

b . Our main result, Theorem 2.3, shows that
(1.2) is the subset of (1.3) with m, n ranging over those modes which are
not coupled to the field.

While this result holds for a specific class of potentials (see (2.2)), we
prove in Theorem 2.2 a result which holds for a very general class of
potentials: For any st, 0-invariant normal state w0 and any st, l-invariant
normal state wl on Mb we prove that ||w0−wl|| \ k > 0, provided l ] 0 is
small enough, for a constant k independent of l. Here || · || denotes the
norm on the space of linear functionals on Mb. Theorem 2.2 is proven for
bounded potentials v such that −D+v has only finitely many eigenvalues
below the threshold of the continuous spectrum, all of which are coupled to
the field. Alternatively, we could relax this finiteness condition but couple
only finitely many modes to the field.
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2. DEFINITION OF THE MODEL AND MAIN RESULTS

In Section 2.1 we introduce the model and show in which way it
defines a Wg-dynamical system (Mb, st, l). Our main results are presented
in Section 2.2.

2.1. Definition of the Model

Starting with an algebra A describing the joint system atom-field and
a (regularized) dynamics a (E)t, l on it, we introduce a reference state w

ref,
describing a bound state of the atom and black-body radiation at inverse
temperature b. We then consider the induced (regularized) dynamics s (E)t, l
on pb(A), where (H, pb, W ref) denotes the GNS representation corre-
sponding to (A, w ref). As EQ 0, s (E)t, l tends to a f-automorphism group, st, l,
of the von Neumann algebra Mb, defined as the weak closure of pb(A)
in B(H). We determine the generator, Ll, of the unitary group, e itLl, on
H implementing st, l; Ll is called a Liouvillian. We explain the relation
between eigenvalues of Ll and invariant normal states onMb.

2.1.1. Kinematical Algebra A, and Regularized Dynamics a (e)
t, l

We consider a system consisting of a quantum mechanical particle (an
electron in the potential of a static nucleus) interacting with a quantized
field.

Pure states of the particle system are described by unit vectors in the
Hilbert space Hp=L2(R3, d3x), their dynamics is determined by the
Schrödinger equation with Hamiltonian

Hp=−D+v, (2.1)

where the potential v is bounded and satisfies one of the following two
conditions.

• Condition CA. The potential v is s.t. the spectrum of Hp consists
of a finite number d of eigenvalues (counting multiplicity) lying below the
continuous spectrum which covers [0,.). We set E0 :=inf s(Hp) < 0.

• Condition CB. The potential v is given by

v(x)=−
r(|x|)
|x|1+m

, −1 < m [ 1, (2.2)

where r(|x|) is a smooth, non-negative function that has a zero of order
1+m at the origin, and increases to a constant value r as |x|Q., in such a
way that v is smooth, and

(x ·N) j v (2.3)
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are bounded, for j=0,..., 3. Notice that the eigenvalues of Hp are all nega-
tive and can accumulate only at the threshold 0.

Remark. In Condition CB we admit potentials such that Hp has
infinitely many eigenvalues below zero, but couple only finitely many of
them to the field, as we explain below.

The field is a scalar massless free bosonic field. (It would be more
interesting, physically, to consider the quantized electromagnetic field. Our
methods can be applied to the resulting model at the price of slightly more
complicated notations.) The scalar free field is conveniently described in
terms of a ‘‘time-averaged’’ Weyl algebra, Af, which is the Cg-algebra (of
‘‘observables’’), defined as follows. Let W be the Weyl algebra over the
Hilbert space

L2
0=L2(R3, d3k) 5 L2(R3, |k|−1 d3k), (2.4)

i.e., W is the Cg-algebra generated by Weyl operators, W(f), f ¥ L2
0,

satisfying the Weyl relations

W(f) W(g)=e−i ImOf, gPW(g) W(f). (2.5)

The free field dynamics onW is given by the f-automorphism group

W(f)W aWt (W(f))=W(e iwtf), (2.6)

where w(k)=|k| is the energy of a single boson. For functions f ¥ L2
0, the

expectation functional

fW e−
1
4 Of, (1+

2

ebw−1
) fP (2.7)

is well defined and determines a (b, aWt )-KMS state onW. It is well known
that the f-automorphism group aWt of W is not norm-continuous (i.e.,
R ¦ tW aWt (W(f)) is not continuous in the norm of W). The time-
averaged Cg-algebra Af is generated by elements of the form

a(h)=F
R
ds h(s) aWs (a), (2.8)

where a ¥W and h: RQ C are functions whose Fourier transforms satisfy
h1 ¥ C.0 (this is a convenient class of functions which allows us to define
KMS states on Af, see ref. 7). The free field dynamics on Af is defined by

aft (a(h))=F
R
ds h(s−t) aWs (a)=: a(ht). (2.9)
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It is a norm-continuous f-automorphism group on Af. We refer to ref. 7
for more details on the construction and the properties of Af.

The joint system describing the particle and the field is described in
terms of the Cg-algebra

A=Ap éAf, (2.10)

where Ap=B(Hp) is the von Neumann algebra of all bounded operators
on the Hilbert space Hp. The uncoupled dynamics is given by the
f-automorphism group

at, 0=a
p
t é aft (2.11)

of A, where apt ( · )=e itHp · e−itHp. In order to define the dynamics of
the interacting system in a representation independent way (i.e., as a
f-automorphism group on A), we need to introduce a regularized interac-
tion term. For E ] 0, this term is given by

V (E)
# =C

a

Ga, # é
1
2iE
{W(Ega)(hE)−W(Ega)(hE)g} ¥A, (2.12)

where the sum is over finitely many indices a, with Ga, #=Gg
a, # ¥B(Hp),

ga ¥ L
2
0, for all a, and where hE is an approximation of the Dirac distribu-

tion localized at zero. To be specific we can take hE(t)=
1
E e

−t2/E2. The
symbol Ga, # (and similarly V

(E)
# ) stands for either Ga or Ga, J, where J is

some cutoff determining which modes of the particle are coupled to the
field. In order to describe this more precisely, we introduce the following
terminology. Let M be the index set of the discrete ‘‘modes’’ of Hp, i.e.,
a labelling of the eigenvalues of Hp including multiplicity. Given m ¥M,
E(m) denotes the corresponding eigenvalue of Hp. An eigenvalue E of Hp

is simple if and only if there is a unique m ¥M s.t. E=E(m). We denote
the rank-one projection corresponding to the mode m ¥M by pm.

Let Jd …M be a set of finitely many discrete modes of Hp and let Jc be
an open interval in the continuous spectrum R+ of Hp (we may also take a
finite union of disjoint intervals), s.t. Jc … [r, R], for some r, R satisfying
0 < r < R <.. The set

J :=Jd 2 Jc

determines the modes of the particle which are coupled to the field,
according to the interaction

Ga, J=(pJd+m(Hp)) Ga(pJd+m(Hp)), (2.13)
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where Ga is a bounded, selfadjoint operator onHp, and

pJd= C
m ¥ Jd

pm, (2.14)

m ¥ C.0 (Jc) is a smooth version of the indicator function with support in Jc,
and m(Hp) is defined via the Fourier transform

m(Hp)=F m̂(s) e isHp.

Clearly, Ga, J tends to Ga, in the strong sense as m increases to the charac-
teristic function of R+ (i.e. Jc ‘ R+) and Jd increases to the set of all discrete
modes of Hp. Thus, V

(E)
J can be viewed as an approximation of

V (E)=V(E)
J=R.

The interaction term (2.12) determines a f-automorphism group a (E)t, l
of A, the coupled dynamics, via the norm-convergent Dyson series

a (E)t, l(A)

:=at, 0(A)

+C
n \ 1

(il)n F
t

0
dt1 · · ·F

tn−1

0
dtn[atn, 0(V

(E)
# ), [ · · · [at1, 0(V

(E)
# ), at, 0(A)] · · · ]],

(2.15)

where A ¥A, and l ¥ R is the coupling constant. The multiple integral in
(2.15) is understood in the product topology coming from the strong
topology of B(Hp) and the norm topology of Af.

One may view a (E)t, l as a regularized dynamics, in the sense that it has a
limit, as EQ 0, in suitably chosen representations of A; (this is shown in
ref. 7 and explained below).

The functions ga ¥ L
2
0 are called form factors. Using polar coordinates

in R3, we often write ga=ga(w, S), where (w, S) ¥ R+×S2.
We now specify two sets of assumptions on the interactions.

Condition A. The potential v satisfies condition CA, the interaction
is given by V (E), and the following properties hold.

• Infrared and Ultraviolet Behaviour of the Form Factors. For any
fixed S, ga( · , S) ¥ C4(R+), and there are two constants 0 < k1, k2 <., s.t.
if w < k1, then

|“ jwga(w, S)| < k2w
p−j, for some p > 2, (2.16)
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uniformly in a, j=0,..., 4 and S ¥ S2. Similarly, there are two constant
0 < K1, K2 <., s.t. if w > K1, then

|“ jwga(w, S)| < K2w
−q−j, for some q > 3. (2.17)

• Relative Bound on [Ga, Hp]. Define the commutator [Ga, Hp] in
the weak sense on C.0 ×C

.

0 by

Ok, [Ga, Hp] jP=OGak, HpjP−OHpk, GajP.

Then [Ga, Hp] extends to a relatively (Hp−E0+1)1/2-bounded operator,
i.e., there is a k <. s.t. for any k ¥ C.0 ,

||[Ga, Hp] k|| [ k ||(Hp−E0+1)1/2 k||, (2.18)

where E0=inf s(Hp) < 0.

• The Fermi Golden Rule Condition. We define a family of bounded
operators onHp by F(w, S)=; a ga(w, S) Ga and let, for arbitrary E > 0,

TE(w, E)=F
S2
dS F(w, S)

pcE
(Hp−E−w)2+E2

F(w, S)g, (2.19)

where E is an eigenvalue of Hp and pc is the projection onto the continuous
subspace of Hp. Let p(E) denote the projection onto the eigenspace corre-
sponding to E. We assume that there is an E0 > 0, s.t. for 0 < E < E0,

F
.

−E
dw

w2

ebw−1
p(E) TE(w, E) p(E) \ cE p(E), (2.20)

for any E ¥ sp(Hp), where cE is a strictly positive constant. We set

c := min
E ¥ sp(Hp)

cE > 0. (2.21)

Remarks. (1) All requirements in Condition A are independent of
the regularization of the interaction.

(2) For the physical model of an atom interacting with the radiation
field, the value of the constant p in (2.16) is p=−1/2 (or p=1/2 in the
dipole approximation), see, e.g., ref. 3. Although p > 2 is quite far from the
physical range, we do not attempt here to optimize condition (2.16). This
will be the aim of subsequent work. Suffice it to note that the discrete
values p=−1/2, 1/2 are also admissible in our analysis.
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(3) The operator TE(w, E) is just a (non-negative) number if E is a
simple eigenvalue. For E small, it represents the probability that the particle
makes a transition from the bound state corresponding to the energy E
into a scattering state with energy E+w \ 0 by absorbing a photon of
energy w. The probability density for a photon to have energy w is given
by Planck’s law, i.e., by (ebw−1)−1. Hence c is a perturbative bound on the
probability of an ionization process; it depends on the inverse temperature
b as c ’ ebE0, where E0 < 0 is the ground state energy of Hp. More preci-
sely, if we assume that, for 0 < E < E0, wW p(E) TE(w, E) p(E) is continu-
ous, and that there is a constant t > 0 s.t. p(E) TE(w, E) p(E) \ t · p(E) at
w=−E, then one sees that k ebE

1+b [ cE [ kebE, for some k which does not
depend on b.

Condition B. The potential v satisfies condition CB, the interaction is
given by V (E)

J , and the following properties hold.

• The infra-red and ultra-violet behaviour of the form factors is as in
(2.16), (2.17).

• Spatial decay of Ga. There is a constant k <. s.t.

||OxPn1 GaOxPn2|| [ k, n1+n2=0,..., 5, (2.22)

where we set OxP=(x2+1)1/2, for x ¥ R3. Notice that this is a condition on
Ga not depending on the regularization.

• The Fermi Golden Rule Condition. For all eigenvalues E of Hp s.t.
E=E(m) for some m ¥ Jd, let TE(w, E) be defined as in (2.19), with pc
replaced by m(Hp)2, and let pJd (E)=;

m ¥ Jd
E(m)=E

pm. There is an E0 > 0 s.t., for

0 < E < E0,

F
.

−E
dw

w2

ebE−1
pJd (E) TE(w, E) pJd (E) \ cE pJd (E), (2.23)

for some strictly positive constant cE. We set

c :=min{cE | E ¥ sp(Hp) s.t. E=E(m) for some m ¥ Jd} > 0. (2.24)

Remarks. (1) c is exponentially small inb, as observed inRemark (3)
after (2.21).

(2) The operator TE(w, E) is a decreasing function of r, and an
increasing function of R. Thus, we may assume without loss of generality
that c is independent of r [ 1, R \ 2.
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2.1.2. Reference State w ref

The reference state of the system is given by the product state

w ref=wp é wf
b , (2.25)

where wp is a state on B(Hp), determined by a strictly positive density
matrix rp > 0, i.e.

wp(A)=tr(rpA), (2.26)

for any A ¥B(Hp). The state w
f
b is the b-KMS state of Af w.r.t. the free

field dynamics (2.9) determined by the expectation functional (2.7).
It describes black body radiation of the field at temperature 1/b.

Let (H, pb, W ref) be the GNS representation of (A, w ref), i.e. H is a
Hilbert space, pb is a f-morphism AQB(H), and W ref is a vector inH s.t.
pb(A) W ref is dense inH, and

w ref(A)=OW ref, pb(A) W refP, A ¥A.

An explicit realization of the GNS representation is well known. It was first
constructed by Araki and Woods, ref. 2, and has been used recently by
several authors. Here we just recall the explicit formulas that are useful in
the present paper and refer to refs. 7 and 9 for a more detailed discussion.

The representation Hilbert space is

H=Hp éHp éF, (2.27)

whereF is a shorthand for the Fock space

F=F((L2(R×S2, du×dS)), (2.28)

du being the Lebesgue measure on R, and dS the uniform measure on S2.
Here F(X) denotes the Bosonic Fock space over a (normed vector)
space X,

F(X) :=C À Â
n \ 1

(SX é n), (2.29)

where S is the projection onto the symmetric subspace of the tensor
product. We use standard notation, e.g., W is the vacuum vector, [k]n is
the n-particle component of k ¥F(X), dC(A) is the second quantization of
the operator A on X, N=dC(1) is the number operator.
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The representation map pb : AQB(H) is the product

pb=pp é pbf,

where the f-homomorphism pp: Ap QB(Hp éHp) is given by

pp(A)=Aé 1p. (2.30)

The representation map pbf: Af QB(F) is determined by

pbf(a(h))=F
R
dt h(t) pbW(a

W
t (a)), (2.31)

where pbW:WQB(F) is a representation of the Weyl algebra given by

pbW=pFock pTb.

Here,Tb is the Bogoliubov transformation, mappingW(L
2
0) toW(L

2(R×S2))
defined byW(f)WW(ybf), with yb: L2(R+×S2)Q L2(R×S2) given by

(ybf)(u, S)==
u

1−e−bu
˛`uf(u, S), u > 0,

−`−u f̄(−u, S), u < 0.
(2.32)

Remarks. (1) It is easily verified that ImOybf, yb gPL2(R×S2)=
ImOf, gPL2(R+×S2), for all f, g ¥ L

2
0, so the CCR (2.5) are preserved under

the map yb.

(2) In the limit bQ., the r.h.s. of (2.32) tends to

˛uf(u, S), u > 0,
0, u < 0.

(2.33)

Notice that L2(R+×S2) À L2(R+×S2) is isometrically isomorphic to
L2(R×S2) via the map

(f, g)W h, h(u, S)=˛uf(u, S), u > 0,
ug(−u, S), u < 0,

(2.34)

so (2.33) can be identified, via (2.34), with f ¥ L2
0. Thus, Tb reduces to the

identity (an imbedding), pbW becomes the Fock representation of W(L2
0), as

bQ., and we recover the zero temperature situation.
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It is useful to introduce the following notation. We define unitary
operators Ŵ(f ) on the Hilbert space (2.27) by

Ŵ(f )=e ij(f ), f ¥ L2(R×S2),

where j(f ) is the selfadjoint operator onF given by

j(f )=
ag(f )+a(f )

`2
, (2.35)

and ag(f ), a(f ) are the creation- and annihilation operators on F,
smeared out with f. One easily verifies that

pbW(W(f))=Ŵ(ybf).

The cyclic GNS vector is given by

W ref=Wp é W,

where W is the vacuum inF, and

Wp=C
n \ 0

knjn é Cpjn ¥Hp éHp. (2.36)

Here, {k2n}
.

n=0 is the spectrum of rp, {jn} is an orthogonal basis of eigen-
vectors of rp, and Cp is an antilinear involution on Hp. The operator Cp

comes from the identification of l2(Hp) (Hilbert–Schmitt operators on Hp)
with Hp éHp, via |jPOk|W j é Cpk. We fix a convenient choice for Cp. It
is the antilinear involution onHp corresponding to complex conjugation of
components of vectors in the basis in which the HamiltonianHp is diagonal
(i.e. it is the the time reversal operator). Then CpHpCp=Hp.

2.1.3. W g-Dynamical System (Mb, st, l)

Let Mb be the von Neumann algebra obtained by taking the weak
closure of pb(A) in B(H),

Mb=B(Hp) é 1p é pbf(Af)œ …B(H). (2.37)

Since the density matrix rp is strictly positive, Wp is cyclic and separating
for the von Neumann algebra pp(Ap)œ=B(Hp) é 1p. Similarly, W is cyclic
and separating for pbf(Af)œ, since it is the GNS vector of a KMS state (see,
e.g., ref. 5II). Consequently, W ref is cyclic and separating for Mb. Let J be
the modular conjugation operator associated to (Mb, W ref). It is given by

J=Jp é Jf, (2.38)
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where, for j, k ¥Hp, Jp(j é Cpk)=k é Cpj, and, for k={[k]n}n \ 0 ¥F,

[Jfk]n (u1,..., un)=[k]n (−u1,..., −un), for n \ 1,

and [Jfk]0=[Jfk]0 ¥ C. Clearly, JW ref=W ref, and one verifies that

Jppp(A) Jp=1p é CpACp, (2.39)

Jfp
b
W(W(f)) Jf=Ŵ(−e−bu/2yb(f ))=Ŵ(e−bu/2yb(f ))g. (2.40)

It is not difficult to see (ref. 7) that

st, 0(pb(A)) :=pb(at, 0(A))=e itL0pb(A) e−itL0, (2.41)

for all A ¥A, where L0 is the selfadjoint operator onH, given by

L0=Hp é 1p−1p éHp+dC(u), (2.42)

commonly called the (non-interacting, standard) Liouvillian. One easily
sees that a (E)t, l is unitarily implemented in the representation pb as

pb(a
(E)
t, l(A))=e itL

(E)
l pb(A) e−itL

(E)
l =: s (E)t, l(pb(A)),

where the regularized Liouvillian L (E)
l is given by

L (E)
l =L0+lpb(V

(E)
# )−lJpb(V

(E)
# ) J.

An application of the Glimm–Jaffe–Nelson Theorem (Theorem 3.1) shows
that L (E)

l is essentially selfadjoint on

D=C.0 é C.0 é (F(C.0 (R×S2)) 5F0) …H, (2.43)

where F0 is the finite-particle subspace (see ref. 7). Moreover, from the
theorem on invariance of domains, Theorem A.1, and the Duhamel
formula, one easily sees that

lim
EQ 0

e itL
(E)
l =e itLl, (2.44)

in the strong sense onH, where the Liouvillian Ll is given by

Ll=L0+lI, (2.45)

I=C
a

Ga, # é 1p é j(yb(ga))−1p é CpGa, #Cp é j(e−bu/2yb(ga)).
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The operator Ll is essentially selfadjoint on the domain D defined in (2.43)
and defines a f-automorphism group onMb given by

st, l(A)=e itLlAe−itLl, A ¥Mb. (2.46)

An important property of Ll is that

e itLlJ=Je itLl, for all l ¥ R. (2.47)

2.1.4. Characterization of the st, l-Invariant Normal States on Mb

A state w on a von Neumann algebraM …B(H) is called normal iff it
is given by a density matrix r ¥B(H), i.e., w(A)=tr rA, A ¥M. If yt is a
group of homomorphisms ofM the state is called yt-invariant iff w p yt=w
for all t ¥ R. In order to characterize the st, l-invariant normal states onMb

it is useful to introduce the natural cone P associated to (Mb, W ref), which
is defined by

P={AJAW ref | A ¥Mb} …H, (2.48)

where the bar denotes the closure in the norm of H. The following prop-
erties of the natural cone are the contents of the Araki–Connes–Haagerup
theorem, a deep result in the theory of von Neumann algebras (see, e.g.,
ref. 5).

Given any normal state w on Mb, there is a unique vector t ¥P s.t.
w(A)=Ot, AtP, for all A ¥Mb. Moreover, if w1 and w2 are normal states
onMb with corresponding vectors t1, t2 in P then

||t1−t2 ||2 [ ||w1−w2 || [ ||t1−t2 || ||t1+t2 ||. (2.49)

The norm of a state w ofMb is given by ||w||=supA ¥Mb
|w(A)|/||A||.

It is not difficult to see that (2.47) implies that e itLlP=P, for all l ¥ R
and t ¥ R. From the uniqueness of the vector representative in the natural
cone it follows that the st, l-invariant normal states are in one-to-one cor-
respondence with the unit vectors in the set P 5 ker Ll, which, for l=0, is
given by

P 5 ker L0=P 5 span{jm é jn é W | m, n ¥M, E(m)=E(n)}. (2.50)

We will show in Theorem 2.3 that, for l ] 0, the st, l-invariant normal
states are given by the subset of (2.50) determined by the modes
m, n ¥M0Jd that do not interact with the field.
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2.1.5. A Quick-Reference List

For the convenience of the reader and for future reference, we collect
the definitions of some important operators in a list. Generally, if p is a
projection then we set p̄=1−p.

pd projection onto the discrete subspace ofHp

pc projection onto the continuous subspace ofHp

pm one-dimensional projection onto the mode m ¥M

pJd = C
m ¥ Jd

pm

pJc spectral projection ofHp onto the interval Jc
p =pJd+pJc
P =p é p é 1f is a projection onHp éHp éF

P l =p é p̄ é 1f

P r =p̄ é p é 1f

P0 =p̄ é p̄ é 1f

P0 projection onto ker Lp

P =P0 é PW is the projection onto ker L0

2.2. Main Results

Our main results concern the dynamical system (Mb, st, l), where we
have defined the von Neumann algebra Mb in (2.37), and where st, l is the
f-automorphism group (2.46) ofMb generated by the Liouvillian (2.45).

The following theorem describes some properties of eigenvectors of Ll
which, as we have seen in Section 2.1.4, play an important role in the
characterization of invariant normal states.

Theorem 2.1 (Bounds on Eigenvectors).

(1) Assume that either Condition A or Condition B of Section 2.1.1
holds. Let N=dC(1) denote the number operator on Fock space
F(L2(R×S2)). Any eigenvector k of Ll satisfies k ¥D(N1/2), for any
l ¥ R, and there is a constant k <. s.t.

||N1/2k|| [ k |l| ||k||. (2.51)

The constant k satisfies k < kŒ(1+1/b), where kŒ depends on the interac-
tion, but not on b.
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(2) Assume Condition A. Given any 0 < b <., there are constants
l0(b) > 0, k(b) > 0, s.t. if 0 < |l| < l0(b), and if k is an eigenvector of Ll,
then

||P̄0 é PWk || \ k(b) ||k||, (2.52)

where P0 is the projection onto the zero eigenspace of Lp, P̄0=1−P0, and
PW is the projection onto the vacuum sector in F. We have l0(b) \ kc (see
(2.21) and remark (2) thereafter) and k(b) \ kc2, for some k independent of
b and l (i.e., both constants decay exponentially in b, for large b).

The proof of Theorem 2.1 is given in Section 4. Here we show that the
bounds (2.51) and (2.52) imply that bifurcations of stationary states for the
interacting dynamics generated by Ll from any stationary states for l=0
cannot occur.

Let P=P0 é PW denote the projection onto the zero eigenspace of L0

and set P̄ :=1−P. Assume that k is an eigenvector of Ll, for some
0 < |l| < l0. Using the decomposition P̄=P̄0 é PW+P̄W and (2.51), (2.52),
we have that

||P̄k|| \ ||P̄0 é PWk||− ||P̄Wk|| \ (k(b)−k |l|) ||k||.

Let k0 be an arbitrary element of ker L0. Then

||k0−k|| \ ||P̄k||− ||k0−Pk|| \ ||P̄k||− ||k0−k||,

so

||k0−k|| \
1
2 (k(b)−k |l|) ||k||. (2.53)

This shows that for 0 < |l| <min(l0,
1
2
k(b)
k ), the distance between any

eigenvector of Ll and any eigenvector of L0 is greater than k(b)/4. Com-
bining (2.53) with (2.49) yields the following result.

Theorem 2.2 (No Bifurcation). Assume that the Condition A of
Section 2.1.1 holds, and that 0 < |l| <min(l0,

1
2
k(b)
k ), where l0, k(b), k are

the constants in Theorem 2.1, (2). For any normal st, 0-invariant state w0

onMb and any normal st, l-invariant state wl onMb,

||w0−wl|| \ k(b)2/16. (2.54)

Our next result shows that the modes of the particle which are coupled
to the field do not give rise to invariant states; (compare with Section 2.1.4).
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Theorem 2.3 (Instability of Normal Invariant States). Assume
that Condition B of Section 2.1.1 holds. Given any 0 < b <. and any
r > 0, there is a l0(b, r) > 0 s.t. for 0 < |l| [ l0(b, r), the st, l-invariant
normal states on Mb are in one-to-one correspondence with the unit
vectors in the set

P 5 span{jm é jn é W | m, n ¥M0Jd, E(m)=E(n)}. (2.55)

We have l0(b, r) \ kc2r, for some k which is independent of b, r and where
c is given in (2.24).

3. VIRIAL THEOREMS AND THE POSITIVE COMMUTATOR

METHOD

Our proofs of Theorems 2.1 and 2.3 are based on the positive com-
mutator method, which we explain in Section 3.2. In the next section we
describe an essential ingredient of this method, the virial theorem.

3.1. Two Abstract Virial Theorems

Let H be a Hilbert space, D …H a core for a selfadjoint operator
Y \ 1, and X a symmetric operator on D. We say the triple (X, Y,D)
satisfies the GJN (Glimm–Jaffe–Nelson) Condition, or that (X, Y, D) is a
GJN-triple, if there is a constant k <., s.t. for all k ¥D:

||Xk|| [ k ||Yk|| (3.1)

±i{OXk, YkP−OYk, XkP} [ kOk, YkP. (3.2)

Notice that if (X1, Y, D) and (X2, Y, D) are GJN triples, then so is
(X1+X2, Y, D). Since Y \ 1, inequality (3.1) is equivalent to

||Xk|| [ k1 ||Yk||+k2 ||k||,

for some k1, k2 <.. For a more detailed exposition of the following results
(and proofs of Theorems 3.2 and 3.3) we refer to ref. 7.

Theorem 3.1 (GJN Commutator Theorem). If (X, Y, D) satis-
fies the GJN Condition, then X determines a selfadjoint operator (again
denoted by X), s.t. D(X) ‡D(Y). Moreover, X is essentially selfadjoint on
any core for Y, and (3.1) is valid for all k ¥D(Y).

Based on the GJN commutator theorem, we next describe the setting
for a general virial theorem. Suppose one is given a selfadjoint operator
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L \ 1 with core D …H, and operators L, A, N, D, Cn, n=0, 1, 2, 3, all
symmetric on D, and satisfying

Oj, DkP=i{OLj, NkP−ONj, LkP} (3.3)

C0=L

Oj, CnkP=i{OCn−1j, AkP−OAj, Cn−1kP}, n=1, 2, 3, (3.4)

where j, k ¥D. We assume that

• (X, L, D) satisfies the GJN Condition, for X=L, N, D, Cn. Con-
sequently, all these operators determine selfadjoint operators, which we
denote by the same letters.

• A is selfadjoint, D …D(A), and e itA leaves D(L) invariant.

Remarks. (1) From the invariance condition e itAD(L) …D(L), it
follows that for some 0 [ k, kŒ <., and all k ¥D(L),

||Le itAk|| [ kekŒ |t| ||Lk||. (3.5)

A proof of this can be found in ref. 1, Propositions 3.2.2 and 3.2.5.
(2) Condition (3.1) is phrased equivalently as ‘‘X [ kY, in the sense

of Kato on D.’’
(3) One can show that if (A, L, D) satisfies conditions (3.1), (3.2),

then the above assumption on A holds; see Theorem A.1.

Theorem 3.2 (1st Virial Theorem). Assume N and e itA commute,
for all t ¥ R, in the strong sense on D, and that

D [ kN1/2, (3.6)

C1 [ kNp, for some 0 [ p <., (3.7)

C3 [ kN1/2 (3.8)

in the sense of Kato on D, for some k <.. Then, if k ¥D(L) is an eigen-
vector of L, there is a family of approximating eigenvectors {ka} …
D(L) 5D(C1), a > 0, such that ka Q k (inH) as aQ 0, and

lim
aQ 0

Oka, C1kaP=0. (3.9)

Remarks. (1) It is not necessary that N and e itA commute for the
result to hold, but this will be the case in all our applications (see, ref. 7 for
the case where N and A do not commute).
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(2) In a heuristic way, we understand C1 as the commutator
i[L, A]=i(LA−AL), and (3.9) as Ok, i[L, A] kP=0, which is the usual
statement of the virial theorem; see, e.g., refs. 1 and 8 for a comparison
(and correction) of virial theorems encountered in the literature.

The Virial Theorem is still valid if we add to the operator A a bounded
perturbation A0 leaving the domain of L invariant.

Theorem 3.3 (2nd Virial Theorem). Suppose that we are in the
situation of Theorem 3.2, and that A0 is a bounded operator on H, s.t.
Ran A0 ıD(L) 5 Ran P(N [ n0), for some n0 <.. The commutator
i[L, A0]=i(LA0−A0L) is well defined in the strong sense on D(L). For
the same family of approximating eigenvectors as in the previous theorem,
we have that

lim
aQ 0

Oka, (C1+i[L, A0]) kaP=0. (3.10)

3.2. Outline of the Proofs of Theorems 2.1 and 2.3; the Positive

Commutator Method

The positive commutator method gives a conceptually easy proof of
the absence of point spectrum of L. We outline a version that is adapted to
the proofs of Theorems 2.1 and 2.3. The full proofs are given in Sections 4
and 5. In the present section we use the notation of Section 3.1 and write
i[Ll, A] for C1.

Outline of the Proof of Theorem 2.3. According to the discussion
of Section 2.1.4 we have to show that P 5 ker Ll is given by the set (2.55).
The Liouvillian Ll is reduced by the decomposition

H=Ran P0 À Ran P À Ran P l À Ran P r,

where the various projections are defined in Section 2.1.5. It is easy to see
that P 5 Ran P l=P 5 Ran P r={0} and that Ll A Ran P0=L0 A Ran P0.
Consequently, P 5 ker Ll=P 5 (ker L0 A Ran P0 2 ker Ll A Ran P), and
to prove the theorem, it is enough to show that

ker Ll A Ran P={0}. (3.11)

We construct selfadjoint operators L, A, A0 such that the conditions of
Section 3.1 are fulfilled, with L=Ll and N=dC(1). The operators A and
A0 have the properties that

i[Ll, A]+i[L, A0] \ PM0P+M1,

330 Fröhlich, Merkli, and Sigal



where the bounded operatorsM0 andM1 satisfy

PM1P=0,

Ok, M0kP \ d ||k||2,
(3.12)

for any k ¥ ker Ll A Ran P, and where d is strictly positive. From Theo-
rem 3.3 we obtain

0=lim
a

Oka, (i[Ll, A]+i[Ll, A0]) kaP \ d ||k||2.

Because d > 0, we have that ker Ll A Ran P={0}.
We now explain how to arrive at the key inequality (3.12). The form of

the non-interacting Liouvillian, L0, given in (2.42) suggests to consider

A=qApq é 1p é 1f−1p é qApq é 1f+1p é 1p é dC(i“u),

where Ap is the dilation generator, see (3.40), and dC(i“u) is the second
quantization of the translation generator in the radial variable u of
L2(R×S2, du×dS), see (2.28). Here, q is a function of Hp with support in
an interval in R+, containing Jc but not {0}, and such that q|Jc=1. Then
we have

i[Ll, A]=q2Hp é 1p é 1f+1p é q2Hp é 1f+N+U+lI1,

where N is the number operator, U is a non-negative operator, because of
the choice of the parameter m in the potential v of Eq. (2.2), and where
I1=i[I, A] is infinitesimally small w.r.t. N,

±lI1 [ cN+
l2

c
k, (3.13)

for any c > 0 and some k <.. The role of q is to project out the discrete
modes in Jd. Using that P=p é p é 1f, pq2=pJc , and that pJcHp \ rpJc ,
since the interval Jc is away from the origin by a distance of at least r, we
obtain

Pi[Ll, A] P

\ P (pJcHp é 1p é PW+1p é pJcHp é PW+1
2 P̄W) P−kl

2P

\min(r, 1/2) P (pJc é 1p é PW+1p é pJc é PW+
1
2 P̄W) P−kl

2P,
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where we choose c=1/2 in (3.13). The first term on the r.h.s. is strictly
positive except on the subspace Ran pJd é pJd é PW … Ran P. We decom-
pose

pJd é pJd é PW=PP+ C
m, n ¥ Jd

E(m) ] E(n)

pm é pn é PW, (3.14)

where P is the projection onto the kernel of L0. Note that PP is finite-
dimensional. On the range of the second projection on the r.h.s. of (3.14),
the free Liouvillian satisfies

|L0 | \min{|E(m)−E(n)| | m, n ¥ Jd, E(m) ] E(n)} > 0. (3.15)

Let D be an interval around zero whose size |D| is smaller than the r.h.s. of
(3.15), and let E0

D be the spectral projection of L0 onto D. Then we have
that E0

DpJd é pJd é PW=E0
DPP=PP. Consider the decomposition

Ran PE0
D=Ran PE0

DP̄ À Ran PP. (3.16)

From the above discussion it is apparent that on the block Ran PE0
DP̄,

i[Ll, A] is bigger than r−kl2 \ r/2 (we require |l| [ k`r), while the
commutator is zero on the block Ran PP. This is where we introduce the
operator A0.

One can choose A0 s.t. PPi[Ll, A0]PP is strictly positive provided
the interaction satisfies the Fermi Golden Rule Condition. Moreover, on
Ran PE0

DP̄, i[Ll, A0] is small relative to r. The construction of A0 has
been given, in the context of zero temperature systems, in ref. 4, and has
been modified for positive temperature systems in ref. 10.

The above discussion shows that the operator i[Ll, A]+i[Ll, A0] has
strictly positive diagonal blocks in the decomposition (3.16). An applica-
tion of the Feshbach method then shows that

E0
DP(i[Ll, A]+i[Ll, A0]) PE

0
D=: E

0
DPM0PE

0
D (3.17)

is strictly positive. Since ||E0
Dk−k|| [ k |l| ||k||, for any k ¥ ker Ll, we can

pass from (3.17) to estimate (3.12).
In this proof, the coupling constant cannot be chosen idependently of

the inverse temperature b. This is due to the fact that the constant d in
(3.12) is proportional to c, see (2.24), which in turn decays exponentially
in b. We have to require that certain error terms which depend on l are
small w.r.t. c, hence the b-dependent smallness condition on l.
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Outline of the Proof of Theorem 2.1. Part (1) is an easy conse-
quence of the virial theorem combined with the bound

i[Ll, A] \
1
2N−kl

2,

for A=dC(i“u). The proof of part (2) proceeds as follows. We construct
A0 (the same as for the proof of Theorem 2.1) s.t.

i[Ll, A]+i[Ll, A0] \ o1P−o2P̄0 é PW, (3.18)

for some o1, o2 > 0, and where P is the projection onto the kernel of L0. If
k is an eigenvector of Ll then by part (1) we have that ||Pk|| \ (1−k |l|)
||k||− ||P̄0 é PWk||. Inserting this bound into (3.18) and using the virial
theorem yields the bound (2.52).

This outline indicates that the proofs of Theorems 2.1 and 2.3 consist
of two steps. First we verify that the virial theorems are applicable and
second establish a positive commutator estimate in the above sense. The
latter task is carried out in Sections 4 and 5.

3.3. Applications of the Virial Theorems

Corresponding to the different hypotheses of Theorems 2.1 and 2.3,
we introduce two sets of operators L, L, A, A0, N, and verify, in each case,
that the virial theorems are applicable. The following objects appear in
both applications: the Hilbert space is the GNS space given in (2.27); the
dense domain D is chosen to be

D=C.0 (R
3) é C.0 (R3) éDf, (3.19)

where

Df=F(C.0 (R×S
2)) 5F0,

where the Fock space F has been defined in (2.29), and F0 denotes the
finite-particle subspace. The operator L is the interacting Liouvillian
introduced in (2.45), and N=dC(1) is the particle number operator in
F —F(L2(R×S2)). Clearly, X=L, N are symmetric operators on D. The
operator D, defined in (3.3), is given by

D=il C
a

{Ga, # é 1p é (−ag(yb(ga))+a(yb(ga)))

−1p é CpGa, #Cp é (−ag(e−bu/2yb(ga))+a(e−bu/2yb(ga)))}. (3.20)
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We define a bounded, selfadjoint operator A0 onH by

A0=ihl(PIR2
EP̄− P̄R

2
EIP), (3.21)

R2
E=(L2

0+E
2)−1. (3.22)

Here, h and E are positive parameters, and P is the projection

P=P0 é PW, (3.23)

P0=P(Lp=0), (3.24)

P̄=1−P. (3.25)

We also introduce the notation

R̄E=P̄RE.

Notice that the operator A0 satisfies the conditions given in Theorem 3.3
with n0=1. Moreover, [L, A0]=LA0−A0L extends to a bounded opera-
tor on
the entire Hilbert space, and

||[L, A0]|| [ k 1
h |l|
E
+
hl2

E2
2 . (3.26)

This choice for the operator A0 was initially introduced in ref. 4 for the
spectral analysis of Pauli–Fierz Hamiltonians (zero temperature systems),
and was adopted in ref. 10 to show return to equilibrium (positive temper-
ature systems). The key feature of A0 is that

iP[L, A0]P=2hl2PI R̄2
EIP

is a non-negative operator. The Fermi Golden Rule Condition, (2.20) (or
(2.23)), says that it is a strictly positive operator on RanP.

Proposition 3.2. Assume (2.20) and let 0 < E < E0. Then

PI R̄2
EIP \ 1

E cP, (3.27)

where c is given by (2.21). Assuming condition (2.23) instead of (2.20), the
same lower bound holds (with c given in (2.24)) if we replace P by PP
(P=p é p, p=pJd+pJc ) and I by the regularized interaction; see (2.13).

The proof of Proposition 3.2 is given in Section A.4.
Next, we define the operators L and A and verify the hypotheses used

in Section 3.1.
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3.3.1. Setting for Theorem 2.1

We define

L=Lp é 1p é 1f+1p é Lp é 1f+1p é 1p é Lf, (3.28)

Lp=Hp−E0+1, (3.29)

Lf=dC(u2+1), (3.30)

where, we recall, E0=inf s(Hp) < 0. Clearly, L is essentially selfadjoint on
the domain D defined in (3.19), and Lp \ 1, Lf \ 0. In what follows we
shall often use the standard fact that if f ¥ L2(R×S2, du×dS), then a#(f )
is relatively N1/2 bounded in the sense of Kato. This implies immediately
that a#(f ) is relatively L1/2

f bounded.
We verify that (L, L, D) is a GJN triple. The bound (3.1) is trivial by

the above observation, and the fact that yb(ga) ¥ L2(R×S2). Next, the only
contribution to the commutator of L with L comes from the interaction,
and a typical term to estimate is of the form [Ga, Hp] é 1 é j(yb(ga))+
Ga é 1p é [j(yb(ga)), Lf]. Using the bound (2.18), we obtain for the first
term

|Ok, [Ga, Hp] é 1p é j(yb(ga)) kP|

[ k ||[Ga, Hp](Hp−E0+1)−1/2|| ||L
1/2
p é 1pk|| ||L

1/2
f k||

[ kOk, LkP. (3.31)

Next,

|Ok, Ga é 1p é [j(yb(ga)), Lf] kP| [ k ||(u2+1)1/2 yb(ga)||L2(R×S2) ||L1/2k||2

[ kOk, LkP, (3.32)

where we have used that

[ag(yb(ga)), Lf]=ag((u2+1) yb(ga)),

[a(yb(ga)), Lf]=−a((u2+1) yb(ga)),

so that [j(yb(ga)), Lf] is still N1/2 bounded, since yb(ga) has the decay
property (2.17). The form bound (3.2) follows from these observations. In a
similar way, one shows that (D, L, D) is a GJN triple.

Next, we define the operator A — Af to be the selfadjoint generator of
the translation group acting on the radial variable of elements inF by

[e itAfk]n (u1, S1,..., un, Sn)=[k]n (u1−t, S1,..., un−t, Sn), t ¥ R.
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In what follows, we will often not display the angular variables S1,..., Sn.
We set e itAfW :=W. Clearly, D …D(Af), D is invariant under e itAf, hence a
core for Af, and Af acts on D as

Af=dC(i“u). (3.33)

An easy calculation shows that, on D,

Le itAf=e itAf(L+dC(2ut−t2)), (3.34)

so estimate (3.5), with kŒ=0, is satisfied for all k ¥D, hence for all
k ¥D(L). For A :=Af, we find that

C1=N+lI1, (3.35)

C2=lI2, (3.36)

C3=lI3, (3.37)

where

In=in C
a

{Ga é 1p é j((−i“u)n yb(ga))

−1p é CpGaCp é j((−i“u)n e−bu/2yb(ga))}. (3.38)

We now show that (Cn, L, D) are GJN triples, for n=1, 2, 3. The
operators In are N1/2-bounded, since yb(ga) and e−bu/2yb(ga) are in in the
domain of the operators (i“u)n, n=1, 2, 3 (see also (2.16)), hence (3.1)
holds. Note that this also yields (3.7). Next, we need to calculate the com-
mutators of Cn with L. The estimates on the commutators of In with L,
for n=2, 3, are similar to the ones for n=1. The latter has been out-
lined above; it requires that (u2+1)(−i“u)n yb(ga) ¥ L2(R×S2), which is
guaranteed by conditions (2.16) and (2.17).

This discussion shows that we are in the situation described in
Section 3.1, and Theorems 3.2 and 3.3 apply.

3.3.2. Setting for Theorem 2.3

We define the operator L as in (3.28), but where Lp is now given by

Lp=−D+x2. (3.39)

L is essentially selfadjoint on D (see (3.19)), Lp \ 1, Lf \ 0.
Verifying that (LJ, L, D) is a GJN triple is done as in Section 3.3.1,

using that [Ga, J, Lp] is bounded; see Lemma A.5. It is also easy to check
that (D, L, D) is a GJN triple.
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Next, we define an operator A differing substantially from the choice
A=Af (see (3.33)) in Section 3.3.1: We add a (regularized) dilatation on
the particle space to Af.

Let q ¥ C.0 (R+) be a smooth characteristic function of the set Jc (with
the property q | Jc=1), which has compact support not containing zero. We
define q(Hp)=> q̂(s) e isHp, where q̂ is the Fourier transform of q, and we
abbreviate q(Hp) by q. Let Ap be the symmetric operator on C

.

0 (R
3) given

by

Ap=−
i
4
(x ·N+N · x). (3.40)

Notice that (Ap, Lp, C
.

0 (R
3)) is a GJN triple, so Ap is essentially selfadjoint

on C.0 (R
3). We denote the selfadjoint closure again by Ap.

Remark. To show that Ap is essentially selfadjoint on C
.

0 (R
3), we

can also use the fact that the dense set C.0 (R
3) is invariant under the group

of dilatations on L2(R3, d3x), hence a core for the selfadjoint generator of
this group. The generator acts on C.0 as in (3.40).

Proposition 3.3. (qApq, Lp, C
.

0 (R
3)) is a GJN triple. In particular,

qApq is well defined and symmetric on C
.

0 (R
3), and it is essentially self-

adjoint on C.0 (R
3). We denote the selfadjoint closure again by qApq.

We give the proof in Section A.2. Let us now define the operator

A=qApq é 1p−1p é qApq+Af, (3.41)

which is essentially selfadjoint on D. It follows immediately from Proposi-
tion 3.2, Theorem 1.1, and relation (3.34), that e itA leaves D(L) invariant,
and that the estimate (3.5) holds true. We calculate explicitly

Cn=dn, 1N+ad
(n)
qApq(Hp) é 1p+(−1)n 1p é ad (n)qApq(Hp)+lIn, (3.42)

for n=1, 2, 3, where we define the multiple commutators ad (0)Y (X)=X,
and for n \ 1, ad (n)Y (X)=i[ad (n−1)Y (X), Y], in the weak sense on
C.0 (R

3)×C.0 (R
3). For n=1, 2, 3, we have defined

In=C
n

k=0

1n
k
2 2−(n−k) C

a

{ad (n−k)qApq (Ga) é 1p é j((−i“u)k yb(ga))

+(−1)n−k 1p é ad(n−k)qApq (Ga) é j((−i“u)
k ebu/2yb(ga))}. (3.43)
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Note that

ad(1)qApq(Hp)=q(Hp+W) q, (3.44)

with

W=−
1
2
(x ·Nv+2v)=

1
2
1rŒ(|x|)
|x|m

+(1−m)
r(|x|)
|x|1+m
2 , (3.45)

and the choice of m, r given in (2.2) implies that

W \ 0. (3.46)

In Appendix A.3 we prove the following proposition.

Proposition 3.4. (Cn, L, D) are GJN triples, for n=1, 2, 3, and the
estimates (3.6)–(3.8) are satisfied.

This shows that with the choice of operators introduced in this section,
Theorems 3.2 and 3.3 apply.

4. PROOF OF THEOREM 2.1

(1) Set Ĩ1=i[I, Af], where Af and I are given in (3.33), (2.45). For
k ¥D(N1/2), we have

|Ok, Ĩ1kP| [ |Ok, Ĩ1P̄WkP|+|Ok, P̄W Ĩ1PWkP| [ 2 ||Ĩ1N−1/2P̄W || ||k|| ||N1/2k||.

This shows that in the sense of quadratic forms on D(N), lĨ1 \ −cN− l
2k
c ,

for any c > 0, where k=||Ĩ1N−1/2P̄W ||2 [ kŒ; a ||“uyb(ga) ||
2
L2 [ kŒ(1+1/b).

Let C̃1=i[Ll, Af]=N+lĨ1 and choose c=1/2. Then we find C̃1 \
1
2N−kl

2, in the sense of forms on D(N) …D(C̃1), and from Theorem 3.2

0=lim
aQ 0

Oka, C̃1kaP \ 1
2 lim
aQ 0

||N1/2ka ||2−kl2 ||k||2,

where k is an eigenvector of Ll, and ka its regularization. It follows that

lim
aQ 0

||N1/2ka ||2 [ kl2 ||k||2,

which tells us that k ¥D(N1/2), and that ||N1/2k|| [ k |l| ||k||.

(2) In what follows, the constants k, k1, l1, l2 are independent of
b \ b0, where b0 > 0 is arbitrary but fixed. In the course of the proof we
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will impose several conditions on the parameters E, l, h which are collected
in (4.14). We adopt the notation of Section 3.3.1.

On D(N) …D(C1), we define the operator

B=C1+i[Ll, A0].

Recall that A0 is defined in (3.21), that we write R̄E=P̄RE, and that
PWIPW=PWI1PW=0. Using that PW=P+P̄0 é PW, one finds that

PWBPW=PBP+P̄0 é PWBP+PBP̄0 é PW+P̄0 é PWBP̄0 é PW
=2hl2PIR̄2

EIP+hl
2(P̄0 é PWIR̄2

EIP+PIR̄
2
EIP̄0 é PW), (4.1)

PWBP̄W=lPWI1P̄W+hlPIR̄
2
EL0P̄W+hl2PIR̄

2
EIP̄W, (4.2)

P̄WBPW=lP̄WI1PW+hlP̄WL0 R̄
2
EIP+hl

2P̄WIR̄
2
EIP, (4.3)

P̄WBP̄W=P̄WN+P̄W(lI1−hl2(IPIR̄
2
E+R̄

2
EIPI)) P̄W.

From the estimates ||P̄WN−1/2I1N−1/2P̄W || [ k, ||IPI|| [ k, || R̄
2
E || [ E

−2, we see
that there is some constant l1 <. (independent of l, E, h), s.t.

P̄WBP̄W \ 1
2 P̄W, (4.4)

provided

|l|,
hl2

E2
< l1, (4.5)

see also (4.14). Using the estimates

||IR̄2
EIP||, ||PIR̄

2
EI|| [ E

−2k and ||PWI1 ||, ||I1PW || [ k,

where k is independent of the parameters l, h, E, we arrive at the following
lower bound. For any f ¥D(N) and some k1 <.

OBPf \ 2hl2OPIR̄
2
EIPPf+

1
2
||P̄Wf||2

−k1
hl2

E2
||Pf|| ||P̄0 é PWf||−k1 |l| ||PWf|| ||P̄Wf||

−12h |l|+2k1
hl2

E
2 ||R̄EIPf|| ||P̄Wf||. (4.6)
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Clearly, || R̄EIPf|| ||P̄Wf|| [ dOPIR̄
2
EIPPf+d−1 ||P̄Wf||2, for any d > 0.

Choosing appropriate values of d, we bound the last line in (4.6) from
below by

−hl2OPIR̄2
EIPPf−4 1h+k21

hl2

E2
2 ||P̄Wf||2,

and it follows that

OBPf \
hl2

E
c ||Pf||2+11

2
−4h−4k21

hl2

E2
2 ||P̄Wf||2

−k1
hl2

E2
||Pf|| ||P̄0 é PWf||−k1 |l| ||PWf|| ||P̄Wf||, (4.7)

where we have used (3.27) and hence assumed that 0 < E < E0. Using that
||PWf|| [ ||Pf||+||P̄0 é PWf||, we estimate the two terms in the last line on
the r.h.s. of (4.7) as

−k1 |l| ||PWf|| ||P̄Wf|| \ −
1
4
||P̄Wf||2−8l2k

2
1(||Pf||

2+||P̄0 é PWf||2),

−k1
hl2

E2
||Pf|| ||P̄0 é PWf|| \ −

1
2
hl2

E
c ||Pf||2−2k21

hl2

E3
c ||P̄0 é PWf||2.

Using these two estimates in (4.7), we arrive at

OBPf \ l2=1
1
2
h

E
c−8k21 2 ||Pf||2−2l2k21 14+

h

E3c
2 ||P̄0 é PWf||2, (4.8)

where we require the condition

1
4
−4h−4k21

hl2

E2
\ 0, (4.9)

which guarantees that the contribution of the term in (4.7) which is pro-
portional to ||P̄Wf||2 is non-negative, and can hence be dropped. (4.9) is
satisfied if (4.14) holds. Let f=ka ¥D(N) be the regularization of the
eigenvector k as defined in Theorem 3.2. Then it follows from (4.8) that

0=lim
aQ 0

OBPka \ o1 ||Pf||
2−o2 ||P̄0 é PWf||2, (4.10)
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where

o1=
1
2
h

E
c−8k21 > k

2
1, (4.11)

o2=2k21 14+
h

cE3
2 > 0. (4.12)

The lower bound (4.11) is a consequence of E < hc

18k21
, see (4.14).

From (2.51), we find that

||Pk|| \ ||k||− ||P̄Wk||− ||P̄0 é PWk|| \ (1−k |l|) ||k||− ||P̄0 é PWk||.

Thus there is a positive constant l2 (independent of E, l, h) s.t. if
0 < |l| < l2 then ||Pk|| \

1
2 ||k||− ||P̄0 é PWk||. Thus we get from (4.10)

||P̄0 é PWk|| \
1
2

1
1+(o2/o1)1/2

||k||. (4.13)

Consequently, under the conditions that

0 < |l| <min 3l1, l2,
E

`h
1`l1+

1

4`2 k1
24 , h < 1

32
, E <min 3 hc

18k21
, E0 4 ,
(4.14)

we obtain

||P̄0 é PWk|| \
1
2

1

1+`2(4+ h

cE3
)

(4.15)

Choose for instance h=1/100, E=min{ c

2000k
2
1

, E0}. Then (4.14) holds

provided 0 < |l| < kc, for some k independent of b provided that b \ b0,
with b0 > 0 arbitrary but fixed. For large b, the r.h.s. of (4.15) behaves
like c2. L

5. PROOF OF THEOREM 2.3

The st, l-invariant normal states on Mb are in one-to-one correspon-
dence with the normalized vectors in the span ofP 5 ker Ll (see Section 2.1.4).
Our task is to show that P 5 ker Ll equals the set (2.55).

In this section, we will always deal with the cutoff interaction
(determined by Ga, J) but we shall drop the subscript J in the notation.
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5.1. Reduction of the Liouvillian

We define the projection p=pJd+pJc , where pJd , pJc are the projec-
tions corresponding to the discrete and continuous modes in Jd and Jc,
respectively; (see also (2.14)). Setting p̄=1p−p, P=p é p é 1f, we
decompose P̄=1−P as P̄=P l+Pr+P0, where

P l=p é p̄ é 1f P r=p̄ é p é 1f, P0=p̄ é p̄ é 1f. (5.1)

It is easy to verify that the (regularized) Liouvillian Ll, defined in (2.45), is
reduced by the decomposition

H=Ran P À Ran P l À Ran P r À Ran P0,

and that

Ll A Ran P0=L0 A Ran P0. (5.2)

From the definition, (2.38), of the modular conjugation J, it follows that

JP l=PrJ. (5.3)

Because every k ¥P satisfies Jk=k, (5.3) implies that P 5 Ran P l

=P 5 Ran P r={0}, and, consequently, we have that

P 5 ker Ll=P 5 (ker Ll A Ran P0 2 ker Ll A Ran P). (5.4)

We prove in the next section that ker Ll A Ran P={0}, which, together
with (5.4) and (5.2), shows that P 5 ker Ll is given by the subspace defined
in (2.55).

5.2. The Kernel of Ll A Ran P

Theorem 5.1. Given any 0 < b <. and any r > 0 there is a
l0(b, r) > 0 s.t. if 0 < |l| < l0(b, r) then ker Ll A Ran P={0}. Here,
l0(b, r) \ kc2r, for some k independent of b, r. The constant c is given in
(2.24).

Proof. We use the notation of Section 3.3.2 and write L for Ll.
In the spirit of the positive commutator method outlined in Section 3.2,
we want to establish a lower bound on the expectation value
Ok, (C1+i[L, A0]) kP (see also (3.42)), where k is a (hypothetical) eigen-
vector of L in Ran P.
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Using the relative bound

±lI1 \ −cN−
l2

c
, -c > 0, (5.5)

with c=1/10, and (3.46), we obtain a lower bound (always in the sense of
quadratic forms on D)

C1+i[L, A0]

\ q2Hp é 1p+1p é q2Hp+
9
10
N+i[L, A0]−

l2

10

\ P 1q2Hp é 1p é PW+1p é q2Hp é PW+
9
10
P̄W+i[L, A0]−

l2

10
2 P

+P̄i[L, A0] P+Pi[L, A0] P̄+P̄i[L, A0] P̄−
l2

10
P̄

=: PM0P+M1, (5.6)

where the bounded operatorsM0 andM1 are given by

M0 :=pJcHp é 1p é PW+1p é pJcHp é PW+
9
10
P̄W

+i[L, A0]−
l2

10
, (5.7)

M1 :=P̄i[L, A0] P+Pi[L, A0]P̄+P̄i[L, A0] P̄−
l2

10
P̄. (5.8)

The difficult part of the proof of Theorem 2.3 is contained in the
following two propositions.

Proposition 5.1. Suppose Proposition 3.2 holds and that the param-
eters satisfy

0 < |l| <min 11,`r , E

3`h k
,
E

`k
2 , 0 < E <min(5hc, E0), 0 < h < r/32,

(5.9)
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where k is a constant depending on the interaction, but not on any of the
parameters E, l, h, nor on b (for b \ b0, with b0 > 0 fixed). Then there is
an interval D around zero such that

PE0
DM0E

0
DP \

hl2

E
cE0

DP, (5.10)

where E0
D=ED(L0) is the spectral projection of L0 onto D.

Proposition 5.2. Assume that the conditions of Proposition 5.1 are
satisfied and that

|l| <
c

k
min(1, E, h/E). (5.11)

If k ¥ Ran P is an eigenvector of Ll then

Ok, M0kP \
1
2
hl2

E
c ||k||2. (5.12)

We may choose the parameters as l=l2c2, E=Ẽc, with l̃, Ẽ, and h
independent of the inverse temperature b. Conditions (5.9) and (5.11) are
satisfied provided 0 < |l̃| < kr, for some k independent of b and r.

Theorem 5.1 is now proven as follows. Assume that k ¥ Ran P is an
eigenvector of Ll, and let ka be the family of approximate eigenvectors
given in Theorem 3.3. From (5.6), (5.12), and using that Ok, M1kP=0, we
obtain

0=lim
a

Oka, (C1+i[L, A0]) kaP \
1
2
hl2

E
c ||k||2,

which is a contradiction, because the r.h.s. is strictly positive.

Proof of Proposition 5.1. Pick D such that

|D| < 1
2 min{|E(m)−E(n)| | m, n ¥ Jd, E(m) ] E(n)}. (5.13)

The Hilbert space Ran E0
DP has the decomposition

Ran E0
DP=Ran PP À Ran E0

DPP̄, (5.14)

where, we recall, P=P0 é PW is the projection onto the kernel of L0. We
analyze the spectrum of the operator PE0

DM0E
0
DP on Ran E

0
DP using the

Feshbach method. For details on the Feshbach method, we refer to ref. 3.
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Let m be a number in the resolvent set of P̄PE0
DM0E

0
DPP̄ (viewed as an

operator on Ran E0
DPP̄). The Feshbach map FP, m applied to the operator

PE0
DM0E

0
DP is defined as

FP, m(PE
0
DM0E

0
DP)

=P(PM0P−PM0P̄PE
0
D(P̄PE

0
DM0E

0
DPP̄−m)

−1 E0
DPP̄M0P)P,

(5.15)

and has the following property of isospectrality: Let s and r denote the
spectrum and the resolvent set of an operator. Then

z ¥ s(PE0
DM0E

0
DP) 5 r(P̄PE0

DM0E
0
DPP̄)

. z ¥ s(FP, m(PE
0
DM0E

0
DP)) 5 r(P̄PE0

DM0E
0
DPP̄). (5.16)

The point of the Feshbach method is that it can be easier to analyze the
spectrum of the operator (5.15) than the one of PE0

DM0E
0
DP, because the

operator (5.15) acts on the smaller space Ran PP.
Let us examine the diagonal blocks of PE0

DM0E
0
DP in the decomposi-

ton (5.14). It is readily verified that

PPM0PP=2hl2PPIR̄2
EIPP−

l2

10
PP. (5.17)

Because of (5.13), E0
DP̄0 pJd é pJd é PW=0. Hence

E0
DPP̄=E0

DPP̄W+E
0
DP(pJd é pJc+pJc é pJd+pJc é pJc ) é PW.

Set Q1=E0
DPP̄W and let Q2 be the other projection on the right side.

PE0
DM0E

0
DP is diagonal in this decomposition of Ran E

0
DPP̄. We have the

estimates

Q1M0Q1 \ 1
9
10
−
l2

10
−k
hl2

E2
2 Q1, Q2M0Q2 \ 1 r−

l2

10
2 Q2,

where k=2 ||IPI|| and we used that pJcHp \ rpJc . Consequently, we obtain
the lower bound

PP̄E0
DM0E

0
DP̄P \min 1 9

10
−
l2

10
−k
hl2

E2
, r−
l2

10
2 E0

DP̄P \
r
2
E0
DP̄P,

(5.18)
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due to (5.9). It follows that any m < r/4 is in the resolvent set of the
operator PP̄E0

DM0E
0
DP̄P and

||(PP̄E0
DM0E

0
DP̄P−m)

−1|| [ 4/r. (5.19)

We show now that

FP, m(PE
0
DM0E

0
DP) \

hl2

E
cE0

DP, (5.20)

uniformly in m < r/4, provided (5.9) is satisfied, and where the Feshbach
map was introduced in (5.15). The bound (5.20) and the isospectrality
property (5.16) of the Feshbach map imply (5.10).

We complete the proof of the proposition by showing (5.20). From
(5.19) it follows that for any k and m < r/4

Ok,PPM0P̄PE
0
D(P̄PE

0
DM0E

0
DPP̄−m)

−1 E0
DPP̄M0PPkP

[
4
r
||P̄PE0

DM0PPk||2

[
8h2l2

r
(1+kl2/E2)Ok, PPIR̄2

EIPPkP, (5.21)

where we estimate P̄PE0
DM0PP=hlP̄PE

0
DL R̄

2
EIPP as

||P̄PE0
DM0PPk|| [ h |l| (1+k |l|/E) ||R̄EIPPk||,

with k=||IP(N [ 2)||. Taking into account (5.17) and Proposition 3.1, we
obtain the estimate

FP, m(PE
0
DM0E

0
DP) \ 2

hl2

E
c 11−4h

r
(1+kl2/E2)2PP− l

2

10
PP. (5.22)

The bound (5.20) follows from (5.22) and conditions (5.9). This finishes the
proof of Proposition 5.1.

Proof of Proposition 5.2. Let 0 [ g [ 1 be a smooth function with
support in the interval D, s.t. g=1 on the interval (−|D|/4, |D|/4), and set
g0=g(L0). Since the interaction I is relatively N1/2-bounded, it follows
in a standard way (by using, e.g., the functional calculus presented in
Appendix A) that

||(1−g0) k|| [ k |l| ||(N+1)1/2 k|| [ k |l| ||k||, (5.23)

||(1−g0) P̄Wk|| [ k |l| ||N1/2P̄Wk|| [ k |l|2 ||k||, (5.24)
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where we used (2.51) in the last line. Notice also that P(1−g0)=0 and
that on Ran (1−g0) we have |L0 | \ |D|/4 hence ||(1−g0) RE || [ 4/|D|. These
estimates are used below without explicit mention. We decompose

PM0P=g0PM0Pg0

+2 Re(1−g0) PM0Pg0 (5.25)

+(1−g0) PM0P(1−g0). (5.26)

Proposition 5.1 yields the bound

Ok, g0PM0Pg0kP \
hl2

E
c ||g0k||2=

hl2

E
c(1−k |l|)2 ||k||2. (5.27)

We estimate

2 Re(1−g0) PM0Pg0 \ 2 Re(1−g0) Pi[L, A0] Pg0−l2(1−g0) g0P,
(5.28)

and since

(1−g0) i[L, A0] g0=−hl(1−g0)(lIPIR̄
2
E −LR̄

2
EIP−lR̄

2
EIPI) g0

we conclude that

2 ReOk, (1−g0) PM0Pg0kP \ −k
hl2

E
1 |l|
E
+
|l| E
h
2 ||k||2. (5.29)

Next, we have that

(1−g0) M0(1−g0) \ −hl2(1−g0)(IPIR̄
2
E+R̄

2
EIPI)(1−g0)−

l2

10
(1−g0)2,

from which it follows that

Ok, (1−g0) PM0P(1−g0) kP \ −k
hl2

E
1l4E+l

2E

h
2 ||k||2. (5.30)

Collecting the bounds (5.27), (5.29), and (5.30) we obtain

Ok, PM0PkP \
hl2

E
c 11−k |l|−k

c
1 |l|
E
+
|l| E
h
22 ||k||2,
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and (5.12) follows from the conditions (5.11). This completes the proof of
Proposition 5.2 and of Theorem 5.1. L

APPENDIX A

A.1. Invariance of Domains, Commutator Expansion

The following two theorems are useful in our analysis.

Theorem A.1 (Invariance of Domain, ref. 6). Suppose (X, Y,D)
satisfies the GJN Condition, (3.1), (3.2). Then the unitary group generated
by the selfadjoint X, e itX, leaves D(Y) invariant, and we have the estimate

||Ye itXk|| [ ek |t| ||Yk||, (A.1)

for some k \ 0, and all k ¥D(Y).

Theorem A.2 (Commutator Expansion, ref. 6). Suppose D is a
core for the selfadjoint Y \ 1. Let X, Z be two symmetric operators on D,
and define the symmetric operators ad (n)X (Z) on D by

ad (0)X (Z)=Z,

Ok, ad (n)X (Z) kP=i{Oad (n−1)X (Z) k, XkP−OXk, ad (n−1)X (Z) kP},

for all k ¥D, n=1,..., M. We suppose that the triples (ad (n)X (Z), Y, D),
n=0, 1,..., M, satisfy the GJN Condition (3.1), (3.2), and that X is self-
adjoint, D …D(X), e itX leaves D(Y) invariant, and that (A.1) holds. The
we have on D(Y)

e itXZe−itX=Z− C
M−1

n=1

tn

n!
ad (n)X (Z)

−F
t

0
dt1 · · ·F

tM−1

0
dtM e itMX ad(M)

X (Z) e−itMX. (A.2)

The following lemma is a consequence of the above two theorems.

Lemma A.1. Suppose (X, Y, D) and (ad (n)X (Y), Y, D) are GJN
triples, for n=1,..., M, someM \ 1. Moreover, assume that in the sense of
Kato on D(Y): ±ad (M)

X (Y) [ kX, for some k \ 0. For q ¥S(R), a smooth
function of rapid decrease, define q(X)=> q̂(s) e isX, where q̂ is the Fourier
transform of q. Then q(X) leaves D(Y) invariant.
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Proof. For R > 0, set qR(X)=>R−R q̂(s) e isX, then qR(X)Q q(X) in
operator norm, as RQ.. From the invariance of domain theorem, we see
that qR(X) leaves D(Y) invariant. Let k ¥D(Y), then using the commuta-
tor expansion theorem above, we have

YqR(X) k=qR(X) Yk+F
R

−R
q̂(s) e isX(e−isXYe isX−Y) k

=qR(X) Yk−F
R

−R
q̂(s) e isX 1 C

M−1

n=1

(−s)n

n!
ad (n)X (Y)

+(−1)M F
s

0
ds1 · · ·F

sM−1

0
dsMe−isMX ad (M)

X (Y) e isMX2 k. (A.3)

The integrand of the s-integration in (A.3) is bounded in norm by

k(|s|M+1)(||Yk||+||Xk||) [ k(|s|M+1) ||Yk||,

where we used that ||ad (M)
X (Y) e isMXk|| [ k ||Xe isMXk||=k ||Xk||. Since q̂ is of

rapid decrease, it can be integrated against any power of |s|, and we
conclude that the r.h.s. of (A.3) has a limit as RQ.. Since Y is a closed
operator it follows that q(X) k ¥D(Y). L

Lemma A.2. Let q ¥ C.0 (R
3), q=F2 \ 0. Suppose (X, Y, D) satis-

fies the GJN condition and define F(X), q(X) via the Fourier transform as
in Lemma A.1. Suppose F(X) leaves D(Y) invariant. Let Z be a symmetric
operator on D, s.t. for some M \ 1, and n=0, 1,..., M, the triples
(ad (n)X (Z), Y, D) satisfy the GJN condition. Moreover, assume that the
multi-commutators for n=1,..., M−1 are bounded, and the Mth multi-
commutator is relatively X-bounded in the sense of Kato on D: there is a
k <. s.t. -k ¥D:

||ad (n)X (Z) k|| [ k ||k||, n=1,..., M−1,

||ad (M)
X (Z) k|| [ k ||Xk||.

Then the commutator [q(X), Z]=q(X) Z−Zq(X) is well defined on D
and bounded: there is a k <. s.t. ||[q(X), Z] k|| [ k ||k||, -k ¥D.

Proof. We write F, q instead of F(X), q(X). Since F leaves D(Y)
invariant we have in the strong sense on D(Y):

[q, Z]=F[F, Z]+[F, Z] F.
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We expand the commutator

[F, Z]=F F̂(s) e isX(Z−e−isXZe isX)

=F F̂(s) e isX 3 C
M−1

n=1

sn

n!
ad (n)X (Z)

+F
s

0
ds1 · · ·F

sM−1

0
dsM e−isMX ad (M)

X (Z) e isMX4 .

Multiplying this from the left with F (and noticing that F commutes with
e isMX), we see immediately that [F, Z] F is bounded. Next, for any f, k in
the dense setD, we have the estimate |Of, F[F, Z] kP|=|O[F, Z] Ff, kP| [
k ||f|| ||k||, hence ||F[F, Z] k||=sup0 ] f ¥D ||f||−1 |Of, F[F, Z] kP| [ k ||k||.

L

A.2. Proof of Proposition 3.3

Before proving Proposition 3.3, we show certain triples satisfy the
GJN conditions.

Lemma A.3. The following triples satisfy the GJN Condition (3.1),
(3.2):

(Hp, Lp, C
.

0 (R
3)) (A.4)

(Ap, Lp, C
.

0 (R
3)) (A.5)

(ad(n)Hp
(Lp), Lp, C

.

0 (R
3)), n=1, 2. (A.6)

Proof. For k ¥ C.0 (R
3) we have ||Hpk||2 [ 2 ||(−D) k||2+2 ||v||

2
. ||k||

2.
The first term on the r.h.s. is bounded from above by 2 ||Lpk||2+
4 ReOk, Dx2kP and we have the estimate ReOk, Dx2kP=;3

j=1 (Ok, xjDxjkP
+Ok, “jxjkP)[;3

j=1 ||“jk|| ||xjk||[ Ok, (−D+x2) kP. Therefore, since Lp \ 1,
it follows that that ||Hpk||2 [ k ||Lpk||2. In a similar way it is simple to verify
that ±ad (1)Lp (Hp) [ k Lp. This shows that (A.4) satisfies the GJN condi-
tions. The proof for (A.5) is similarly easy.

From the above calculations, and ad (1)Hp
(Lp)=−ad (1)Lp (Hp), we see that

||ad (1)Hp
(Lp) k|| [ k ||L

1/2
p k||. Moreover, we calculate

ad(1)Lp (ad
(1)
Hp
(Lp))=−(2x ·Nv+2“mvmn“n+“nvnmm+4D+4x2)+h.c.,
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where vklm=“k“l“mv, etc. Since all the derivatives of v involved are
bounded, the r.h.s. is again relatively Lp-bounded, in the form sense on
C.0 (R

3). This shows (A.6) for n=1. For n=2, we calculate

ad (2)Hp
(Lp)=−(Nv ·Nv+2x ·Nv+2 “mvnm “n+“mvmnn+4D)+h.c. (A.7)

Notice that ad (2)Hp
(Lp) is relatively Hp-bounded, hence relatively

Lp-bounded, in the sense of Kato on C
.

0 (R
3), because Nv ·Nv and x ·Nv are

bounded. Moreover, one can calculate ad (1)Lp (ad
(2)
Hp
(Lp)), and see that it is Lp

form bounded on C.0 (R
3). This shows (A.6) for n=2. L

Proof of Proposition 3.3. We start by showing that q leaves D(Lp)
invariant. This follows from Lemma A.1 and the following two facts:
firstly, (Hp, Lp, C

.

0 (R
3)) and (ad (n)Hp

, Lp, C
.

0 (R
3)) satisfy the GJN Condi-

tion, for n=1, 2 (see Lemma A.3), and secondly, ±ad (2)Hp
(Lp) [ kHp, in the

sense of Kato on D(Lp) (see (A.7)). This shows that q: D(Lp)QD(Lp),
and consequently, qApq is well defined on D(Lp).

We have in the strong sense on D(Lp)

qApq=q2Ap+q[Ap, q]. (A.8)

Let us estimate each term on the r.h.s. separately. For k ¥ C.0 (R
3),

||q2Apk||=||q2(N · x+3/2) k|| [C
n
||q2“n || ||xnk||+

3
2 ||k||

[ k C
n
Ok, x2nkP

1/2+3
2 ||k|| [ kOk, (−D+x

2) kP1/2,

where we used that ||q2“n || <.. Consequently,

||q2Apk|| [ k ||L
1/2
p k||. (A.9)

Next we have on D(Lp)

q[Ap, q]=−q F ds q̂(s) F
s

0
ds1 e is1Hp ad (1)Ap (Hp) e−is1Hp,

where ad (1)Ap (Hp)=Hp+W, see (3.44), and since q commutes with e is1Hp, we
obtain the estimate

||q[Ap, q]|| [ F ds |q̂(s)| s(||qHp ||+||W||.) <.. (A.10)
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It follows, together with with (A.8) and (A.9), that

||qApqk|| [ k(||L
1/2
p k||+||k||) [ 2k ||L

1/2
p k||.

This shows that the first GJN condition, (3.1), is satisfied for our triple.
Next, we write

OqApqk, LpkP=OApqk, LpqkP+R1, (A.11)

where

R1=OApqk, [q, Lp] kP. (A.12)

Since qk ¥D(Lp), and Lp is essentially selfadjoint on C
.

0 (R
3), there exists

a sequence {jn} … C
.

0 (R
3) s.t. jn Q qk and Lpjn Q Lpqk. Moreover Lp

leaves C.0 (R
3) invariant, so we have

OApqk, LpqkP=lim
n

OApqk, LpjnP

=lim
n
{OLpqk, ApjnP+Oqk, [Ap, Lp] jnP}, (A.13)

and we calculate (strongly on C.0 (R
3)): i [Ap, Lp]=Hp+W−x·Nv−2x2.

Since q(Hp+W−x·Nv) is bounded, and qk ¥D(x2) (because it is in
D(Lp)), we get

(A.13)=lim
n

OLpqk, ApjnP+R2, (A.14)

where we defined

R2=Ok, q(Hp+W−x·Nv−2x2) qkP. (A.15)

Next, it is not difficult to see that if k ¥ C.0 then qk ¥D(L2
p). Conse-

quently, we can move Ap in (A.14) to the left factor in the scalar product
(recall that D(Ap) ‡D(Lp)), perform the limit, and move Ap back to the
right factor. We then obtain

OApqk, LpqkP=OLpqk, ApqkP+R2=OLpk, qApqkP+R2−R̄1, (A.16)

where the bar denotes complex conjugate. Together with (A.11) this gives

OqApqk, LpkP−OLpk, qApqkP=R1+R2−R̄1. (A.17)
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Let us first consider R1. We estimate

|R1 | [ ||Apqk|| ||[q, Lp] k|| [ (||Apk||+||[Ap, q] k||) ||[q, Lp] k||.

It is clear that ||Apk|| [ k ||L
1/2
p k||, and by the same argument as the one

leading to (A.10), that ||[Ap, q] k|| [ k ||k|| (use that q=F2 \ 0, as in the
proof of Lemma A.2), so that

|R1 | [ k ||L
1/2
p k|| ||[q, Lp] k|| [ k ||L

1/2
p k|| (||k||+||[q, x

2] k||), (A.18)

where we used in the second step that [q, −D] is bounded. Next,
Lemma A.2 (with X=Hp, Z=xn, Y=Lp, M=1) shows that [q, xn]
is bounded, hence ||[q, x2] k|| [; n (k ||xnk||+||xn[q, xn] k||) [ k ||L

1/2
p k||+

; n ||xn[q, xn] k||. We write xn[q, xn] k=[q, xn] xnk+[xn, [q, xn]] k. As
above, ||[q, xn] xnk|| [ k ||L

1/2
p k||, and using q

2=F, we write

[xn, [q, xn]]=−2[F, xn]2+F[xn[F, xn]]+[xn, [F, xn]] F. (A.19)

As above, [F, xn] is bounded, and a by now standard commutator expan-
sion shows that so are the other two terms in (A.19). We conclude that
||[q, x2] k|| [ k(||L1/2

p k||+||k||) [ k ||L
1/2
p k||. Combining this with (A.18)

yields

|R1 | [ k ||L
1/2
p k||

2. (A.20)

Finally, let us obtain the same upper bound for R2. Since
q(Hp+W−x·Nv) is bounded we only need to show that |Oqk, x2qkP| [
k ||L1/2

p k||
2. Using that [q, xn] is bounded, we arrive at

|Oqk, x2qkP|=C
n
||xnqk||2 [ k ||k||2+kC

n
||xnk||2 [ k ||L

1/2
p k||

2,

which shows that

|R2 | [ k ||L
1/2
p k||

2. (A.21)

Combining (A.17), (A.20), and (A.21) shows that (qApq, Lp, C
.

0 (R
3))

satisfies the second GJN condition, (3.2). L

A.3. Proof of Proposition 3.4

We give the following lemma without a proof, which is not difficult to
find, e.g., by using the results of Appendix A.1.
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Lemma A.4. Let v ¥ Cp−1(Rd) be s.t. xa“av is bounded, for any
multi-index |a| [ p−1. Let H=−D+v, which is essentially selfadjoint on
C.0 (R

d). Given a function m ¥ C.0 (R), define m(H)=> m̂(s) e isH. Then we
have

||OxP + n m(H)OxP ±n|| [K(p, m), n=0, 1,..., p, (A.22)

where K(p, m) is some finite constant.

Lemma A.5. The regularized Ga, J=(pJd+m) Ga(pJd+m) satisfies
the same bounds (2.22) as Ga. Moreover, ad

(n)
qApq(Ga, J) is bounded,

n=0, 1, 2, 3.

Proof. The first assertion follows easily from the fact that
OxPm pJdOxP

n is bounded, for all m, n, and from Lemma A.4 (use
OxPn m=OxPn mOxP−n OxPn).

In order to show boundedness of the multi-commutators, we treat a
typical term appearing in ad (3)qApq(Ga, J):

qApqGa, JqApqqApq

=qApOxP−1 OxP qOxP−1 OxP Ga, JOxP2 OxP−2 qApqOxPOxP−1 Apq.

Since qApOxP−1 and OxP−1Apq are bounded, we see from Lemmas A.4
and the bound (2.22) (for Ga, J), that the r.h.s. is bounded, provided
||OxP−2 qApqOxP|| <.. To obtain the latter bound, it is enough (due to due
to Lemma A.4) to show ||OxP−2 qApOxP|| <., which in turn is proved by
writing

OxP−2 qApOxP=
i
2
OxP−2 q C

n
(xnOxP “n+1/2),

and proceeding as in the proof of Lemma (A.4), by commuting xnOxP
through q to the left. L

Proof of Proposition 3.4. The operator q(Hp+W) q is bounded,
hence relatively Lp-bounded. We will use below the fact that [q, Ap] is
bounded, which follows from Lemma A.2, with X=Hp, Z=Ap, Y=Lp,
M=1. We have, in the strong sense on D(Lp),

ad(2)qApq(Hp)=q[q2Hp, Ap] q+[qWq, qApq],

where the commutator in the first term is bounded, and the second term
equals q(Wq2Ap−Apq

2W) q, which is easily seen to be bounded, too (use
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Lemma A.4 together with the fact that qApOxP−1 is bounded, and so is
WOxP). Next, we show that

ad (3)qApq(Hp)=[q[q2Hp, Ap] q, qApq]+[[qWq, qApq], qApq] (A.23)

is bounded. The first term on the r.h.s. is the sum of two bounded opera-
tors plus q[ [q2Hp, Ap], qApq] q, which can be written (by commuting q
through Ap) as a bounded operator plus

q[ [q2Hp, Ap], Apq
2] q. (A.24)

Setting q1=qHp, we expand [q1, Ap]=q
−

1Hp+> q̂1(s) > s0 e i(s−s1) HpWe is1Hp,
and (A.24) splits into two terms, the first one, q[q −1Hp, Ap] q4, is bounded.
To see boundedness of the second term, write it as

F q̂1(s) F
s

0
q{[e i(s−s1) HpWe is1Hp, Ap] q2+Ape i(s−s1) Hp[W, q2] e is1Hp} q,

and use that OxPW is bounded. The second term in (A23) can be written
as a bounded operator plus q[Wq2Ap−Apq

2W, q2Ap] q. The latter term
equals again a bounded operator plus 2 Re[Wq2Ap, q2Ap], which is easily
seen to be bounded, by again noticing that OxPW, and derivatives of W
multiplied by OxP2 are bounded.

We have thus shown that the multi-commutators appearing in (3.42)
are bounded (hence Lp-bounded in the sense of Kato). Clearly, N is Lf
bounded, and Lemma A.5, together with the fact that j((−i“u)k yb(ga))) is
relatively N1/2-bounded, shows that In is Lf-bounded in the sense of Kato.
Consequently, condition (3.1) is satisfied for X=Cn.

Next, we verify that (3.2) is satisfied. Let us start with the commutator
of C1 with L. We need to show relative boundedness of [q(H+W) q, Lp]
and [I1, L] (relative to Lp and Lf, respectively, in the sense of quadratic
forms). Noticing that Lp=Hp−v+x2, we write [q(H+W) q, Lp] as a sum
of a bounded operator plus

[q2Hp, x2]+[qWq, x2]. (A.25)

Now setting q1=q2Hp, the first term in (A.25) equals ; n (xn[q1, xn]+
[q1, xn] xn), so for any k ¥ C

.

0 ,

|Ok, [q1, x2] kP [ k C
n
||xnk|| ||k|| [ kOk, LpkP. (A.26)
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Next,

|Ok, [qWq, x2] kP|

[ 2 |Ok, qW[q, x2] kP| [ 2 C
n
|Ok, (qWxn[q, xn]+qW[q, xn] xn) kP|.

(A.27)

Commuting xn in the first term in the sum through q to the left, one sees
that |Ok, qWxn[q, xn] kP| [ k(||k||2+||xnk|| ||k||), which is bounded from
above by kOk, LpkP (proceed as in (A.26)). The second term in the sum in
(A.27) is estimated in the same way. This shows that (A.25) is Lp-form-
bounded.

Next, in order to show the relative bound on [In, L], it is enough to
show that [ad (n)qApq(Ga), Lp] is relatively Lp-form-bounded, and that

[j((−i“u)n yb(ga), Lf]

is relatively Lf-form-bounded. The former bound is easily obtained from
(2.22), and the latter has been treated in Section 3.3.1. This shows that In
are relatively L-form-bounded, hence also completing the proof that C1

satisfies condition (3.2).
Next, we consider the commutator of C2 with L. The only thing to

check is that [adqApq(Hp), Lp] is Lp-form-bounded. This commutator can
be written as a bounded operator plus [ad (2)qApq(Hp), x2], hence it suffices to
show that xn[ad

(2)
qApq(Hp), xn] is Lp-form-bounded (n=1, 2, 3). One shows

that [ad (2)qApq(Hp), xn] is bounded, by simple estimates as above. Relative
boundedness of xn[ad

(2)
qApq(Hp), xn] then follows easily (proceeding as in

(A.26)). Consequently, (3.2) is satisfied for C2.
We now consider the commutator of C3 with L, and it is enough to

show that [ad (3)qApq(Hp), x2] is relatively Lp-form-bounded. We write this
commutator as 2 Re[ad (2)qApq(Hp) qApq, x2]. Now we have

[ad (2)qApq(Hp) qApq, xn]

=[ad (2)qApq(Hp), xn] qApq+ad
(2)
qApq(Hp)[qApq, xn],

and it is clear that [ad (2)qApq(Hp) qApq, xn]OxP−1 is bounded. Consequently,

|Ok, [ad (3)qApq(Hp), x2] kP| [ k(||k||2+Ok, x2kP) [ k ||L1/2
p k||

2.

Hence C3 satisfies (3.2) and the proof of Proposition 3.4 is complete. L
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A.4. Proof of Proposition 3.2

We consider first the case when (2.20) holds. From PIP=0 we have
PIR̄2

EIP=PIR
2
EIP. We recall that P0 is the projection onto the kernel of

Lp and P̄0=1−P0 is given by

P̄0= C
m, n ¥M

E(m) ] E(n)

pm é pn+pd é pc+pc é pd+pc é pc, (A.28)

where pd and pc are the projections onto the discrete and continuous sub-
spaces corresponding to Hp. One can see that

EPIR2
EP0IPQ 0, EPIR2

E C
m, n ¥M

E(m)=E(n)

(pm é pn) IPQ 0,

as EQ 0, that PIR2
E (pc é pc) IP=0, and that PIR2

E (pc é pd) IP=
PIR2

E (pd é pc) IP. From formula (2.45) for the interaction, we obtain the
bound

PIR̄2
EIP \PIR2

E (pc é pd) IP

= C
m, n, mŒ ¥M

E(m)=E(n)=E(mŒ)

C
a, aŒ
(pm é pn é PW){Ga é 1p é a(yb(ga))}

×
pc é pd é 1f
L2

0+E
2 {GaŒ é 1p é ag(yb(gaŒ))}(pmŒ é pn é PW).

We write a(yb(ga))=>R×S2 yb(ga)(u, S) a(u, S) and use the pull through
formula a(u, S) L0=(L0+u) a(u, S) and obtain

PIR̄2
EIP \ C

m, n, mŒ ¥M
E(m)=E(n)=E(mŒ)

C
a, aŒ

F
E(m)

−.
du F

S2
dS

u2

e−bu−1
ga(−u, S) gaŒ(−u, S)

×1pmGa
pc

(Hp−E(m)+u)2+E2
GaŒ pmŒ 2 é Pn é PW, (A.29)

where we recall that E(m) is the eigenvalue of Hp corresponding to the
mode m. We have dropped the integration over the values u \ E(m)
because E((Hp−E(m)+u)2+E2)−1 Q d(Hp−E(m)+u) as EQ 0, hence
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u=−Hp+E(m) [ E(m). Recalling the definition of F, see before 2.19, and
making the change of variable uW −u in the integral, we arrive at

PIR̄2
EIP \ C

m, n, mŒ ¥M
E(m)=E(n)=E(mŒ)

F
.

−E(m)
du F

S2
dS

u2

ebu−1

×1pmF(u, S)
pc

(Hp−E(m)−u)2+E2
F(u, S)g pmŒ 2 é pn é PW.

(A.30)

The projection p(E) onto the eigenspace corresponding to an eigenvalue E
of Hp is given by ;m ¥M : E(m)=E pm and we use

C
m, n, mŒ ¥M

E(m)=E(n)=E(mŒ)

= C
E ¥ sp(Hp)

C
m ¥M

E(m)=E

C
n ¥M

E(n)=E

C
mŒ ¥M

E(mŒ)=E

to arrive at

PIR̄2
EIP \ C

E ¥ sp(Hp)
F
.

−E
du F

S2
dS

u2

ebu−1

×1p(E) F(u, S) pc
(Hp−E−u)2+E2

F(u, S)g p(E)2

é p(E) é PW. (A.31)

The desired bound (3.27) now follows from (2.20) and (2.21).
The case when (2.23) holds and c is given by (2.24) is done

similarly. L
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