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ABSTRACT: We investigate the role of long-lasting quantum coherence in the
efficiency of energy transport at room temperature in Fenna-Matthews-Olson
photosynthetic complexes. The excitation energy transfer due to coupling of the light-
harvesting complex to the reaction center (“sink”) is analyzed using an effective non-
Hermitian Hamiltonian. We show that, as the coupling to the reaction center is varied,
maximal efficiency in energy transport is achieved in the vicinity of the superradiance
transition, characterized by a segregation of the imaginary parts of the eigenvalues of the
effective non-Hermitian Hamiltonian. Our results demonstrate that the presence of the
sink (which provides a quasi-continuum in the energy spectrum) is the dominant effect
in the energy transfer which takes place even in the absence of a thermal bath. This
approach allows one to study the effects of finite temperature and the effects of any
coupling scheme to the reaction center. Moreover, taking into account a realistic electric
dipole interaction, we show that the optimal distance from the reaction center to the
Fenna-Matthews-Olson system occurs at the superradiance transition, and we show that
this is consistent with available experimental data.

I. INTRODUCTION

The annual amount of energy humans currently use is delivered
to Earth by the Sun in a few hours! Since solar energy is very
dilute, it is essential to transport the captured energy efficiently.
Most natural photosynthetic systems consist of antenna
complexes, which capture photons from the Sun and transport
energy to a reaction center (RC). There, it is transformed into
chemical energy via charge separation. Antenna complexes are
able to transfer excitations to RCs with an efficiency exceeding
95%. For a long time, it was thought that energy transfer in
photosynthetic light-harvesting complexes occurs through
classical processes, similar to random walks of the exciton to
the RC. However, surprising evidence of coherent quantum
energy transfer has been found recently.1,2 These findings raise
two basic questions. How can coherence be maintained in
complex biological systems at room temperature? Why is
quantum coherence relevant to the efficiency of energy
transfer?
The first question has been addressed in refs 3,4. We

consider here the second one. It is known that quantum
coherence can speed up energy transport through a quantum
walk, which can be faster than a classical walk.5 Although the
relevance of a mechanism similar to Dicke superradiance8 has
been also pointed out,6,7 we focus here on a different feature of

the “superradiance transition” (ST).9,10 We show that ST is a
dominant mechanism in an antenna complex described by
discrete energy levels coupled to the RC, modeled here by a
sink having a continuum energy spectrum similar to what has
been done in refs 3,5,11. On the other hand, the effects of the
thermal bath lead only to small corrections to the energy
transport in the vicinity of maximal efficiency. The antenna−
sink coupling causes the appearance of a resonance width
(inverse of lifetime) and an energy (Lamb) shift. For weak
coupling strength, the resonance widths are roughly the same.
However, if the coupling strength reaches a critical value, at
which the resonance widths start to overlap, then a segregation
of widths builds up. In this regime, almost the entire (summed
up) decay width is allocated to just a few short-lived
“superradiant states”, while all other states are long-lived (and
effectively decoupled from the environment). We call this
segregation the “Superradiance Transition”. This effect has
been studied using random matrix theory,12,13 in nuclear
physics,14 for microwave billiards,15 and in paradigmatic models
of coherent quantum transport.16,17 It was shown in ref 16 that,
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in a realistic model for quantum transport, maximum
transmission is achieved at ST.
In this paper, we focus on transport properties of the Fenna-

Matthews-Olson (FMO) complex, found in green sulfur
bacteria. This complex, one of the most studied in the
literature,3−5,18 acts as a conductor for energy transport
between the antenna system and the RC. The FMO complex
is a dissipative open quantum system which interacts with the
thermal bath provided by the protein environment. Here, we
take an effective non-Hermitian Hamiltonian approach9,10,19

and study the ST as a function of the coupling to the RC and
the thermal bath, due to phonons. The phonon bath induces
dephasing and dissipation, and we take both effects into
account using two different models for the phonon bath. Since
ST is due to quantum coherence, we address here two main
issues: (i) whether its effects can survive in the presence of
dephasing induced by the phonon bath at room temperature,
and (ii) how ST depends on the strength of the coupling
between the FMO and the RC. It has been shown recently that
maximal transport efficiency for the FMO complex is achieved
near a critical coupling to the RC.20 However, so far, the
dependence of this critical coupling on the parameters of the
FMO and the RC has not been determined. We compute this
critical coupling analytically and show that it corresponds to the
ST. We demonstrate that the quantum coherent effect of ST,
even taking into account dephasing and relaxation, determines
the maximal transport efficiency at room temperature. Indeed,
the ST is due to coherent constructive interference between the
various paths to the RC, thus enhancing the rate of energy
transfer. Finally, with the aid of the non-Hermitian Hamiltonian
approach, we consider a realistic coupling between the FMO
complex and the RC, showing that the ST determines the
optimal distance from the RC to the FMO system.

II. MODEL FOR SUPERRADIANCE TRANSITION
The FMO complex is a trimer, composed of identical subunits,
each of which contains seven bacteriochlorophylls (BChl).21

Each subunit acts independently and can be modeled using a
tight-binding Hamiltonian
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Here, |i⟩ is the state in which the ith site is excited and the
others are in the ground state. Since the solar energy is very
dilute, we limit the description to a single excitation in the
complex, as is commonly done in the literature. The numerical
values of Ei and Ji,j have been taken from ref 3. Below, we take
the matrix elements of H0 expressed in cm−1
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The incident photon creates an electron−hole pair, called an
exciton, which decays due to two processes: coupling to the
electromagnetic field, i.e., emission of a photon (recombina-

tion) with an associated decay time, T1, and coupling to the RC
with a decay time, T1r.
As is common in quantum optics,22 we describe this

dissipative system with at most one excitation by states
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where |0⟩ is the vacuum state of the environment and |c,E⟩ ⊗ |
gs⟩ is the state with one excitation in the environment and none
on the sites. Here, c is the quantum number labeling channels
(at energies E) in the environments. The reduced density
matrix is obtained by tracing over the states |0⟩ and |c,E⟩

∑ ∑ρ = *| ⟩⟨ | + − | | | ⟩⟨ |a a i j a gs gs(1 )
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which is an 8 × 8 matrix. However, ⟨gs|ρ|i⟩ = 0, since with the
choice in eq 2, we neglect the transitions |i⟩ → |gs⟩. Moreover,
⟨gs|ρ|gs⟩ is simply the loss of probability of excitation of the
seven sites. Therefore, we restrict our considerations to the 7 ×
7 matrix ⟨i|ρ|j⟩, 1 ≤ i,j ≤ 7, which however does not have
constant trace.
In order to compute the evolution of the reduced density

matrix, we introduce an effective non-Hermitian Hamilto-
nian9,16,23 which in general can be written as Heff(E) = H0 +
Δ(E) − iW(E), where H0 is the Hermitian Hamiltonian of the
system decoupled from the environments and Δ(E) and W(E)
are the induced energy shift and the dissipation, respectively.
Neglecting the energy dependence and the energy shift, we
have

∑= − = *H H iW W A Awith ( )ij
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c
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The real symmetric matrix, W, is given in terms of the
bound-state continuum transition amplitudes, Ai

c, from the
discrete state i to the continuum channel c.
The Schrödinger equation and eq 2 result in the following

equation for the coefficients, aj:
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and from this, the master equation easily follows
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Under the standard assumption24,25 that each site is coupled
to an independent (local) environment, with associated
coupling time T1, we have Ai

i = (ℏ/2T1)
1/2, i = 1, .., 7. The

site i = 3 is the only one which is, in addition, coupled to the
RC, giving rise to a decay time T1r. Then, A3

8 = (ℏ/2T1r)
1/2 (in

this scheme, there are 7 + 1 channels); for other channels, we
have Ai

c = 0. In eq 6, we take into account the following: (i) the
interaction between the FMO and the RC through the time T1r
and (ii) the characteristic time of exciton recombination, T1.
The effects of the thermal bath will be considered in section IV.
One can verify that eq 6 can also be obtained by restriction

to the 7 × 7 density matrix, from a Lindblad dynamics for the
full 8 × 8 density matrix (eq 3).
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In the following, we fix T1 = 1 ns, which is the exciton
recombination time reported in the literature,24,25 and we focus
on the effect of varying T1r.

III. SUPERRADIANCE TRANSITION
ST can be analyzed by studying the complex eigenvalues, Er =
Er − iΓr/2 of Hef f, defined in eq 4. As the coupling between the
excitonic states and the RC increases, one observes a
rearrangement of the widths, Γr (the “superradiance”
transition16). We show this effect in Figure 1 (left panel),

where the largest width (red dashed curve) and the average of
the 7 − 1 = 6 smallest widths (black full curve) are plotted as
functions of T1r. For weak coupling to RC (large T1r), the
widths of all states increase as T1r decreases. On the other hand,
below a critical value T1r

cr, corresponding to ST (vertical line),
the average of the 6 smallest widths decreases, while the largest
width, corresponding to the superradiant state, increases. To
examine localization of the excitation, we use the participation
ratio (PR)26 of a state |ψ⟩, defined as

∑ ψ= |⟨ | ⟩|
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4
1

Its value varies from 1 for fully localized to 7 for fully
delocalized states. The right panel of Figure 1 shows the PR for
the state associated with the largest width (the one decaying
most quickly). In the superradiant regime, T1r < T1r

cr, this state is
fully localized on site 3, the only site connected to the RC. For
weak coupling to the RC, T1r < T1r

cr, the PR is approximately 1.6.
This small value, as compared to the maximal possible value of
7, is explained by (Anderson) localization27 of the eigenstates
on sites. The Anderson localization effect in the FMO system is
due to the fact that the excitation energies of the sites and the
couplings among them are all different. Thus, the FMO
complex can be thought of as a disordered system.The critical
value, T1r

cr, at which ST occurs, can be estimated analytically. If
all states have roughly the same width, at least for small
coupling, then the superradiance condition coincides with that
of overlapping resonances. Such reasoning can be applied to the
FMO system, too. Here, eigenstates are mostly localized on the
sites, and only site 3 is coupled to the RC. The widths are thus
not uniform and most of the total width belongs to the
eigenstate localized at site 3. Imposing that the half-width, Γ3/2,
is approximately equal to the mean level spacing D, Γ3/2 ≈ D,

and using Γ3 ≈ ℏ/T1r, we obtain the critical value at which ST
occurs

≈ ℏ
T

D2r1
cr

(7)

In the FMO system, the energy level spacing is D/hc ≈ 83.5
cm−1, which gives T1r

cr ≈ 0.03 ps, a value in very good agreement
with the numerical results of Figure 1 (vertical line).
Such a value, T1r = 0.03 ps, corresponds to a transfer rate, κ,

from site 3 to the RC of κ = 1/(2T1r) = 16.6 ps−1. This value is
larger than the values usually mentioned in the literature, which
range from 0.25 ps−1 to 4 ps−1,25 even if 1 ps−1 is the most
common value.5 This discrepancy can be due to the simplicity
of our model, even if it is important to notice that, to the best
of our knowledge, the real value of the coupling time, T1r, is not
exactly known. In any case, for this reason, in section VIb, we
consider a more realistic coupling scheme between the FMO
system and the RC.

IV. EFFICIENCY OF ENERGY TRANSPORT IN THE
PRESENCE OF A THERMAL BATH

Interaction with the phonon environment is complicated, and it
involves both dephasing and dissipation.3 Since superradiance is
due to quantum coherence, in section IV A we first focus on
dephasing and the consistent indirect relaxation, induced by the
presence of classical noise. On the other hand, in section IV B,
we consider both dephasing and dissipation induced by a finite
temperature bath. Needless to say, while the latter bath induces
at equilibrium a Gibbs energy level distribution, the former
gives rise to an equal population of all energy levels.

A. Efficiency of Energy Transport in the Presence of
Noise. As a first step, one can study the effects of the phonon
bath modeling the thermal bath by a classical noise. In this case,
the dephasing effects are adequately described using an
interaction as in ref 24

∑= | ⟩⟨ |H q t i i( )iSB (8)

with

γ δ δ⟨ ⟩ = ℏq t q t t( ) ( ) ( )i j i j
2
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where γd plays the role of the dephasing rate. This approach
corresponds to an effective infinite temperature that leads to
equal populations of energy levels at sufficiently large times. We
take into account the interaction in eq 8 by adding a dephasing
Lindblad operator to the master eq 6, as was done in ref 19.
The interaction with noise leads to the Haken-Strobl master
equation for the density matrix of the following form:

ρ
ρ ρ γ δ ρ= −

ℏ
− − −+ ( )t
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H H

d

d
( ) 1i j

i j i j i j
,

eff eff , d , , (10)

The first term in the r.h.s. of eq 10 takes into account the
coherent evolution and the dissipation by recombination and
trapping into the reaction center, (it is simply eq 6 rewritten in
terms of Heff, defined in eq 4). The last term, which
corresponds to the decay of the off-diagonal matrix elements,
takes into account dephasing and indirect relaxation. For the
FMO system, the amplitude of noise, ℏγd, is related to the
temperature, T, by the relation, found in experiments2

γℏ ≃ ℏ −T c T K( ) 0.52 ( / )(cm)d
1

(11)

where T is the temperature expressed in kelvin degrees, K.

Figure 1. Left panel: average decay width, normalized to the mean
level spacing, D, as a function of the coupling time to the RC, T1r. The
black curve represents the average decay width of the 6 states with
smallest width, while the dashed red curve shows the largest decay
width. Right panel: PR of the eigenstate of Heff with the largest width
as a function of T1r. In both panels, the vertical (green) line indicates
the critical value of T1r at which ST occurs.
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Transport efficiency has been measured as in ref 25 by the
probability that the excitation is in the RC at the time tmax

∫η ρ=t
T

t t( )
1

d ( )
r

t

max
1 0 33

max

(12)

and by the average transfer time to the RC24
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T
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1
d ( )/ ( )
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In our simulations, we take the initial state

ρ = | ⟩⟨ | + | ⟩⟨ |(0)
1
2

( 1 1 6 6 )

since sites 1 and 6 receive the excitation from the antenna
system.24

It was numerically found in ref 20 that the efficiency reaches
a maximum as a function of T1r. Here, we explain this as a
consequence of ST, a general phenomenon in coherent
quantum transport. In Figure 2, we plot η(tmax = 5 ps)

(upper panel), and τ (lower panel), as functions of T1r. The
maximum efficiency of energy transport (maximum η and
minimum τ) is reached near the ST (vertical line). Note that
η(tmax = 5 ps) has a maximum not only in the quantum limit
(γd(T = 0.1 K), black dashed curve), but also considering the
dephasing rate at room temperature (γd(T = 300 K), red thick
curve). These results show that the effects of the ST persist
even in the presence of dephasing and indirect relaxation.
Within the framework of the ST, the decrease in efficiency for
large coupling to the RC can be interpreted as a localization
effect (see Figure 1, right panel). Our results also show that
dephasing can increase efficiency, since it counteracts quantum
localization. This effect is known as environment-assisted
quantum transport (ENAQT).24,25 The average transfer time
(see Figure 2, lower panel) has a minimum near the ST on the
order of a few picoseconds. This time is comparable with the
transfer times estimated in the literature.

The coupling to the RC also induces a shift of the energy of
site 3 (not only a decay width).16 This shift is assumed to be
generically of the form δ = ε/T1r, where ε depends on the
details of the coupling. We checked that the effect of changing ε
randomly, so as to produce up to a 50% change in the average
level spacing, merely changes the efficiency at most by a few
percent.

B. Efficiency of Energy Transport in the Presence of a
Finite Temperature Thermal Bath. In this subection, we
consider the effects of energy transport to the RC taking into
consideration the interaction with a phonon bath at finite
temperature, T, as described in ref 5. Here, we consider that
only site 3 is coupled to the RC, as described above. The
Lindblad-type master equation has the form

ρ
ρ ρ ρ= −

ℏ
− ++

t
i

H H L
d

d
( ) ( )i j

i j p ij
,

eff eff , (14)

where the action of the Lindblad operator on ρ, Lp(ρ), is
described in eq 5 of ref 5. With this choice, at sufficiently large
time, the transition to the Gibbs distribution occurs, in the
absence of any other dissipative mechanism, such as the
presence of “sinks”.
In Figure 3 (upper panel), we present our results on the

dependence of efficiency, η, as a function of T1r, for three bath

temperatures. As one can see, at the ST, indicated as a vertical
green line, the efficiency is about 0.92, and it weakly depends
on temperature. We also mention that the maximal efficiency
occurs near the ST.
The value of T1r at which one gets the maximal efficiency

should not be confused with the average transfer time (see eq
13). In particular, in Figure 3 (lower panel), for parameters
corresponding to the ST and room temperature, T1r ≈ 30 fs
and τ ≈ 2.1 ps.

Figure 2. Upper panel: efficiency computed at tmax = 5 ps (see eq 12),
as a function of T1r, for different dephasing rates (see eq 11). Lower
panel: average transfer time (see eq 13) as a function of T1r, for the
same effective temperatures. ST has been indicated as a green vertical
line. The initial condition is ρ(0) = (1/2)(|1⟩⟨1| + |6⟩⟨6|).

Figure 3. Upper panel: efficiency computed at tmax = 5 ps (see eq 12)
as a function of T1r, for different temperatures of the phonon bath.
Lower panel: average transfer time (see eq 13) as a function of T1r, for
the same temperatures. ST has been indicated as a green vertical line.
The initial condition is ρ(0) = (1/2)(|1⟩⟨1| + |6⟩⟨6|). We use as cutoff
frequency of the spectral density of the thermal bath ωc = 150 (cm)−1,
and a reorganization energy ER = 35 (cm)−1, where the latter two
quantities have been defined in ref 5.
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Comparing Figure 2 and 3 (upper panels), one can see that
the presence of the phonon bath significantly increases the
efficiency of energy transport to the RC, almost without
changing the position of its maximum. We also would like to
mention that, in the presence of the thermal bath, the
temperature effects on the efficiency are less significant than
in the presence of a classical noise, as in Figure 2. Indeed,
dissipation helps the system to reach the site 3 which has the
lowest energy.
The analysis of this section shows that the consequences of

the ST are very important even in the presence of dephasing
and dissipation. For both models of thermal bath considered,
the ST provides the maximal efficiency of energy transport. In
the following, we will consider only the model of the phonon
bath presented in section VI.A, which, as shown in this section,
is sufficient to capture the main effects due to the phonon bath.

V. QUANTUM VS CLASSICAL
ST implies the presence of a maximum of the energy transport
efficiency as a function of the coupling time to the RC, T1r. This
effect is counterintuitive from a classical point of view. Indeed,
the probability to escape (decay to the RC) for a classical
particle does not decrease as the escape rate (1/T1r from site 3)
is increased. In order to demonstrate the difference between the
effects of quantum coherence on energy transfer discussed
above, and the corresponding classical energy transport, we
consider a classical master equation for the population
dynamics, as in the Forster approach28

∑ δ= − − −
P
t

T P T P
P
T

P
T

d
d

( )i

k
i k k k i i

i
i

i

r
, ,

1
,3

1 (15)

where Pi is the probability to be on site i, Ti,k is the transition
matrix, and the last two terms take into account the possibility
for the classical excitation to escape the system. The transition
rates from site i to site k have been computed from ref 29,
neglecting the dependence on the coupling to the RC (for a
classical particle, the probability to go from any site to site 3
does not depend on the coupling to the RC).
The comparison between classical and quantum behavior is

shown in Figure 4 (upper panel). The classical dynamics leads
to a very different dependence of the efficiency on T1r. Namely,
the efficiency in the classical case does not exhibit a maximum
but simply decays with T1r. This shows that the ST effect is due
to quantum coherence only.

VI. DIFFERENT COUPLING SCHEMES
So far, we have considered site 3 to be the only one coupled to
the RC. However, it is not known for sure which sites are
connected to the RC, even though sites 3 and 4 are the most
likely candidates, since they are closest to the RC.24 As
mentioned above, the non-Hermitian Hamiltonian formalism
easily allows one to describe different coupling schemes, which
can be included in the effective Hamiltonian (eq 4) by properly
choosing the coupling transition amplitude, Ai

RC, between the
sites of the FMO complex and the RC. Note that, while in the
previous section we indicated the channel in the RC with the
number 8, here we label it as RC.
A. Coupling from Sites 3 and 4. Since, to the best of our

knowledge, it is not exactly known from experimental data how
the energy transport occurs, in the following we choose three
different situations, showing that the essential features of the
phenomenon indicated in the previous section do not change

too much. Specifically, we consider the following: only site 3 is
coupled to RC, so that we set A3

RC = [ℏ/(2T1r)]
1/2 (as done

above); only site 4 is coupled to the RC, so we set A4
RC = [ℏ/

(2T1r)]
1/2; both sites 3 and 4 are coupled to the RC, so we set

A3
RC = A4

RC = [ℏ/(2T1r)]
1/2.

In a general setting, the probability for the excitation to be in
the RC at time tmax = 5 ps cannot be computed using eq 12,
since by merely summing that expression for each site
connected to the RC, we neglect interference effects. The
efficiency should be computed using

∫η ρ ρ′ = − −t Tr t
T

t Tr t( ) 1 ( ( ))
1

d ( ( ))
t

max max
1 0

max

(16)

Here, 1 − Tr(ρ(tmax)) is the probability that the excitation
leaves the system by the time tmax. The last term in eq 16 is the
probability that the excitation has been lost by recombination
during this time. If there is just one site coupled to the RC, then
eq 16 reduces to eq 12.
In Figure 4 (lower panel), we show that the efficiency is

sensitive to different coupling schemes. In particular, we notice
that coupling through site 4 achieves a greater efficiency than
coupling through site 3. If both sites are coupled to the RC,
then the efficiency is further improved, and the decay for small
coupling times is smaller than that for a single coupled site.

B. Efficiency vs Position of the RC. In the following, we
consider a more realistic coupling scheme to RC, namely, the
case in which all sites of the FMO system have an electric
dipole coupling to the same channel in the RC. This
assumption can be justified, since in the RC, there are the
same bacteriochlorophyll (BChl) molecules which compose the
FMO system. So, it is reasonable to assume that the excitation
is transferred to the RC by the same mechanism that operates
between the BChl molecules in the FMO system.
The electric dipole transition amplitude from site i to the RC

can be written as

μ μ μ μ= ⃗ · ⃗ − ⃗ · ̂ ⃗ · ̂V
C

R
R R[ 3( )( )]i

i
i RC i i i

RC

,RC
3 ,RC RC ,RC

(17)

Figure 4. Upper panel: quantum and classical efficiency computed at
tmax = 5 ps, as a function of T1r at room temperature dephasing rate,
γd(T = 300 K) (see eq 11). Lower panel: efficiency computed at tmax =
5 ps, using eq 16, as a function of T1r, at room temperature dephasing
rate, γd(T = 300 K), for different coupling to RC. The vertical green
line represents ST. As initial conditions, we choose ρ(0) = (1/2)(|
1⟩⟨1| + |6⟩⟨6|).
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where Ri,RC is the distance from site i to the RC, μi is the dipole
moment at the site i, and μRC is the dipole moment assigned to
the RC. We take the position of the BChls and their dipole
moments from ref 20. Here, we assume that the coupling
strength between the sites and the RC is equal to that between
the sites, so that C|μ|2 = 134 000 cm−1(Å)3, as in ref 20.
In order to determine the coupling amplitude from site i to

the continuum of states in the RC, we evaluate the transfer rate,
κi from the Fermi-golden rule:5

κ
πρ

=
| |

ℏ
V2

i
iRC
RC 2

(18)

where ρRC represents the density of states in the RC. It is
interesting to observe that an expression for the transfer rate
similar to eq 18 can also be obtained without perturbation
theory (see for instance ref 30, where the continuum was
modeled as a semi-infinite lead). We can now determine the
non-Hermitian Hamiltonian (eq 4), setting

πρ=A V2i i
RC

RC
RC

Note that now the coupling between the FMO complex and
the RC depends on the position of the RC. In order to
determine how the efficiency of energy transfer depends on the
position of the RC with respect to the FMO complex, we
assume μ⃗RC = μ⃗3 and place the RC in the same y and z positions
of site 3, as given in ref 20. The transport efficiency has been
studied by varying the distance, d, from site 3 along the x
direction. In order to compute the transition amplitude, Ai

RC,
we need the density of states of the RC which, to the best of
our knowledge, is not known experimentally. For this reason,
we consider different densities of states, respectively, larger,
equal, or smaller than the density of states of the FMO system,
ρFMO ≃ 1/D, with D being the mean level spacing of the FMO
complex discussed in section III.We show in Figure 5 how the

efficiency, computed with eq 16 using eq 10, varies as a
function of the distance from the RC to site 3 of the FMO
system. In Figure 5, we consider a room-temperature dephasing
rate γd(T = 300 K), for different ratios, χ = ρRC/ρFMO = 0.1, 1,
102, respectively, from the upper to the lower panel. As one can
see, the optimal distance, which is the distance that maximizes
the efficiency, slowly depends on the density of states in the
RC.
We can use the superradiant criterium obtained in eq 7 to get

an analytical expression for the optimal distance of the RC from
the FMO complex. Since site 3 is the closest to the RC, we can
use eq 7, and we find that the ST occurs for ℏκ3 = D. Finally,
from eq 18 we have

π ρ ρ=d B(2 ) ( )max
2 1/6

RC FMO
1/6

(19)

where

μ μ μ μ= ⃗ · ⃗ − ⃗ · ̂ ⃗ · ̂B C R R[ 3( )( )]RC3 3 3,RC RC 3,RC (20)

Equation 19 gives us the distance at which the superradiance
transition occurs. The critical distance obtained from eq 19 is
shown in Figure 5 as dashed vertical lines. As one can see, the
estimate is very good. Note that changing the density of states
in the RC from ρFMO/10 to 102ρFMO only changes the optimal
distance from 1 nm to 3 nm. These distances are consistent
with available structural data for the RC-FMO complex (see for
instance ref 31). The result is remarkable, since it shows that
the superradiant criterium suffices to determine the optimal
distance from the RC to the FMO complex for a wide range of
values for the density of states of the RC.

VII. CONCLUSION

We have analyzed energy transport in the FMO system with
the aid of a non-Hermitian Hamiltonian approach. This allows
us to take into account the effect of the coupling of the FMO
system to the reaction center in a consistent way, not merely
phenomenologically, as is usually done in the literature. We
have shown that, by increasing the strength of the coupling to
the reaction center, a superradiance transition occurs. This
transition occurs at approximately the same value of the
coupling for which energy transport efficiency is maximal.
Indeed, the superradiance transition is due to coherent
constructive interference between the paths to the RC, and
this effect enhances the rate of energy transfer. Since the ST
effect is due to quantum coherence, one might expect that any
consequences of ST would disappear in the presence of
dephasing and relaxation provided by the thermal bath. On the
contrary, we have shown that the effect of superradiance
survives in the presence of the thermal bath, and the maximal
efficiency only depends weakly on temperature. We have also
estimated the ST critical value analytically. For coupling
strengths of the FMO system to the RC near the critical one,
where the superradiance transition takes place, we obtained
average energy transfer times comparable to experimental
values (a few picoseconds). Finally, we took into account a
realistic coupling scheme between the FMO system and the
RC, and derived from the superradiance condition the
analytical expression, eq 19, for the optimal distance from the
RC to the FMO complex. This analytical expression depends
on the density of state in the RC. Within a wide range of
densities of state, the optimal distance which we obtained
analytically is approximately a few nanometers and is consistent

Figure 5. Efficiency (eq 16) computed at tmax = 5 ps vs the distance d
(nm) of the RC from site 3 in the FMO complex for different ratios χ
= ρRC/ρFMO. Here, an electric dipole coupling between the RC and the
FMO system (see eq 17) has been considered. The vertical dashed
lines, obtained from eq 19, represent the critical distances at which
superradiance transition occurs. As initial conditions, we choose ρ(0)
= (1/2)(|1⟩⟨1| + |6⟩⟨6|). Data in this figure refer to a room-
temperature dephasing rate, γd(T = 300 K) (see eq 11).
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with available structural data on RC. Note also that eq 19 is
valid for a generic Donor−Acceptor complex.
Our analysis shows that the superradiance mechanism might

play an important role in explaining the efficiency of quantum
transport in photosynthetic light-harvesting systems and in
engineering artificial light-harvesting systems.
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