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The mathematics of 
quantum transfer processes 
in biological systems
Marco Merkli, Memorial University

 Quantum donor-acceptor (D-A) systems are basic models 
for the transfer of matter, energy and charge. In quantum 
chemistry, they are used to study electrons jumping from a 

donor to an acceptor chemical species. Canadian chemist Rudolf 
Marcus was awarded the Nobel Prize in 1992 for his theory 
explaining energy transfer reactions [4, 5]. More recently it was 
realized that similar mechanisms are at the core of processes in 
biological systems, specifically in photosynthesis in plants and 
bacteria. While classical models are not able to render correct 
predictions for the experimentally established data in photosynthetic 
processes, quantum models are [7]. A plant or bacterium captures 
a sunlight photon, which energetically excites a chlorophyll molecule 
electron. This excitation is then transferred, extraordinarily quickly 
and virtually without loss, along a chain of donor and acceptor 
chlorophyll molecules, until it reaches a reaction centre where the 
excitation facilitates slower chemical reactions.

Crucially, D-A systems interact with surrounding molecules and 
are thus open (not isolated). The ‘noisy’ surrounding environment 
is typically modeled by a collection of many oscillatory degrees of 
freedom. The paradigmatic such open model is the spin-boson 
system [3], which describes a two level quantum system (spin) 
interacting with a quantum field (free bosonic degrees of freedom). 
Interpreting the two levels as the excited states of a donor and 
an acceptor, the spin-boson model suitably describes the open 
D-A system. The D and A are occupied (host the excitation) 
with probabilities pD 2 [0, 1] and pA = 1� pD, respectively. 
Of key interest is the time evolution of the donor probability, pD(t), 
e.g.  knowing that D is initially fully occupied (has captured a 
photon) and that the quantum field is in equilibrium at a given (say, 
room) temperature. According to the postulates of quantum theory,

 pD(t) = he�itL 0, P e�itL 0i.               (1)

Here, h·, ·i is the inner product of the Hilbert space H describing 
the whole system and  0 2 H, k 0k = 1, is the initial state 
of D-A plus environment. As prescribed by the Schrödinger 
equation, the state at time t is e�itL 0, where R 3 t 7! e�itL 
is a unitary group on H, generated by a selfadjoint L, called the 
Liouvillian. P  in (1) is an orthogonal projection, playing the role 
of the ‘observable’ corresponding to the donor probability (other 

physical quantities correspond to other operators). The concrete 
form of H, L and P  are well known for the open D-A system.1 
There are two ‘coupling constants’ in L: � � 0 measures the the 
strength of the direct (e.g. ‘dipole-dipole’) interaction between D 
and A while � � 0 measures that of D-A with the environment. 
The values of these parameters are known from experiments and 
in the biological systems of interest, the environment coupling 
is strong, � >> �. Accordingly, one is led to decompose the 
Liouvillian as

L = L0(�) + �I,                              (2)

where the ‘unperturbed operator’ L0(�) generates the dynamics 
for the D-A already coupled to the environment (� 6= 0), and 
the operator I  describes the direct interaction between D and 
A. Usually in open systems, perturbation theory is done in small 
couplings to the environment, the unperturbed case being simply the 
uncoupled system and environment. Here though, it must be done 
in the internal system parameter � and the unperturbed case is the 
D-A already interacting with the environment. Nevertheless, using 
a ‘polaron transformation’ one can solve the dynamical problem for 
L0(�) exactly, so (2) is suitable for a perturbation theory in �. 
However, in the strongly coupled situation at hand, L lacks sufficient 
‘regularity’ for standard methods (spectral deformations, standard 
Mourre theory) from the spectral analysis of Liouvillians to apply. 
Still, it is possible to develop a ‘singular Mourre theory’ to deal with 
this case [1, 2]. The main result is an expansion of the propagator 
eitL for a class of operators L including Liouvillians as described 
above. The expansion exhibits oscillatory and decaying (in time) 
directions of the dynamics in Hilbert space.

Expansion of the propagator. Let L = L0 +�I  be a 
selfadjoint operator on a Hilbert space H, such that the selfadjoint 
L0 has eigenvalues e, with multiplicities me, embedded in 
continuous spectrum. As � 6= 0, every e is either unstable 
(L does not have any eigenvalues close to e, as � 6= 0), or it 
bifurcates into a group of ( me) real eigenvalues. In the latter case 
we say e is partially stable and we assume here for simplicity that 
partially stable e undergo a reduction to dimension one, denoting by 
Ee = e+O(�) 2 R the associated eigenvalue of L. Under the 
assumptions that (1) the first order perturbation terms vanish 

1 We are dealing with a spatially infinitely extended reservoir in thermal 
equilibrium, and so the Gelfand-Naimark-Segal construction of the 
thermal Weyl C⇤-algebra is used to find the Hilbert space representation. 
The Liouvillian is not unique and one takes advantage of the Tomita-Takesaki 
theory of von Neumann algebras to construct a version of L suitable for the 
further analysis.
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PeIPe = 0 (Pe being the spectral projection of L0 associated 
to e), (2) the (formal) second order perturbation terms are non-
degenerate (Fermi Golden Rule Condition) and (3) the reduced 
resolvent maps C− 3 z 7! (P?

e LP?
e − z)−1 �RanP?

e
 

are sufficiently regular for Rez close to e (Limiting Absorption 
Principle), we show the following result in [2].

9c > 0 s.t. for 0 < |�| < c and all t > 0, we have, weakly on 
a dense set of vectors in H,
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(3)

Here, ⇧Ee
 is the spectral projection of L associated to the 

eigenvalue Ee. The exponents satisfy ae,j = �e,j +O(�) with 
Im�e,j > 0 (implying time decay) and ⇧0

e,j = Pe,j +O(∆) 
are projection operators (decay directions). The first sum shows 
oscillatory parts / eitEe of the surviving partially stable 
eigenvalues and decaying parts due to the loss of multiplicity, while 
the second sum, associated to unstable eigenvalues, is purely 
decaying. The � independent �e,j and Pe,j can be calculated by 
perturbation theory. The decaying exponentials stay sizable for long 
times t / (�2 Im�e,j)

�1 over which the O(1/t) remainder is 
subdominant (t not too small).

Application to transfer processes. The expansion (3) can be 
used to analyze the time evolution of the donor probability pD(t), 
(1), in the setting � >> � encountered in biological applications. 
We find [6]

pD(t) = p1 + e−�t (p(0)� p1) +O(1/t)      (4)

Here p1 is the asymptotic (renormalized by strong interaction) 
thermal equilibrium value and 

γ = �2 lim
r!0+

Z 1

0

e−rt cos(✏t)

cos
(
�2Q1(t)

)
e��2Q2(t) dt+O(�4)           

(5)

where ✏ is the (renormalized) D-A energy difference and 
the Q1,2(t) are quantities depending only on the quantum 
field (spectral density function, temperature). The result (4), 
(5) is valid for � small enough but for all � 2 R, t > 0. 
In the high temperature regime T >> ~!c (a cutoff frequency) the 
relaxation rate � becomes (to leading order)

γM =
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2

◆2 r
⇡

T✏r
e�

(✏�✏r)2

4T✏r

                
(6)

where ✏r is an (explicit) constant, called the reorganization energy. 
Relation (6) is the famous Marcus formula for the transition 
rate. We now have a proof of the Marcus formula.2 Of course, 
the expansion (3) can be used to analyze any D-A observable 
(and even reservoir observables), not just the donor probability. 
The current setup also allows for various generalizations of the 
model which alter the speed and efficiency of the reaction, 
as discussed in [6].
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2 This is the only proof we are aware of and it assumes a suitable infrared 
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heuristic and so is the Fermi Golden Rule type calculation for � given by 
Leggett and collaborators [3].
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