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ABSTRACT. A spin (qubit) is in contact with a bosonic reservoir. The state of the reservoir
contains a parameter ε interpolating between quantum and classical reservoir features. We
derive the explicit expression for the time-dependent reduced spin density matrix, valid for all
values of ε and for energy conserving interactions. We study decoherence and markovianity
properties. Our main finding is that the spin decoherence is enhanced (full decoherence) when
the spin is coupled to quantum reservoir states while it is dampened (partial decoherence)
when coupled to classical reservoir states. The markovianity properties depend in a subtle
way on the classicality parameter ε and on the finer details of the spin-reservoir interaction.
We further examine scattering and periodicity properties for energy exchange interactions.

1. INTRODUCTION AND MAIN RESULTS

One of the paradigmatic open quantum system models is the spin-boson model, which
describes a two level quantum system in contact with a bosonic environment [7, 34, 24, 19,
20, 22, 9, 36, 25, 26, 27]. The two level system represents a spin 1

2
or a qubit, or more

generally two degrees of freedom of a more complex system which exchange energy and
information (correlations) with an external agent. The latter, called the environment, the bath,
or the reservoir, consists of bosonic degrees of freedom, that is, of a set of quantum oscillators.
In our setup, we consider a continuum of oscillators (a bosonic quantum field), which is
used for instance to describe the quantized electromagnetic field, described by creation and
annihilation operators a∗(k), a(k), k ∈ R3, satisfying the canonical commutation relations

[a(k), a∗(l)] = δ(k − l).

The the interacting spin-boson Hamiltonian is

H(ε) = 1
2
ω0σz +

∫
R3

ω(k)a∗(k)a(k)d3k + λ
√
εG⊗ φ(g), (1)

where ω0 > 0 is the spin Bohr frequency and ω(k) ⩾ 0 is the reservoir dispersion relation.
The interaction operator contains a mean-field or quasi-classical parameter 0 < ε ⩽ 1 which
we will explain below. It contains further a coupling constant λ ∈ R, an operator G = G∗

acting on the spin and the field operator

φ(g) = 1√
2

[
a∗(g) + a(g)

]
, (2)

where

a∗(g) =

∫
R3

g(k)a∗(k)d3k

Date: October 29, 2024.
1



2 M. CORREGGI, M. FALCONI, M. FANTECHI, AND M. MERKLI

and g(k) is a (complex-valued) function, called the form factor. The Schrödinger-von Neu-
mann dynamics of an initial density matrix ρSR of the combined system is given by (ℏ = 1 in
our units)

ρSR(t) = e−itH(ε)ρSRe
itH(ε).

In this work, we consider factorized initial states (this is not necessary for our arguments to
work though, see [11])

ρSR = ρS ⊗ ζε, (3)
in which the spin density matrix ρS is arbitrary and the reservoir density matrix ζε describes
a ‘macroscopic’ state of the reservoir, populated with many particles or excitations (infinitely
many as ε → 0). Our model has two quasi-classical (mean-field) features, which we discuss
in more detail below:
(QC1) The average number of particles or excitations in the reservoir state is ‘macroscopi-

cally’ large ∝ ε−1 where ε → 0. The reservoir observables are of mean-field type,
that is, n−body reservoir observables are rescaled with a prefactor εn so that their
averages are of order 1 as ε → 0. Due to this scaling, the average of a commutator
of two n-body mean-field operators is of the order ε. In the limit ε → 0 the reservoir
becomes classical, in the sense that its observables commute.

(QC2) The spin-reservoir interaction term is scaled in the mean-field sense (factor
√
ε in

(1)), so that the interaction operator λ
√
εG ⊗ φ(g) is of the same order as the spin

energy 1
2
ω0σz, independently of the value of ε.

Discussion the two quasi-classical features.
• (QC1) is a feature of the reservoir alone. To motivate it, consider for the moment

the reservoir without any coupling to the spin. Assume there are N particles in the
reservoir, where N is a fixed number. Pure states are symmetrized functions of N
variables, that is, normalized elements of

L2
sym(R3n, d3nk) = S L2(R3, d3k)⊗ · · · ⊗ L2(R3, d3k),

where S is the symmetrization operator. Let A1 be a single particle operator acting
on L2(R3, d3k) with integral kernel A1(k, l),

(A1f)(k) =

∫
R3

A1(k, l)f(l)d
3l.

The associated one-body operator is defined by

O(A1) =

∫
R3×R3

A1(k, l)a
∗(k)a(l) d3kd3l

= A1 ⊗ 1l⊗ · · · ⊗ 1l + 1l⊗ A1 ⊗ 1l · · · ⊗ 1l + · · ·+ 1l⊗ · · · 1l⊗ A1.

This operator acts equally on each particle in an N -body system and it adds up the
corresponding actions over all N particles. It preserves the symmetry of states. In
mean field theories, one considers observables averaged over the number of particles.
One-body mean field operators are defined to be given by N−1O(A1). In the same
way, n-body operators (1 ⩽ n ⩽ N ) are of the form

O(An) =

∫
R3n×R3n

An(k1, . . . , ln) a
∗(k1) · · · a∗(kn)a(l1) · · · a(ln)d3k1 · · · d3ln,
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with a kernel An(k1, . . . , ln). The operator O(An) selects each of the
(
N
n

)
possible

clusters of n particles, acts on each cluster in the same way dictated by An, and then
adds up all those actions. For large N (and fixed n), we have(

N

n

)
∼ Nn

and mean field n-body operators are defined to be of the form N−nO(An). The mean
field scaling is implemented by the replacement

a∗(k) 7→ N−1/2a∗(k), a(k) 7→ N−1/2a(k).

The expectation values of the rescaled creation and annihilation operators in N -body
states are of order 1 as N → ∞.

The above is the description of the reservoir and its mean-field observables for
a fixed number N of particles. However, in an open system setting, the reservoir
is coupled to a spin, and absorption/emission processes will change that number.
Nevertheless, typically the interaction with the spin can alter the average number of
particles in the bath by a finite amount only, and so during the dynamics, the number
of excitations in the bath stays of the initial order ε−1. Let

N̂ =

∫
R3

a∗(k)a(k)d3k

be the number operator of the bath and consider a bath density matrix ζε, such that
the average number of particles is given by

TrR
(
ζεN̂) ∝ ε−1. (4)

The mean-field scaling explained above amounts to the replacement

a∗(k) 7→ aε(k) :=
√
εa∗(k)

(and analogously for a(k)) in the expression for reservoir observables, or analogously,
to the scaling

a∗ε(f) := a∗(
√
εf), aε(f) := a(

√
εf)

φε(f) := φ(
√
εf)

Wε(f) := W (
√
εf) := eiφε(f).

For any fixed 0 < ε ⩽ 1, TrR(ζε · ) is a state (positive linear normalized functional)
on the Weyl algebra W , the C∗-algebra generated by all the operators W (f), f ∈
L2(R3, d3k). This is the same as theC∗-algebra generated by all theWε(f), of course.
However, as we take ε → 0, we will focus on the mean-field observables Wε(f)
exclusively. Namely, we will consider the limit

χε(f) = TrR
(
ζεWε(f)

)
, as ε→ 0.

The limiting characteristic functional

χ0(f) = lim
ε→0

χε(f)
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then defines a state on W which is obtained as a limit of averages of mean-field
observables only. This restriction naturally imposes some macroscopic, classical fea-
tures on the limit state associated to χ0. The emergence of classicality can be ex-
plained as follows. Let Aε, Bε be reservoir observables, that is, polynomials (and
limits thereof) in creation and annihilation operators a∗ε(f), aε(f). Then we have the
commutative (classical) property

lim
ε→0

trR
(
ζεAεBε

)
= lim

ε→0
trR
(
ζεBεAε

)
,

which readily follows from [Aε, Bε] = O(ε). Of course, Aε, Bε → 0 in the limit
ε → 0, but the state ζε is also scaled with ε in order to have generally non-trivial
(nonzero) expectation values as ε→ 0.

We close the discussion of (QC1) by a comment on the dynamics of the reser-
voir. All reservoir observables, mean-field or not, evolve according to the Bogoliubov
transformation f 7→ eiωtf implemented by the field Hamiltonian

HR =

∫
R3

ω(k)a∗(k)a(k)d3k.

The scaling εHR represents the mean-field energy observable, that is, the average
energy per particle. However, as the generator of the dynamics, HR is not scaled with
ε. This is natural since the dynamics is generated by the full energy operator, not by
its mean-field counterpart, and also since this choice provides a non-trivial effective
dynamics for both the spin and the field on the same time scale of the order 1 (that is,
O(ε0)).

• We now discuss the quasi-classical feature (QC2). The coupling constant λ in the
interaction term is independent of the parameter ε. The latter is linked to the initial
state of the reservoir, but λ is not. The quasi-classical limit ε → 0 is not the same
as a weak coupling limit λ → 0, because the reservoir state scales singularly with
ε → 0, and the convergence

√
εφ(g) → 0 is compensated by the divergence of the

state. As a consequence, the interaction felt by the spin is not small as ε→ 0. Rather,
in this limit, the spin feels the interaction with a classical reservoir, whose (mean-field
scaled) observables commute.

In our model only the reservoir part is scaled to become classical as ε → 0 while the spin
does not undergo such a scaling. We call this the quasi-classical limit [8, 10, 11, 12] (as
opposed to the semi-classical one, in which the system would become classical in the limit
as well).

1.1. Outline of the main results. Our main results are on the classical limit (ε → 0) of
reservoir states (without coupling to a system) and on the effective dynamics of the spin
coupled to the classical versus quantum reservoir states (that is, various values of ε).

1. Classical limit of reservoir states.
We calculate the explicit form of the characteristic function in the classical limit, for the
bosonic reservoir in a coherent state, in a Bose-Einstein (BE) condensate and in a thermal
equilibrium state. We show that in the classical limit, the BE condensate state is a uniform
mixture of coherent states varying over an angle θ ∈ [−π, π]. We show that the classical
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limit of the equilibrium state is obtained as a high-temperature limit of the corresponding
quantum state.

2. Spin dynamics for energy-conserving interaction.
We derive the exact dynamics of the spin density matrix for 0 ⩽ ε ⩽ 1, when the interac-
tion operator G in (1) commutes with σz (energy conserving model).
(a) Our main result on decoherence is summarized as follows: When the spin is coupled

to the reservoir in a quantum coherent state or a quantum BE condensate state (ε > 0)
then the spin undergoes full decoherence, meaning that its off-diagonal density matrix
(σz basis) converges to zero in the limit of large times. However, when the same
spin is coupled to the reservoir in the classical limit state (ε = 0), then the spin only
exhibits partial decoherence (nonzero asymptotic value of the off-diagonal density
matrix element). The quantum nature of the reservoir thus enhances the decoherence
of the spin. We also show that the spin shows full decoherence when coupled to the
thermal reservoir, both in the classical and the quantum case. This can be viewed as
a consequence of the classical limit being equivalent to a high temperature quantum
case.

(b) Our main results on (non-)Markovianity are given by numerical simulations. We find
that the dynamics of the spin coupled to the condensate/coherent/thermal state is Mar-
kovian for small times, regardless of the value of the classicality parameter ε, and
subsequently oscillates in time between Markovian and non-Markovian regimes. We
find that strong coupling of the infrared modes favours Markovianity. We also find
that a larger degree of quantumness (larger values of ε) in the reservoir favours non-
Markovianity (thermal case).

3. Spin dynamics for the energy exchange interaction.
We show that our exact results for the quasi-classical spin dynamics in the energy conserv-
ing model coincides with the expression derived in a more general theory of quasi-classical
dynamics [11]. The latter applies as well to the quasi-classical limit for interactions which
do not conserve the spin energy (G does not commute with σz). Our results for this case,
which is not explicitly solvable, are as follows.
(a) We show that the scattering operator for the system-reservoir dynamics in the quasi-

classical limit exists, provided a certain ‘dispersiveness’ condition on the reservoir
dynamics is satisfied. The latter is encoded by the infrared and ultraviolet behaviour
of the interaction (form factor g(k)). As a consequence, the free spin dynamics, gen-
erated by the Hamiltonian 1

2
ω0σz, is stable in the sense that it deviates from the inter-

acting dynamics (λ ̸= 0) by a quantity of O(λ) for all times t ⩾ 0.
(b) While the energy-conserving model with the classical coherent state or the classical

Bose-Einstein condensate state falls within the situation of the stable free spin dy-
namics (see point 2(a) above – even though the analysis there holds for all values of
the coupling λ), the thermal case does not. We present another family of models for
which the free spin dynamics is not stable: The polaron-type models. For those the
field dispersion relation is ω(k) = ωR, a constant in k, which leads to a violation of the
dispersiveness condition mentioned above. We show that the effective spin dynamics
is governed by a time-dependent Hamiltonian which is well known from the theory of
atoms interacting with classical electric fields.
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2. CLASSICAL LIMIT OF THE QUANTUM RESERVOIR

In this section we consider the reservoir alone. We describe its Hilbert space and introduce
the characteristic function of reservoir states in § 2.1. We then derive the explicit character-
istic functions for coherent, condensate and thermal states, § 2.2.

The reservoir Hilbert space is the bosonic Fock space

F(h) :=
⊕
n⩾0

[
h⊗n
]
sym

= C⊕ h⊕ [h⊗ h]sym ⊕ [h⊗ h⊗ h]sym ⊕ · · ·

with the single-particle space (in momentum representation)

h = L2(R3, d3k).

The symbol [·]sym means that we take the symmetric (permutation invariant) subspace. The
n-fold symmetric product [h⊗ · · · ⊗ h]sym is called the n-particle sector. The creation, anni-
hilation, field and Weyl operators are denoted by a∗(f), a(f), φ(f) (as above) and

W (f) = eiφ(f). (5)

They satisfy the canonical commutation relations (equivalently expressed in three ways),

[a(f), a∗(g)] = ⟨f, g⟩, [φ(f), φ(g)] = iIm⟨f, g⟩, W (f)W (g) = e−
i
2
Im⟨f,g⟩W (f + g),

(6)
where ⟨· , ·⟩ is the inner product of h.

2.1. Characteristic function of the reservoir. The characteristic function of a reservoir
state ζε (a density matrix on F(h)) is defined to be

χε(f) = trR(ζεWε(f)), f ∈ h. (7)

We consider reservoir states ζε for which the following two properties hold:
1. The limit ε → 0 of the characteristic function χε(f) exists for every f ∈ h. This limit

defines a (nonlinear) functional on h,

χ0(f) ≡ lim
ε→0

χε(f). (8)

2. The map f 7→ χ0(f) is continuous (as a map from h to C).

The functional χ0 is of positive type, meaning that for any N ∈ N, any zk ∈ C, fk ∈ h,
k = 1, . . . , N , we have ∑

k,l

zkzl χ0(fk − fl) ⩾ 0. (9)
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To see that (9) holds, we note that for any ε > 0, trR(ζε·) is a state on the CCR algebra
generated by the Weyl operators W (f), f ∈ h, so we have (see for instance [29, 33])∑

k,l

zkzl trR
(
ζεW (fk − fl)

)
e

i
2
Im⟨fk,fl⟩ ⩾ 0,

which implies that (take
√
εfk instead of fk)∑

k,l

zkzl trR
(
ζεWε(fk − fl)

)
eε

i
2
Im⟨fk,fl⟩ ⩾ 0.

Taking ε→ 0 yields (9). Furthermore, we have χε(0) = 1 for all ε > 0 and so

χ0(0) = 1. (10)

The continuity in f and the properties (9) and (10) imply, by the Bochner-Minlos theorem1

[17, 14], that χ0 is the Fourier transform of a cylindrical probability measure µ on h,

χ0(f) =

∫
h

dµ(g)ei
√
2Re⟨g,f⟩. (11)

A cylindrical measure is finitely additive. A fundamental result on the existence of Wigner
measures associated to mean-field states of bosonic fields was first formulated in [2] and
it’s use has been developed in subsequent works proving the existence of the dynamics of
bosonic systems in a mean-field regime in a very general setting [3], [4] and [5]: If the state
ζε satisfies the additional assumption that for some δ > 0 and some Cδ <∞ we have

TrR
(
ζε(εN̂ + 1)δ

)
< Cδ, (12)

then the measure µ in (11) is a (true, that is σ-additive) probability measure concentrated on
h. The condition (12) is satisfied for coherent and condensate states we consider in this work.

The inclusion of the factor
√
2 in the phase of (11) is a convention (that factor can be

chosen to be any nonzero real number; its specific choice determines the probability measure
µ). As we will see below in § 2.2.1, with the choice

√
2 in the exponent, the measure µ in

(11) has a direct interpretation for coherent reservoir states.

2.2. Explicit classical limits of some reservoir states.

2.2.1. Coherent states. Coherent states are indexed by f ∈ h, defined as

Ψf := ea
∗(f)−a(f)Ω = eiφ(−

√
2if)Ω = W (−

√
2if)Ω, (13)

where Ω is the vacuum state and where we used the definitions (2) and (5) to arrive at the
second and third equality, respectively. We consider reservoir density matrices of the form

ζ =

∫
h

dµ0(f)|Ψf⟩⟨Ψf |, (14)

1The Bochner-Minlos theorem is often stated for real Hilbert spaces. The complex Hilbert space h with
orthonormal basis {en}n⩾0 and inner product ⟨·, ·⟩ is a real Hilbert space with orthonormal basis {en, ien}n⩾0

and inner product Re⟨·, ·⟩.
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where dµ0 is a probability measure on h. This state is generally a mixture of the pure coherent
states |Ψf⟩⟨Ψf |. For dµ0(f) = δ(f − f0) (Dirac measure centered at a fixed f0 ∈ h) we have
ζ = |Ψf0⟩⟨Ψf0 |. The average number of particles in the state ζ is

trR[ζN̂ ] =

∫
h

dµ0(f)⟨Ψf , N̂Ψf⟩ = 2

∫
h

dµ0(f)∥f∥2.

In accordance with the classical scaling we set for ε > 0,

ζε =

∫
h

dµ0(f)|Ψf/
√
ε⟩⟨Ψf/

√
ε|, (15)

so that trR[ζεN̂ ] ∝ 1/ε. A direct calculation based on the Weyl CCR (6), the definition (13)

and the fact that ⟨Ω,W (f)Ω⟩ = e−
1
4
∥f∥2 yields

χε(f) =

∫
h

dµ0(g) trR
[
|Ψg/

√
ε⟩⟨Ψg/

√
ε|Wε(f)

]
= e−

1
4
ε∥f∥2

∫
h

dµ0(g) e
i
√
2Re⟨g,f⟩. (16)

Thus

χ0(f) = lim
ε→0

χε(f) =

∫
h

dµ0(g) e
i
√
2Re⟨g,f⟩ (17)

and so by comparing with (11) we see that the measure resulting from the Bochner-Minlos
theorem is simply dµ0.

2.2.2. BE condensate. Let f0 ∈ h, ∥f0∥ = 1, be a single particle wave function and consider
the n-particle state

ψε =
a∗(f0)

n

√
n!

Ω, n = ⌊1/ε⌋ (18)

where Ω is the vacuum state and n is the largest integer ⩽ 1/ε. This scaling ensures that the
number of particles in the state ψε is n ∼ 1/ε, in compliance with (4). The characteristic
functional

χε(f) = ⟨ψε,Wε(f)ψε⟩, f ∈ h (19)

can be calculated explicitly,

χε(f) = Ln

(
1
2
ε|⟨f0, f⟩|2

)
⟨Ω,Wε(f)Ω⟩, n = ⌊1/ε⌋, (20)

where

Ln(x) =
1

n!

n∑
k=0

(
n

k

)
n!

(n− k)!
(−x)n−k

is the nth Laguerre polynomial. The expression (20) is derived in [29] and appeared in the
work of Araki and Woods [6]. In the setup of [6, 29] one is interested in the thermodynamic
(infinite volume) limit while in the present setting, we take the classical limit. The two
cases are formally similar but there is one crucial difference: The factor ⟨Ω,Wε(f)Ω⟩ in (20)
converges to 1 as ε → 0 while that factor remains present in the infinite volume limit. Due
to the disappearance of the factor, the represented algebra of observables is commutative in
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the classical limit (see below), while it is not commutative in the infinite volume limit. As
derived in [6, 29], we have

lim
ε→0

χε(f) = J0
(√

2|⟨f0, f⟩|
)
=

∫ π

−π

dθ

2π
ei

√
2Re eiθ⟨f0,f⟩, (21)

where J0 denotes the Bessel function and the second equality is a well known integral repre-
sentation of J0. According to (11), the measure dµ associated to the quasiclassical reservoir
state is supported on the states eiθf0 with θ drawn uniformly from S1.

To recover a Hilbert space formalism, we may cast (21) in the form

lim
ε→0

⟨ψε,Wε(f)ψε⟩ = ⟨Ωcl,W
cl(f)Ωcl⟩,

where the Hilbert space on the right side is L2(S1, dθ/2π), Ωcl = 1 is the constant function
and the ‘classical Weyl operator’ is the operator of multiplication by the function W cl(f) =

ei
√
2Re eiθ⟨f0,f⟩ on L2(S1, dθ/2π). A different derivation of the limit of these class of states

was already given in [2], without pointing out the representation as a Bessel function.
The classical Weyl operators commute (they generate the bounded multiplication operators

on L2(S1, dθ/2π)). They do not satisfy the usual canonical commutation relations. This
results because with the scaling Wε(f), we took the limit ε → 0 of the elements in the
algebra of observables (not only of the state as it is the case, for example, in the infinite
volume limit). The classical field and creation operators are operators of multiplication by

φcl(f) =
√
2Re eiθ⟨f0, f⟩, (a∗)cl(f) = eiθ⟨f0, f⟩.

2.2.3. Link between coherent and Bose-Einstein states. The relations (17) and (21) show that
in the classical limit, the Bose-Einstein condensate populated by particles with wave function
f0 ∈ h is the same reservoir state as the one obtained by mixing the family of coherent states
Ψe−iθf0 , (13), uniformly over θ ∈ [−π, π].

2.2.4. Thermal state. Without the classical scaling, the thermal state is characterized by the
two-point function

⟨a∗(f)a(g)⟩β =

∫
R3

g(k)f(k)

eβω(k) − 1
d3k. (22)

Here, β is the inverse temperature and the free field Hamiltonian is dΓ(ω). In the classical
limiting procedure, the observables are built from aε(f) =

√
εa(f) and a∗ε(f) =

√
εa∗(f),

so (22) becomes

⟨a∗ε(f)aε(g)⟩β,ε =
∫
R3

ε

eβω(k) − 1
g(k)f(k)d3k. (23)

In order to obtain a non-trivial limit for ε→ 0 we scale the inverse temperature β with ε as

β(ε) = εβ′,

for some fixed β′ > 0. This amounts to taking a high-temperature limit in the state, simul-
taneously with the classical scaling of the observables. The classical thermal state, obtained
from (23) by taking ε→ 0, has the two-point function

lim
ε→0

⟨a∗ε(f)aε(g)⟩β′ε,ε = ⟨g, 1
β′ω
f⟩. (24)
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This is the lowest order term in the high temperature expansion (about β = β′ = 0) of the
unscaled (quantum, ε = 1) case (22). Taking the limit ε→ 0 of the characteristic function

χε(f) = ⟨Wε(f)⟩β′ε,ε = e−
1
4
ε⟨f,coth(β′εω/2)f⟩ (25)

yields

χ0(f) = e
− 1

2β′ ⟨f,ω
−1f⟩

. (26)

The associated measure dµ (cf (11)) is the centered Gaussian with covariance operator β′ω.

3. OPEN SPIN-RESERVOIR COMPLEX

We now consider a spin coupled to a reservoir. In the quasi-classical theory which we
analyze in the present work, the reservoir (Bose field) is considered to be a classical system
(ε → 0 as above), while the system (spin) stays a quantum object. This is in contrast to the
‘semi-classical limit’, where both the reservoir and the spin become classical systems. The
pure state space of the spin is

HS = C2. (27)

System observables are selfadjoint operators on HS, such as the Pauli matrices σx, σy, σz.
The spin dynamics is generated by the Hamiltonian

HS = 1
2
ω0σz, (28)

where ω0 > 0.
The full system-reservoir Hamiltonian acting on HS ⊗F(h) is

H = H0 + λG⊗ φ(g) (29)
H0 = HS ⊗ 1lR + 1lS ⊗HR = 1

2
ω0σz + dΓ(ω), (30)

where we leave out obvious factors ⊗1lR etc. The parameter λ ∈ R in (29) is the coupling
constant, G = G∗ is a matrix on HS and g ∈ h is a fixed function, called the form factor. For
λ = 0 the Hamiltonian H reduces to the uncoupled H0.

In the quasi-classical scaling, the interacting Hamiltonian is

H(ε) = H0 + λG⊗ φε(g). (31)

For ε = 1 the model is fully quantum and for ε→ 0 we get the quasi-classical model.

3.1. Reduced dynamics of the spin. A rigorous theory for the reduced dynamics of a sys-
tem coupled to the reservoir in the classical limit has been carried out in [11]. The treatment
includes classes of infinite-dimensional systems as well as correlated initial system-reservoir
states. We apply the results of [11] to the relatively simple spin-Boson model in the quasi-
classical limit, and for initially uncorrelated system-reservoir states.

Take an initial product state
Γε = γ ⊗ ζε, (32)

where γ is a density matrix on C2 and ζε is a density matrix on Fock space F(h) having the
properties presented in § 2.1. The reduced system density matrix at time t is given by

γε(t) = trR
[
e−itH(ε)(γ ⊗ ζε)e

itH(ε)
]
. (33)
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The following result is a consequence of a more general analysis of quasi-classical dynamics2:

Theorem 1 (Correggi-Falconi-Olivieri [11]). For all t ∈ R, we have

lim
ε→0

γε(t) = γ0(t) :=

∫
h

dµ(f)Ut(f)γUt(f)
∗, (34)

where dµ is the probability measure on h arising from the limit characteristic function χ0,
as given in (11). Here, Ut(f) ≡ Ut,0(f) where Ut,s(f) is the unitary two-parameter group
acting on HS = C2, solving the Schrödinger equation with a time-dependent Hamiltonian,

i∂tUt,s(f) =
(
HS + V (e−itωf)

)
Ut,s(f), Ut,t(f) = 1l, (35)

with
V (f) =

√
2λGRe⟨f, g⟩, (36)

and where G and g are the ingredients of the interaction operator (29).

4. THE ENERGY CONSERVING MODEL

The case where the interaction operator G in (29) commutes with the spin Hamiltonian HS

(28) is called energy conserving. In this Section, we first derive the exact spin dynamics in
Proposition 1. In § 4.1 we derive from it the decoherence properties, which are summarized in
Corollary 2. We study in § 4.3 the non-Markovianity of the spin dynamics. § 4.6 is devoted to
showing that the exact expressions coincide with the results from [9, 11] in the quasi-classical
limit.

Consider the energy conserving Hamiltonian

H(ε) = 1
2
ω0σz + dΓ(ω) + 1

2
λσz ⊗ φε(g). (37)

The system-reservoir dynamics generated by (37) is explicitly solvable. We denote the matrix
elements of any operator S on C2 in the energy basis – the eigenbasis of σz – by Sij ≡ [S]ij ,
where σz|1⟩ = |1⟩, σz|2⟩ = −|2⟩. Starting in an initial product state of the form (32), the
reduced system density matrix at time t,

γε(t) = trR
[
e−itH(ε)(γ ⊗ ζε)e

itH(ε)
]
, (38)

satisfies the following.

Proposition 1 (Explicit expression of the dynamics). Let ε > 0. Then for all t ⩾ 0, the
populations of the spin are constant, [γε(t)]ii = γii, i = 1, 2 and the off-diagonal evolves as

[γε(t)]12 = e−iω0tDε(t)γ12, (39)

where the decoherence function is given by

Dε(t) = χε

(
λgt
)
, gt(k) :=

1− eiωt

iω
g(k), (40)

with χε the characteristic function (7).

2In [11] the field operator φ(g) is defined as
√
2 times our field operator (2), which amounts to replacing our

form factor g in (31) by g/
√
2 in order to obtain the formulas in [11].
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Proof. Since the interaction operator commutes with σz ⊗ 1l, the diagonal of γε is clearly
time-independent. Next,

[γε(t)]12 = trR
[
e−itH(ε)(γ ⊗ ζε)e

itH(ε) (|2⟩⟨1| ⊗ 1lR)
]
= e−iω0tDε(t)γ12, (41)

with
Dε(t) = trR

[
ζε e

it[dΓ(ω)−λ
2
φε(g)]e−it[dΓ(ω)+λ

2
φε(g)]

]
. (42)

Using the polaron transformation we can rewrite the exponentials in (42). Namely, the rela-
tions

Wε(f)dΓ(ω)Wε(f)
∗ = dΓ(ω)− φε(iωf) +

1
2
ε∥
√
ωf∥22

Wε(f)φε(g)Wε(f)
∗ = φε(g)− εIm⟨f, g⟩,

give

Wε(f)e
−it[dΓ(ω)+λ

2
φε(g)]Wε(f)

∗ = e−it[dΓ(ω)−φε(iωf)+
λ
2
φε(g)]e−itε[ 1

2
∥
√
ωf∥22−

λ
2
Im⟨f,g⟩],

so upon choosing

f =
λ

2iω
g (43)

we get e−it[dΓ(ω)+λ
2
φε(g)] = Wε(f)

∗e−itdΓ(ω)Wε(f) e
1
8
itελ2∥g/

√
ω∥22 . Using this, and the analo-

gous expression for the first exponential in (42), and also (43), we arrive at

Dε(t) = trR
[
ζεWε(f)Wε(−2eiωtf)Wε(f)

]
= trR

[
ζεWε

(
2[1− eiωt]f

)]
= trR

[
ζεWε

(
λ1−eiωt

iω
g
)]
.

This concludes the proof of Proposition 1. □

Let us now evaluate the decoherence function for the reservoir states presented in § 2.2.1,
2.2.2 and 2.2.4. We denote the quasi-classical decoherence function by

D0(t) := lim
ε→0

Dε(t). (44)

• Coherent state. The reservoir density matrix is given by (15) and we obtain from (40)
and (16),

Dε(t) = e−
1
4
ελ2∥gt∥2

∫
h

dµ0(f) e
i
√
2λRe⟨f,gt⟩, (45)

D0(t) =

∫
h

dµ0(f) e
i
√
2λRe⟨f,gt⟩. (46)

• BE condensate. The reservoir density matrix is ζε = |ψε⟩⟨ψε|, see (18), and we obtain
from (20),

Dε(t) = e−
1
4
ελ2∥gt∥2 Ln

(
1
2
ελ2 |⟨f0, gt⟩|2

)
, n = ⌊1/ε⌋, (47)

D0(t) = J0
(√

2|λ| |⟨f0, gt⟩|
)
=

∫ π

−π

dθ

2π
ei

√
2λRe eiθ⟨f0,gt⟩, (48)

where J0 is the Bessel function and the second equality is an integral representation
of it.
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• Thermal state. The characteristic functional of the thermal state at scaled inverse
temperature β = εβ′ is given in (25) and we obtain from (40),

Dε(t) = e−
1
4
ελ2⟨gt,coth(β′εω/2)gt⟩, (49)

D0(t) = e
− λ2

2β′ ⟨gt,
1
ω
gt⟩. (50)

Here we assume that g is such that ∥ω−1/2gt∥ < ∞, which imposes the infrared
condition, that ω(k)−1/2g(k) has to be integrable at k ∼ 0. For k ∈ R3 and ω(k) =
|k|, this means g(k) ∼ |k|q at small k, for some q > −1. Note that (4) reduces to the
first factor in (45) as β′ → ∞.

In all three cases above, the decoherence function cannot exceed unity,

|Dε(t)| ⩽ 1, ∀ε ⩾ 0, t ⩾ 0. (51)

This upper bound is seen directly from (4) and (45) for the thermal and coherent cases. To
see that (51) holds for the condensate case (47), we use that Ln(x) ⩽ ex/2 for all x ⩾ 0 (see
[1, Eq. 22.14.12], ), together with |⟨f0, gt⟩| ⩽ ∥f0∥ ∥gt∥ = ∥gt∥.

4.1. Decoherence. We examine the exponential factor e−
1
4
ελ2∥gt∥2 appearing in the quantum

decoherence functions (45), (47) and in a modified way in (4). The spectral density of the
reservoir is defined as

J (ω) =
π

2
ω2

∫
S2

|g(ω,Σ)|2dΣ, ω ⩾ 0, (52)

where the integral is taken over the unit sphere S2 ⊂ R3, with uniform measure and the
function g(k) is represented in spherical coordinates R3 ∋ k ↔ (ω,Σ) ∈ R+ ×S2. Consider
the photonic dispersion relation ω(k) = |k|. Then from (40),

∥gt∥2 =
4

π

∫ ∞

0

J (ω)
1− cos(ωt)

ω2
dω. (53)

The behaviour of integrals of the form (53) as t → ∞ is linked to the behaviour of J (ω)
as ω → 0+. It has been analyzed in connection with decoherence in many works, see for
instance [32, 28, 30] and references therein. The most complete analysis, to our knowledge,
is carried out in the recent work [35] and can be stated as follows.

Theorem 2 (Trushechkin [35]). Let S(ω) be an integrable function on [0,∞) of the form

S(ω) = ωpG(ω)

for some p > −1, where G(ω) is twice differentiable in an interval [0, ωc) for some ωc > 0,
G′′(ω) is bounded on [0, ωc) and G(0), G′(0) ̸= 0. Define the function

Γ(t) =

∫ ∞

0

S(ω)
1− cos(ωt)

ω2
dω, t ⩾ 0

and denote by o(1) a function of t which vanishes as t→ ∞. Then the following holds.
1. If p > 1 then Γ(t) = Γ∞ :=

∫∞
0
S(ω)/ω2dω + o(1).

2. If p = 1 then Γ(t) = C1 + S ′(0) ln(t) + o(1) for some constant C1.
3. If 0 < p < 1 then Γ(t) = C2 +G(0)C3t

1−p + o(1) for some constants C2, C3.
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4. If p = 0 then Γ(t) = C2 +G(0)C3t+G′(0) ln(t) + o(1) for the same constants as in
point 3.

5. If −1 < p < 0 then Γ(t) = C2+G(0)C4t
1−p+o(t) for the same C2 as in point 3. and

for some constant C4.
Moreover, if S(ω) ⩾ 0 (which is the case if S(ω) is a spectral density), then Γ∞ > 0,
S ′(0) > 0 in point 2. , G(0)C3 > 0 in points 3., 4. and G(0)C4 > 0 in point 5.

Theorem 2 together with (53) has the following consequence for the factor e−
1
4
ελ2∥gt∥2

appearing in the decoherence functions ((45), (47), (4)).

Corollary 1. Suppose the reservoir spectral density (52) satisfies J (ω) = ωpG(ω) with G
as in the statement of Theorem 2. Then as t→ ∞,

e−
1
4
ελ2∥gt∥2 ∼


e−

1
π
ελΓ∞ , p > 1,

c0t
−ελ2c1 , p = 1,

c0e
−ελ2c1t t−ελ2c2 , p = 0,

c0e
−ελ2c1t1−p

, −1 < p < 1, p ̸= 0,

for some c0 > 0 (depending on ελ2 and converging to 1 as ελ2 → 0) and some c1 > 0 and
c2 ∈ R (both independent of ε, λ). By A ∼ B we mean that |A−B| → 0 as t→ ∞.

Corollary 1 shows that depending on the infrared behaviour of the spectral density of the
reservoir, the factor e−

1
4
ελ2∥gt∥2 in the decoherence functions (45), (47) is constant, decays

polynomially, sub-exponentially, exponentially or super-exponentially, as t → ∞. The de-
coherence functions (45)-(48) depend additionally on time via the term Re⟨f, gt⟩. We will
assume that ∫

R3

f(k)g(k)

ω(k)
d3k <∞ (54)

for all f in the support of the measure µ0 (for a coherent state as in(45)) and f = f0 (for a
BEC as in (47)). By the Riemann-Lebesgue lemma the oscillating term in gt (40) vanishes in
the limit of large times,

lim
t→∞

⟨f, gt⟩ = −i⟨f, ω−1g⟩. (55)

We now state our main observation on decoherence in the quasi-classical versus the quan-
tum case.

Corollary 2 (Spin decoherence from coupling to quantum/classical reservoir). Suppose the
reservoir spectral density behaves as J (ω) ∼ ωp for small ω, some p > −1, as in Theorem 2.

(a) When a spin is coupled to a reservoir (ε > 0) in a quantum coherent state or a
quantum BE condensate, the spin undergoes full decoherence (p ⩽ 1),

lim
t→∞

Dε(t) = 0 (coupled to quantum reservoir). (56)

The speed of the decoherence is governed by the value of p according to Corollary 1.
(b) When a spin is coupled to a reservoir in a classical (ε = 0) coherent state or a

classical BE condensate state, the spin undergoes partial decoherence only,

lim
t→∞

D0(t) = D0(∞) ̸= 0 (coupled to classical reservoir). (57)
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(c) When a spin is coupled to a reservoir in a quantum or classical thermal state, the spin
undergoes partial decoherence if p > 2 and full decoherence if 0 < p < 2 (for p ⩽ 0
the thermal state is not defined). Moreover, the ratio of the decoherence functions of
the spin coupled to a quantum and classical thermal reservoir is, for t→ ∞,

Dε(t)

D0(t)
∝ e−

1
π
ελΓ∞ , p > 0. (58)

The decoherence speed is thus the same in the two cases.

Proof. Point (a) follows directly from (45), (47) and Corollary 1. Point (b) follows from
(46), (48) and (55). Finally we show (c). As remarked after (50), the decoherence function is
defined for p > 0 only in the thermal case. We write

Dε(t)

D0(t)
= exp

{
−λ2

4

}
⟨gt,

[
ε coth(β′εω/2)− 2/(β′ω)

]
gt⟩ (59)

= exp
{
−λ2

2

}∫ ∞

0

Sε(ω)
1− cos(ωt)

ω2
dω,

where
Sε(ω) =

4
π

[
ε coth(β′εω/2)− 2/(β′ω)

]
J (ω).

For small ω we have the expansion ε coth(β′εω/2) − 2/(β′ω) = 1
6
ε2β′ω + · · · and so

Sε(ω) ∝ ωJ (ω) as ω → 0. Taking J (ω) = ωpG(ω), p > 0, as in Corollary 1 gives
Sε(ω) ∝ ωp+1G(ω). Then we apply Theorem 2 to arrive at (58). This completes the proof of
Corollary 2. □

4.2. Examples and Illustrations.
1. Consider a coherent state concentrated on a single one-particle wave function f0 (µ0 is the

Dirac measure concentrated on f0). Then the decoherence function (46) satisfies D0(t) =

1 for all times and all λ. As we show in Corollary 1 below, e−
1
4
ελ2∥gt∥2 converges to zero for

generic form factors g, so that the decoherence function (45) satisfies limt→∞Dε(t) = 0
for all ε > 0. The quasi-classically coupled spin does not decohere at all, while any degree
of quantumness ε > 0 produces full decoherence.

2. Take the initial state (15) for a mixture of coherent states Ψe−iθf0 where f0 ∈ h is fixed
and the θ ∈ [−π, π] is chosen uniformly in this interval. As remarked in § 2.2.2, in the
classical limit, this is the same case as the BE condensate. From (45) we have

D0(t) =

∫ π

−π

dθ

2π
ei

√
2λRe eiθ⟨f0,gt⟩ = J0

(
|q(t)|

)
, q(t) =

√
2λ⟨f0, gt⟩. (60)

We have used the integral representation of the Bessel function (see [31] (5.3.66)), for
z = x+ iy ∈ C,

J0(|z|) =
∫ π

−π

dθ

2π
ei Im zeiθ =

∫ π

−π

dθ

2π
ei (x sin θ+y cos θ). (61)

The value of the integral in (61) depends on the modulus |z| only, as for any α ∈ R,∫ π

−π

dθ

2π
ei Im zeiαeiθ =

∫ π

−π

dθ

2π
ei Im zei(θ+α)

=

∫ π

−π

dθ

2π
ei Im zeiθ ,
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FIGURE 1. Graph of the Bessel function of the first kind J0(|z|).

where the last equality holds since the value of the integral is the same when integrated
over any interval of size 2π, the period of the integrand as a function of θ. In particular,
we can replace z by iz in the integral representation, which is the same as replacing Im
with Re in the exponent of the integrand in (61).

As J0(|q(t)|) < 1 for t > 0, the system does experience a loss of coherence, but it does
generally not fully decohere. Indeed, if f0(k) is a function such that ⟨f0, 1

ω
g⟩ is finite, then

by the Riemann-Lebesgue Lemma3,

lim
t→∞

q(t) =
√
2λ⟨f0, 1

ω
g⟩, (62)

and so the asymptotic value of the decoherence function is

lim
t→∞

D0(t) = J0
(√

2|λ| |⟨f0, 1
ω
g⟩|
)
, (63)

which is generically nonzero, except when
√
2|λ| |⟨f0, 1

ω
g⟩| happens to be one of the zeros

of J0. Those zeroes form a discrete set. Moreover, as

J0(z) ∼
cos(|z| − π/4)√

|z|
, |z| → ∞,

we see that asymptotically in time the decoherence function decays as |λ|−1/2 for large
coupling constants λ. This means that the stronger the coupling to the reservoir, the bigger
the loss of coherence of the spin, which is naturally expected. If λ is small, then (63)

3In the case k ∈ R3, ω(k) = |k| and J(0) > 0, the form factor behaves as |g(k)| ∼ |k|−1 for small k. The
condition (62) then implies that for small α, f0(k) ∼ |k|α for some α > −1. For a general square integrable
function f(k) the infrared behaviour is f(k) ∼ |k|α′

, some α′ > −3/2. The condition f0 ∼ |k|α to have
partial decoherence only (namely, α > −1) is stronger, meaning that the slow reservoir modes should not be
too strongly populated in the initial reservoir coherent state built from f0. This finding is in agreement with
previous results obtained in related models, albeit for quantum reservoirs (ε = 1 in our setting) [32, 30, 35],
where it was observed that the decoherence is only partial provided the presence of (or the coupling to) the
infrared reservoir modes is not strong enough.
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is 1 + O(λ), which expresses the stability of the free dynamics. On the other hand, the
exponential factor in the quantum case (47) converges to zero for generic form factors (see
Corollary 1 below) while Ln(

1
2
ελ2|⟨f0, gt⟩|2) is bounded. Thus Dε(t) converges to zero

as t→ ∞. We conclude that the quasi-classical spin undergoes partial decoherence while
the quantum spin has full decoherence.

4.3. Non-Markovianity. To analyze the (non-)Markovian behaviour of the spin dynamics
we use the measure for Markovianity introduced in [23]. The basic idea behind this measure
is the following. The distinguishability between two quantum states ρ and ν is measured by
the trace distance ∥ρ−ν∥1, where ∥A∥1 = tr

√
A∗A. The smaller the value of ∥ρ−ν∥1 the less

the states ρ, ν are distinguishable. For a Markovian dynamics the distinguishability between
two quantum states never decreases during the evolution. In [23] the following measure of
non-Markovianity is introduced,

N = max
ρ(0),ν(0)

∫
S+

∂t∥ρ(t)− ν(t)∥1dt, (64)

where the maximum is taken over all initial density matrices ρ(0), ν(0) and

S+ = {t ⩾ 0 : ∂t∥ρ(t)− ν(t)∥1 > 0}. (65)

Whenever N > 0 the dynamics is called non-Markovian. In the current work, we do not
attempt to find the actual value of N . Rather, we focus on the region S+ of times t during
which the process is non-Markovian. S+, defined in (65), is actually independent of the initial
values ρ(0), ν(0), it depends only on the decoherence function, as we show below.

Let γ, δ be two 2× 2 density matrices with matrix elements [·]ij . Then∥∥γ − δ
∥∥
1
= tr|γ − δ| =

√
(γ11 − δ11)2 + |γ12 − δ12|2.

As the diagonal density matrix elements are time-independent in our energy-conserving
model, we obtain

∂t
∥∥γ(t)− δ(t)

∥∥
1
=

1

2

∂t|v(t)|2√
d2 + |v(t)|2

,

where d = γ11 − δ11, v = γ12 − δ12. Then

∂t
∥∥γ(t)− δ(t)

∥∥
1
> 0 ⇐⇒ ∂t|v(t)|2 > 0.

From Proposition 1 we have for ε > 0, |v(t)| = |Dε(t)| |v(0)|, so that for v(0) ̸= 0

∂t
∥∥γ(t)− δ(t)

∥∥
1
> 0 ⇐⇒ ∂t|Dε(t)|2 > 0 ⇐⇒ ∂t|Dε(t)| > 0. (66)

This shows that S+ in (65) is equivalently given by

S+ = {t ⩾ 0 : ∂t|Dε(t)| > 0}. (67)

From (65), (67) we conclude that the moments in time where non-Markovianity is built up
are exactly the moments in time where coherence is increased. We now analyze the sets S+

in more detail for the BE condensate state and the thermal state, as a function of 0 ⩽ ε ⩽ 1.
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4.4. BE condensate. The time derivative of the decoherence function (47) is given by

∂t(|Dε(t)|2) =

= e−
1
2
ε||gt||2

(
−1

2
ε|⟨f0|gt⟩|2Re

(
⟨eitωg|gt⟩

)
Ln

(
1
2
ε|⟨f0|gt⟩|2

)2
+

+εRe
(
⟨f0|gt⟩⟨f0|eitωg⟩

)
Ln

(
1
2
ε|⟨f0|gt⟩|2

)
L′
n

(
1
2
ε|⟨f0|gt⟩|2

))
,

where ε = 1
n

and we have taken λ = 1. For concreteness of the numerical simulations, we
take the form factor g and the single particle state f0 to satisfy

g(ω) = f0(ω) =
1

ω
(α+3)/2
c (Γ(α + 3))

1
2

e−
ω

2ωc ω
α
2 , (68)

which is a radial function in L2(R3; dk) with ω = |k| and where Γ(·) is the ‘gamma function’
(reducing to the factorial function for integer arguments). The parameter α > −3 character-
izes the infrared behaviour, g(ω) ∼ ωα/2 for ω small, which amounts to J (ω) ∼ ω2+α for
the spectral density (52). The parameter ωc > 0 is a smooth ultraviolet cutoff. The prefactor
in (68) is chosen so that the function is normalized in L2(R+, ω

2dω).

In Fig. 2 we plot ∂t|Dε(t)|2 for varying ε = 1/n and times t. We see that
• Starting with an initial phase of Markovianity the spin dynamics oscillates between

being Markovian and non-Markovian, with decreasing amplitude.
• The frequency of the oscillation between the two regimes is faster if the reservoir

infrared modes are weakly coupled to the spin: In panels (a) and (b), the infrared
modes of the reservoir are strongly coupled to the spin (infrared singular coupling,
α = −2.9 in (68)), while in panels (c) and (d) they are weakly coupled (α = 40).

• As ε decreases from ε = 1 (quantum) to ε = 0 (classical) the regions of time where
non-Markovianity is accumulated quickly stabilizes to become ε-independent. We do
not detect an obvious universal (α, ωc independent) relation between the size of ε and
time regions of non-Markovianity. This last point is further illustrated in Fig. 3, where
we compare ∂t|Dε(t)|2 for various values of ε. The graphs superpose cross-sections,
slices of the graphs in Fig. 2 for a few values of ε.

4.5. Reservoir in the thermal state. Starting from (4),

∂t|Dε(t)|2 = −2ελ2

π

∫ ∞

0

sin(ωt)

ω
coth

(β′εω

2

)
J (ω)dω

× exp

[
− 2ελ2

π

∫ ∞

0

1− cos(ωt)

ω2
coth

(β′εω

2

)
J (ω)dω

]
, (69)

where the spectral density J (ω) is given in (52). As J (ω) ⩾ 0 it is clear that for small values
of t ⩾ 0, the dynamics is Markovian, since ∂t|Dε(t)|2 ⩽ 0. The duration of this initial period
of Markovianity depends on the infrared behaviour of the spectral density: If infrared modes
are strongly coupled, meaning that J (ω) is large for small ω ∼ 0 (divergent as ω → 0),
then the first integral in (69) is large, positive for small values of t. If the infrared modes are
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(a) (b)

(c) (d)

FIGURE 2. Regions of non-Markovianity of the spin coupled to a BEC reser-
voir, as a function of time t and classical parameter ε. The BEC wave function
f0 and the form factor g are given in (68), with ωc = 1. In (a) and (b) we take
α = −2.9. In (c) and (d) we take α = 40. Times for which ∂t|Dε(t)|2 > 0
(red colour in the online version) are times in which non-Markovianity is built
up.

suppressed in the coupling (J (ω) small for small ω) then the positive value of that integral is
smaller. This indicates that the stronger the infrared modes are coupled to the spin the longer
the duration of the initial time window of Markovianity. The conclusion is valid for all values
of 0 ⩽ ε ⩽ 1.

Our numerical calculations given in Fig. 4 illustrate this point. They show the following:

• For strongly coupled infrared modes (panels (a), (b)) the dynamics is Markovian for
all times. As the infrared modes become less strongly coupled, some non-Markovianity
is built up in time (panels (c), (d)).

• The build up of non-Markovianity (for weakly coupled infrared modes, panels (c),
(d)) depends on ε. For values of ε close to 1 – the quantum case – the non-Markovianity
is enhanced.
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FIGURE 3. Comparison of regions of non-Markovianity for the dynamics of
the spin coupled to the BEC, for various values of the parameter ε between 0
and 1. ε = 0 is the classical limit. The BEC wave function f0 and the form
factor g are given in (68). Left panel: α = −2.9 and ωc = 1. Right panel:
α = 40 and ωc = 0.2.

4.6. Benchmarking. The goal of this section is to check directly that the dynamics of the
spin obtained by the general quasi-classical theory outlined in § 3.1 is the same as that ob-
tained by taking the quasi-classical limit of the exact dynamics given in Proposition 1.

Proposition 2. Consider the energy-conserving model (37) with the classical reservoir state
determined by the characteristic functional χ0 = limε→0 χε (as in § 2.1). Then the spin
dynamics given by (34) coincides with the spin dynamics obtained from the explicit solution
given in Proposition 1 in the limit ε→ 0.

Proof. For the energy-conserving spin-boson model (37), the unitary Ut := Ut,0 (see (35),
(36)) is the solution of

i∂tUt(f) =
[
1
2
ω0σz +

λ√
2
αt(f)σz

]
Ut(f), U0(f) = 1l, (70)

with αt(f) = Re⟨e−itωf, g⟩. Recall that f ∈ h is to be integrated over (c.f. (34)) and g is the
form factor (see (37)). We can solve (70) explicitly. Writing σz|1⟩ = |1⟩ and σz|2⟩ = −|2⟩
we have

Ut(f) = e−
i
2
tω0e

− iλ√
2

∫ t
0 αs(f)ds|1⟩⟨1|+ e

i
2
tω0e

iλ√
2

∫ t
0 αs(f)ds|2⟩⟨2|.

Carrying out the integrals gives

Ut(f) = e−
i
2
tω0e

iλ√
2
Re⟨f, 1−eiωt

iω
g⟩|1⟩⟨1|+ e

i
2
tω0e

− iλ√
2
Re⟨f, 1−eiωt

iω
g⟩|2⟩⟨2|. (71)

Thus,

[Ut(f)γUt(f)
∗]12 = e−itω0ei

√
2λRe⟨f, 1−eiωt

iω
g⟩γ12. (72)

It follows that the decoherence according to the formula (34) is given by

[γ(t)]12 = e−itω0D̃0(t)[γ(0)]12, (73)
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(a) (b)

(c) (d)

FIGURE 4. Regions of non-Markovianity of the spin dynamics coupled to
the thermal reservoir, as a function of time t and classical parameter ε. The
decoherence function Dε(t) is given in (4), in which we take λ = β′ = 1. The
spectral density J (ω) is given by with g as in (68). For panels (a) and (b) the
infrared behaviour is α = −1.9 while for (c) and (d) it is α = 5.

with
D̃0(t) =

∫
h

dµ(f) ei
√
2λRe⟨f, 1−eiωt

iω
g⟩ = χ0

(
λ1−eiωt

iω
g
)
, (74)

where the last equality is due to (11). It follows that the two spin dynamics in question are
equal in the limit ε→ 0 by comparing (74) with (40). □

5. THE ENERGY EXCHANGE MODEL

While the energy conserving model discussed in § 4 is explicitly solvable, this is not the
case for the energy exchange model

H(ε) = ω0

2
σz + dΓ(ω) + λG⊗ φε(g), (75)

where G is an arbitrary matrix acting on the spin, not necessarily commuting with σz. A
typical example is G = σx, the Pauli x-operator. The quasi-classical theory of § 3.1 applies
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and gives the spin evolution (c.f. (34) - (36))

i∂tUt,s(f) =
[
1
2
ω0σz +

√
2λαt(f)G

]
Ut,s(f), Ut,t(f) = 1l, (76)

where
αt(f) = Re⟨e−itωf, g⟩. (77)

If the functions ω(k), f(k) and g(k) are such that αt(f) → 0 in the limit t → ∞, then
the ‘interaction term’ ∝ λ in (76) becomes small for large times. Physically, the property
αt(f) → 0 for large times can be expected because αt(f) is the (real part of the) probability
amplitude between the freely evolved function e−itωf and the form factor g, and, if the free
field dynamics is ‘dispersive’ then such amplitudes converge to zero in the large (positive or
negative) time limit, similarly to what happens in scattering theory. Mathematically, αt(f) →
0 as t→ ∞ is justified by the Riemann-Lebesgue lemma.

5.1. Scattering regime. Recall that H0 is the uncoupled Hamiltonian (29). Denote the free
and interacting propagators by

U0(t, s) = e−i(t−s)H0 , U(t, s) ≡ Ut,s(f),

where Ut,s(f) is the solution of (76) for a fixed f . The wave operators Ω± are defined by the
limits (if they exist)

Ω+ = lim
t→∞

[U(t, 0)]∗U0(t, 0), Ω− = lim
s→−∞

[U(0, s)]∗U0(0, s). (78)

The motivation for the definition is as follows [13, 21, 18]. In a scattering process we expect
that given any state Ψ0 there exist an f− and an f+ such that

lim
s→−∞

∥U(0, s)Ψ0 − U0(0, s)f−∥ = 0 and lim
t→∞

∥U(t, 0)Ψ0 − U0(t, 0)f+∥ = 0. (79)

Here, Ψ0 represents the system at time zero (around which the scattering is happening) while
f− is an asymptotically freely evolving state (called the ‘in-state’) and f+ is another asymp-
totically freely evolving (so-called ‘out’-) state. The relations (79) mean that

Ψ0 = lim
s→−∞

[U(0, s)]∗U0(0, s)f− = lim
t→∞

[U(t, 0)]∗U0(t, 0)f+

from which we get

Ω−f− = Ω+f+, or f+ = Sf−, S := [Ω+]
−1Ω−.

The scattering operator S links the incoming to the outgoing states. Recall the definition of
αt(f) in (77), and define

∥α(f)∥1 ≡
∫ ∞

0

|αt(f)|dt. (80)

Proposition 3 (Existence of scattering and wave operators). Suppose that ∥α(f)∥1 < ∞.
Then the wave operators Ω+, Ω− exist (as limits in the operator norm sense). Moreover, if
|λ| ∥α(f)∥1 < 1, then Ω± are invertible and the scattering operator S exists.

Proof. Integrating the equation

∂t[U(t, 0)]
∗U0(t, 0) = iλαt(f)[U(t, 0)]

∗GU0(t, 0)
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we obtain

[U(t, 0)]∗U0(t, 0) = 1l + iλ

∫ t

0

dτ ατ (f) [U(τ, 0)]
∗GU0(τ, 0) (81)

and so (t′ ⩽ t)∥∥∥[U(t, 0)]∗U0(t, 0)− [U(t′, 0)]∗U0(t
′, 0)
∥∥∥ =

∥∥∥λ∫ t

t′
dτ ατ (f) [U(τ, 0)]

∗GU0(τ, 0)
∥∥∥

⩽ |λ| ∥G∥
∫ t

t′
dτ |ατ (f)| → 0.

This means that [U(t, 0)]∗GU0(t, 0) is Cauchy and thus has a limit as a bounded operator on
C2 as t→ ∞, showing that Ω+ exists. An analogous argument gives the existence of Ω−. To
show that Ω± are invertible, we note that the equation (81) gives

Ω+ = 1l + iλ

∫ ∞

0

dτ ατ (f) [U(τ, 0)]
∗GU0(τ, 0),

which is an invertible operator provided |λ| ∥
∫∞
0
dτ ατ (f)[U(τ, 0)]

∗GU0(τ, 0)∥ < 1. Ω− is
shown to be invertible analogously. □

When Ω+ exists and is invertible, then we have for large positive t, [U(t, 0)]∗U0(t, 0) ∼ Ω+

or equivalently, U(t, 0) ∼ U0(t, 0)Ω
−1
+ , where A ∼ B means that ∥A − B∥ → 0. An

analogous formula holds for large negative times. This means that the dynamics of the spin
is asymptotically free (t→ ±∞). Furthermore, as Ω± = 1l+O(λ), the interacting dynamics
of the spin deviates from the free dynamics by a term of O(λ) at most, for all times.

Proposition 4 (Stability of the free dynamics). Let µ be the measure determining the classical
state of the field, (11). Suppose that there is a constant c such that for all f in the support
of the measure µ we have ∥α(f)∥1 < c. Then the quasi-classical dynamics of the spin with
initial state γ(0), given by (34) satisfies

sup
t⩾0

∥γ0(t)− e−itHSγ(0)eitHS∥ ⩽ C|λ| (82)

for some constant C <∞, and where HS = 1
2
ω0σz.

In (82), ∥ · ∥ is any norm on the spin density matrices (they are all equivalent since the
system is finite dimensional).

Proof. We have

γ0(t) =

∫
h

dµ(f)Ut,0(f)γ(0)[Ut,0(f)]
∗.

The equation (81) yields (operator norm) ∥Ut,0(f)−e−itH0∥ ⩽ |λ| ∥α(f)∥1 ⩽ c|λ|. Replacing
Ut,0 by e−itH0 and similarly for their adjoints and using the last inequality yields (82). □

The result of Proposition 4 means that even when the system interacts with the reservoir
for a long time (even t → ∞), there are no effects on the system beyond the size of O(λ),
provided the integrability property

∥α(f)∥1 <∞ (83)

holds. In the next result we give a condition which ensures (83).



24 M. CORREGGI, M. FALCONI, M. FANTECHI, AND M. MERKLI

Lemma 1 (Sufficient condition for (83)). Let ω(k) = |k|, k ∈ R3 and write functions f ∈
L2(R3, d3k) as f(Σ, ω) in polar coordinates, (Σ, ω) ∈ S2 × R+. Suppose that

(a) For each Σ ∈ S2, the function ω 7→ f(Σ, ω)g(Σ, ω) is twice differentiable, and
(b) The infrared and ultraviolet behaviour is as

ω → 0 : f(Σ, ω)g(Σ, ω) ∼ ωp, some p > −1, (84)
ω → ∞ : f(Σ, ω)g(Σ, ω) ∼ ω−q, some q > 2. (85)

Then the bound (83) holds.

Proof. We have ⟨e−iωtf, g⟩ =
∫
S2 dΣ

∫∞
0
dω ω2eiωtf(Σ, ω)g(Σ, ω). By using eiωt = 1

it
∂ωe

iωt

and integrating by parts in the radial variable ω twice we obtain

⟨e−iωtf, g⟩ = 1

t2

∫
S2

dΣ

∫ ∞

0

dω eiωt∂2ω
[
ω2f(Σ, ω)g(Σ, ω)

]
. (86)

Hence αt(f) decays as t−2 for large t, so that ∥α(f)∥1 <∞. □

5.2. Examples and Illustrations.
1. We point out that Propositions 3 and 4 hold for the energy conserving as well as the energy

exchange models. We have shown in Corollary 2 that for the energy conserving model,
the spin coupled to the classical coherent state or the classical BE condensate undergoes
partial, not full decoherence. The decoherence function is of the form 1 + O(λ). This
illustrates the result of Proposition 4 from a different point of view (in Corollary 2 we only
needed condition (55) while Lemma 1 requires the stronger assumption (84)).

2. For a pure coherent state of the reservoir the measure µ is concentrated at a single f0 ∈ h
(see § 2.2.1). Then ∥α(f0)∥1 < ∞ provided f ≡ f0 and g satisfy (84). We conclude that
the spin dynamics is asymptotically free and the free dynamics is stable in the sense of
Propositions 3 and 4.

3. Consider the coherent state of the reservoir given by mixing the states e−iθf0 uniformly
over S1 (same as BE condensate), c.f. § 2.2.1 and 2.2.2. We have

|αt(e
−iθf0)| = |Re e−iθ⟨e−itωf, g⟩| ⩽ |⟨e−itωf0, g⟩|.

Then ∥α(e−iθf0)∥1 ⩽ c for all θ ∈ S1 provided f ≡ f0 and g satisfy (84). The spin
dynamics is again asymptotically free and the free dynamics is stable (the conditions of
Propositions 3 and 4 are satisfied).

5.3. Non-scattering regime. We have shown in Corollary 2 that the spin undergoes full
decoherence when coupled to the classical thermal state via an energy conserving interaction.
The result was obtained by explicit calculation, and it cannot be deduced from Theorem 1 for
the technical reason that the measure µ in (34) is not a true measure on h in the thermal case.
Here we have an instance where Propositions 3 and 4 do not apply and in fact the change in
the spin dynamics is not limited by O(λ).

A situation where Theorem 1 does apply, but still the free dynamics can change over time
by more than O(λ), because (83) is not satisfied, is described by polaron-type models. In
its original version, the polaron model describes electrons in a crystal modeled by phonons,
which make up the reservoir [15]. The dispersion relation is given by ω(k) = ωR, a positive
constant; the field Hamiltonian is proportional to the number operator. In our setting, the
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system Hilbert space has finite dimension (= 2 for simplicity) and so the model does not
describe electrons, but rather two effective degrees of freedom interacting with phonons,
making up a polaron-type model. In this setting the function (see (77))

αt(f) = Re eiωRt⟨f, g⟩

is 2π/ωR-periodic in time and one can analyze the time-dependent evolution equation (76)
by means of Floquet theory. The propagator Ut(f) is 2π/ωR-periodic in t for every f and
consequently so is the density matrix γ(t) =

∫
h
dµ(f)Ut(f)γUt(f)

∗. As a particular example
we may consider initial reservoir states given by a measure µ(f) supported on f ∈ h such
that ⟨f, g⟩ ∈ R. Then αt(f) = λ⟨f, g⟩ cos(ωRt) and the time-dependent evolution equation
(76) becomes

i∂tUt(f) =
[
1
2
ω0σz +

λ√
2
⟨f, g⟩ cos(ωRt)σx

]
Ut(f), U0(f) = 1l.

This is the equation of a two-level system interacting with a classical electric field E(t) ∝
cos(ωRt). The solutions to this equation have been studied widely and in detail in the litera-
ture, see for instance [16] and references therein. Our theory on the quasi-classical limit thus
recovers some known equations for open systems in contact with classical fields.

We show now how another common model, a two-level system coupled to a circularly
polarized classical field, can be derived using our quasi-classical approach. Consider the
Hamiltonian

Hε =
ω0

2
σz + dΓ(ωR) +

1
2

(
σx ⊗ φε(g) + σy ⊗ φε(ig)

)
, (87)

where the dispersion relation is constant, ω(k) = ωR > 0. We take the reservoir to be in a
Bose-Einstein condensate state for the field, determined by µ =

∫ 2π

0
dθ
2π
δeiθf0 , for a fixed wave

function f0 (see (21) and text thereafter). Let us take a form factor g such that Im⟨f0, g⟩ =
0. For θ fixed, the unitary Ut(θ) appearing in (76) satisfies i∂tUt(θ) = H(θ, t)Ut(θ) and
U0(θ) = 1l, where the Hamiltonian is given by

H(θ, t) = ω0

2
σz +

1
2
Re⟨f0, g⟩

(
cos(ωRt− θ)σx − sin(ωRt− θ)σy

)
.

The dynamics can be solved exactly by applying the unitary transformation e−i(ωRt−θ)σz
2 .

Namely, V (t) = e−i(ωRt−θ)σz
2 U(θ, t) solves a time-independent and θ-independent equation

i∂tV (t) = H̃V (t) := 1
2

(
(ω0 + ωR)σz +Re⟨f0, g⟩σx

)
V (t), V (0) = ei

θ
2
σz .

In terms of the Rabi frequency ΩRabi =
1
2

(
(ω0 + ωR)

2 + (Re⟨f0, g⟩)2
) 1

2 , we obtain

V (t) = e−iH̃tei
θ
2
σz

= cos(ΩRabit)e
i θ
2
σz − i sin(ΩRabit)

(
ω0 + ωR

2ΩRabi

σz +
Re⟨f0, g⟩
2ΩRabi

σx

)
ei

θ
2
σz .
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Then U(θ, t) = ei(ωRt−θ)σz
2 V (t) = ei(ωRt−θ)σz

2 e−iH̃tei
θ
2
σz and the reduced system density

matrix is given by (c.f. (34))

γ(t) =

∫ 2π

0

dθ

2π
U(θ, t)γ0U

∗(θ, t)

= eiωRtσz
2

(∫ 2π

0

dθ

2π
e−i θ

2
σze−iH̃tei

θ
2
σzγ0e

−i θ
2
σzeiH̃tei

θ
2
σz

)
e−iωRtσz

2 .

Carrying out the integrals for the explicit solutions for an initial density matrix

γ0 =

(
γ11 γ12
γ̄12 1− γ11,

)
we obtain the following formulas for the components of γ(t):

γ11(t) =
[
cos2(ΩRabit) +

(ω0+ωR)2

4Ω2
Rabi

sin2(ΩRabit)
]
γ11

+ (Re⟨f0,g⟩)2
4Ω2

Rabi
sin2(ΩRabit)(1− γ11)

γ12(t) = eiωRt
[
cos(ΩRabit)− i (ω0+ωR)

2ΩRabi
sin(ΩRabit)

]2
γ12.

We see that both, the populations and the coherence, oscillate with frequency ΩRabi attaining
their initial and maximal values periodically in time. The upshot of this analysis is that our
the quasi-classical limit of a fully quantum system plus reservoir model gives the well-known
reduced equation for a two-level system interacting with a classical circularly polarized field
(Hamiltonian (87)). Moreover, we can solve this equation exactly and we find that both the
populations and the coherence are periodic in time.

5.4. Symmetry considerations. According to Theorem 1, the quasi-classical dynamics is
given by

γ(t) =

∫
h

dµ(f)Ut(f)γ0Ut(f)
∗, (88)

where γ0 is the initial density matrix of the spin, µ is the reservoir probability measure on h
arising from the limit characteristic function χ0, as given in (11), and where the unitary Ut

satisfies the equation (76) for the spin-reservoir model. We explore some symmetry properties
of γ(t) under the hypothesis that the measure µ is even, that is,

µ(−f) = µ(f), f ∈ h. (89)

This condition is satisfied in particular for Gaussian centered measures as well as the measure
obtained through the limit ε → 0 in the Bose-Einstein condensate case, as can be seen from
(21) and the related discussion.

Proposition 5. Suppose that (89) holds and that G is off-diagonal in the σz-basis. Then
the diagonal and the off-diagonal density matrix elements of γ(t) evolve independently. In
particular, if γ0 is diagonal, then so is γ(t) for all t and if γ0 is off-diagonal, then so is γ(t).

Proof. For a fixed f , the integrand of (88),

γ(f, t) ≡ Ut(f)γ0Ut(f)
∗,
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is the unique solution of

i∂tγ(f, t) =
[ω0

2
σz +

√
2Re⟨e−itωf |g⟩G, γ(f, t)

]
, (90)

with initial condition
γ(f, 0) = γ0. (91)

The space of bounded operators on C2, denoted B(C2), is a Hilbert space with inner product
⟨X, Y ⟩ = tr(X∗Y ). In the orthonormal basis { 1√

2
1, 1√

2
σx,

1√
2
σy,

1√
2
σz}, any element A ∈

B(C2) is decomposed as A = A0 + Ax + Ay + Az, where Aα = 1
2
σα tr(σαA), α ∈ {x, y, z}

and A0 = 1
2
tr(A)1.

As the conjugation with σz leaves 1 and σz invariant and inverts the sign of σx and σy, we
have

σzAσz = A0 − Ax − Ay + Az. (92)

The component G0 ∝ 1 does not intervene in the dynamics (90), as this part commutes with
γ(f, t). We may thus take G0 = 0, which combined with Gz = 0 implies that G is purely
off diagonal in the σz-basis. Then by (92), σzGσz = −G. Conjugating (90) with σz shows
that σzγ(f, t)σz solves the equation (90) with f changed to −f , and has the initial condition
σzγ0σz. We decompose

γ(f, t) = γd(f, t) + γod(f, t), (93)

where γd(f, t) is the solution of (90) with initial condition γ00 +γ
z
0 , that is the diagonal part of

γ0 and γod(f, t) is the solution of (90) with initial condition γx0 + γy0 , that is the off-diagonal
part of γ0. Now γd(−f, t) satisfies the same differential equation as σzγd(f, t)σz with the
same initial condition (as γd(f, 0) is invariant under conjugation with σz). By the uniqueness
of the solution we have

γd(f, t) = σzγd(−f, t)σz and γod(f, t) = −σzγod(−f, t)σz, (94)

where the first negative sign in the equation involving γod is due to the sign switch in the
initial condition when conjugating with σz. We now take the components of (94), and using
(92) we arrive at

γαd (f, t) = γαd (−f, t), α = 0, z, while γαd (f, t) = −γαd (−f, t), α = x, y (95)

and

γαod(f, t) = −γαod(−f, t), α = 0, z, while γαod(f, t) = γαod(−f, t), α = x, y. (96)

Consider now a measure µ which is invariant under the transformation f 7→ −f . Then we
have

∫
L2 dµ(f)A(f) =

∫
L2 dµ(f)A(−f) and the integral over all odd functions in f vanish,

so that by (95), (96),∫
h

γαd (f, t) = 0 =

∫
h

γβod(f, t), for α = x, y and β = 0, z. (97)

By (93) and (97) we obtain

γ(t) =

∫
h

dµ(f)γ(f, t) =

∫
h

dµ(f)
[
γ0d(f, t) + γzd(f, t) + γxod(f, t) + γyod(f, t)

]
. (98)
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If γ0 is purely off-diagonal then γd(f, t) = 0 for all t and the first two integrands on the right
side of (98) vanish. Then γ(t) has only components along σx and σy, so it is off-diagonal as
well. Conversely, if γ0 is diagonal, then γod(f, t) = 0 for all t and γ(t) is purely diagonal, as
only components along 1 and σz are non-vanishing in the integral (98). This concludes the
proof of Proposition 5. □
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