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Abstract: The method of positive commutators, developed for zero temperature prob-
lems over the last twenty years, has been an essential tool in the spectral analysis of
Hamiltonians in quantum mechanics. We extend this method to positive temperatures,
i.e. to non-equilibrium quantum statistical mechanics.

We use the positive commutator technique to give an alternative proof of a fundamen-
tal property of a certain class of large quantum systems, calledReturn to Equilibrium.
This property says that equilibrium states are (asymptotically) stable: if a system is
slightly perturbed from its equilibrium state, then it converges back to that equilibrium
state as time goes to infinity.

1. Introduction

In this paper, we study a class of open quantum systems consisting of two interacting
subsystems: a finite system, called the particle system coupled to a reservoir (heat bath),
described by the spatially infinitely extended photon-field (a massless Bose field). The
dynamics of the coupled system on the von Neumann algebra of observables is generated
by a Liouville operator, also called Liouvillian or thermal Hamiltonian, acting on a
positive temperature Hilbert space. Many key properties of the system, such as return to
equilibrium (RTE), i.e. asymptotic stability of the equilibrium state, can be expressed in
terms of the spectral characteristics of this operator.

Applying the positive commutator (PC) method to the Liouville operator of systems
in question, we obtain rather detailed information on the spectrum of these operators.
This allows us to recover, with a partial improvement, a recent fundamental result by
several authors on RTE.
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Our main technical result is a positive commutator estimate (also called a Mourre
estimate) for the Liouville operator. This result holds for a wider class of systems than
previously considered.

Spectral information on the Liouville operator, and hence the property of RTE, is
extracted from the PC estimate through Virial Theorem type arguments. It turns out that
the existingVirial Theorem techniques are too restrictive to apply to positive temperature
systems, and we need to extend them beyond their traditional range of application.

There is a restriction on the class of systems for which we prove RTE, due to our
Virial Theorem type result mentioned above. This is the first result of this kind, and we
expect that it will be improved to yield the RTE result for a considerably wider class of
systems.

1.1. A class of open quantum systems. The choice of the class of systems we analyze
is motivated by the quantum mechanical models of nonrelativistic matter coupled to
the radiation field, or matter interacting with a phonon field (quantized modes of a lat-
tice), or a generalized spin-boson system. For notational convenience, we consider only
scalar Bosons. A good review of physical models leading to the class of Hamiltonians
considered here is found in [HSp].

1.1.1. The non-interacting system. The algebra of observables of the uncoupled system
is theC∗- algebraA = B(Hp)⊗W(H0), whereB(Hp)denotes the bounded operators on
the particle Hilbert spaceHp andW(H0) is the Weyl CCR algebra over the one-particle
spaceH0 = {f ∈ L2(R3, d3k) : ∫ |k|−1|f (k)|2 < ∞}. The restriction tof ∈ H0
comes from the fact that we will work in the Araki-Woods representation of the CCR
algebra, which is only defined for Weyl operatorsW(f )with f ∈ H0 (see [AW, JP1, JP2,
BFS4]). The dynamics of the non-interacting system is given by the automorphism group
R � t �→ αt,0 ∈ Aut(A), αt,0(A) = eitH0Ae−itH0, whereH0 = Hp ⊗ 1f + 1p ⊗Hf is
the sum of the particle and free field Hamiltonians.H0 acts on the Hilbert spaceHp⊗Hf ,

whereHf =⊕∞
n=0 H

⊗n
sym

0 is the Fock space overH0 andHf is the free field Hamiltonian,
i.e. the second quantization of the multiplication operator byω = |k|, Hf = d�(ω); if
a∗(k), a(k) denote the (distribution valued) creation and annihilation operators, then we
can express it equivalently asHf =

∫
ω(k)a∗(k)a(k)d3k. The particle Hamiltonian is

assumed to be a selfadjoint operator onHp which has purely discrete spectrum:

σ(Hp) = {Ej }∞j=0, (1)

(where multiplicities are included, i.e. for a degenerate eigenvalueEi , we haveEi = Ej

for somej �= i), and we denote the orthonormal basis diagonalizingHp by {ϕj }. Let tr
denote the trace onB(Hp), then we further assume that

Zp(β) := tre−βHp <∞, ∀β > 0. (2)

We do not need to further specify the particle system. As a concrete example, one may
think of a system of finitely many Schrödinger particles in a box (hence the name particle
system), or a spin system. In some of our results (see Theorem 2.4 on the Fermi Golden
Rule Condition), we shall assume that the spectrum ofHp is finite (N -level system).

The equilibrium state at temperatureT = 1/β > 0 for the non- interacting system

is given by the productωβ,0 = ω
p
β ⊗ ω

f
β ∈ A∗. Here,ωp

β (·) = tr(e−βHp ·)
tre−βHp is the
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particle-Gibbs state at temperatureβ andωf
β is the fieldβ-KMS state that describes the

infinitely extended field in the state of black body radiation, i.e. its two-point function
is given according to Planck’s law byωf

β (a
∗(k)a(k′)) = δ(k−k′)

eβ|k|−1
. The GNS construction

for (A, αt,0, ωβ,0) yields the (up to unitary equivalence) unique data(H, L0, #β,0, π)

(dependent onβ). Here,H is the GNS Hilbert space with inner product〈· , ·〉, #β,0 is
a cyclic vector for the∗-morphismπ : A → B(H) (the representation map), andthe
LiouvillianL0 is the selfadjoint operator onH implementing the dynamics, i.e. satisfying
L0#β,0 = 0 and

ωβ,0(αt,0(A)) =
〈
#β,0, e

itL0π(A)e−itL0#β,0

〉
, ∀A ∈ A.

This GNS construction has been carried out in [AW] (for the field, the particle part is
standard since it is a finite system), see also [JP1, JP2, BFS4]. We shall not explicitly
use the representation mapπ here and thus omit its presentation which can be found in
the above references. The GNS Hilbert space and cyclic vector are given by

H = Hp ⊗Hp ⊗ F(L2(R× S2)), (3)

#β,0 = #
p
β ⊗#, (4)

where#p
β is the particle Gibbs state at temperatureβ given in (21).F(L2(R× S2)) is

the Fock space overL2(R× S2) with vacuum#, which we call theJaks̆ić–Pillet glued
space. It was introduced by Jak˘sić and Pillet in [JP1] and is isomorphic toHf ⊗Hf ,
the field GNS Hilbert space constructed in [AW]. It is easily verified that the Liouvillian
is given byL0 = Lp + Lf (see also [JP1, JP2]). We write simplyLp instead of
Lp⊗1F(L2(R×S2)) and similarly forLf . Here,Lp = Hp⊗1p−1p⊗Hp,Lf = d�(u)
andu is the first (the radial) variable inR × S2. It is clear that the spectrum ofLp is
the set{e = Ei − Ej : Ei,j ∈ σ(Hp)} and the spectrum ofLf is the entire real axis
(continuous spectrum) with an embedded eigenvalue at 0 (corresponding to the vacuum
eigenvector#). Consequently,L0 has continuous spectrum covering the whole real line
and embedded eigenvalues given by the eigenvalues ofLp.

1.1.2. The interacting system. We now describe the interacting system by defining an
interacting Hamiltonian acting onHp ⊗Hf :

H = H0 + λv, (5)

where the coupling constantλ is a small real number, and

v = G⊗ (a(g)+ a∗(g)). (6)

Here,G is a bounded selfadjoint operator onHp. The functiong ∈ H0 is called theform
factor and the smoothed out creator is given bya∗(g) = ∫

d3k g(k)a∗(k). We assume
g to be a boundedC1-function, satisfying the following infra-red (IR) and ultra- violet
(UV) conditions (recall thatω = |k|):

IR: |g(k)| ≤ Cωp, for somep > 0, asω→ 0,

for some results, we assumep > 2,

UV: |g(k)| ≤ Cω−q , for someq > 5/2, asω→∞.

(7)
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In addition, we assume that conditions (7) hold for the derivative∂ωg, if p, q are replaced
by p − 1, q + 1.

We point out that the value coming from the model of an atom coupled to the radiation
field in the dipole approximation isp = 1/2 (without this approximation,p = −1/2).
From now on we will refer top = 1/2 as the physical case.

The interacting Hamiltonian (which describes the coupled system at zero tempera-
ture) corresponds to an interacting Liouvillian (positive temperature Hamiltonian) which
is given by (cf. [JP1, JP2, BFS4]):

L = L0 + λI, (8)

I = Gl ⊗
(
a∗(g1)+ a(g1)

)−Gr ⊗
(
a∗(g2)+ a(g2)

)
. (9)

Here,Gl := G⊗1p,Gr := 1p⊗CGC, whereC is the antilinear map onHp that, in the
basis that diagonalizesHp, has the effect of complex conjugation of coordinates. The
origin of C is the identification of the Hilbert–Schmidt operators onHp with Hp ⊗Hp

via the isomorphism|ϕ〉〈ψ | ↔ ϕ ⊗ Cψ (see also [JP2, BFS4]). Moreover, we have
defined, forg ∈ L2(R+ × S2):

g1(u, α) =
{√

1+ µ(u) u g(u, α), u ≥ 0
√
µ(−u) u g(−u, α), u < 0

(10)

andg2(u, α) = −g1(−u, α), where the functionµ = µ(k) is the momentum density
distribution, given by Planck’s law describing black body radiation:µ(k) = (eβω−1)−1,
ω = |k|. The structure ofg1 in (10) comes from the Jak˘sić–Pillet gluing which identifies
L2(R3) ⊕ L2(R3) with L2(R × S2) via the isometric isomorphism(f1, f2) �→ f ,
f (u, α) = uf1(u, α) for u ≥ 0 andf (u, α) = uf 2(−u, α) for u < 0. For more detail,
we refer to [JP1, JP2].

For λ �= 0, one can construct a vector#β,λ ∈ H s.t. the vector state defined by
ωβ,λ(A) =

〈
#β,λ, A#β,λ

〉
is a β-KMS state w.r.t. the coupled dynamicsαt (A) =

eitLAe−itL, whereA is an element in the von Neumann algebraM := B(Hp) ⊗
B(Hp)⊗π(W(H0)) (weak closure inB(F(L2(R×S2))) ). An extension of the algebra
of observables to this weak closure is necessary since the full dynamics does not leave
B(Hp)⊗B(Hp)⊗π(W(H0)) invariant. It is not difficult to show that(M, αt ) is aW ∗-
dynamical system (compare also to [FNV, JP2]). Notice in particular thatL#β,λ = 0.

The construction of#β,λ goes under the namestructural stability of KMS states, see
[BFS4] for this specific model, but also [A, FNV, BRII]. Forβ|λ| small, one has the
estimate (for theO-notation, see after (20)):

‖#β,λ −#β,0‖ = O(β|λ|). (11)

We show in Appendix A.1 thatL is essentially selfadjoint (Theorem A.2).

1.2. Spectral characterization of RTE. We define the equilibrium states at temperature
T = 1/β > 0 to be theβ-KMS states. Hence the equilibrium state of the coupled
system at inverse temperatureβ > 0 is given by the above constructedωβ,λ ∈ M∗.
A conjectured property of KMS states is theirdynamical stability (which should be a
natural property of equilibrium states). In our case, this means thatω′ ◦ αt → ωβ,λ

ast → ∞, for statesω′ that are close toωβ,λ. This is called the property of return to
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equilibrium. Apart from specifying the mode of convergence, it remains to say what we
mean byω′ being close toωβ,λ. There is a natural neighbourhood of states aroundωβ,λ

in which the dynamics is also determined byL: the set of allnormal statesω′ w.r.t.ωβ,λ.
By definition,ω′ is normal w.r.t.ωβ,λ, iff

∀A ∈M : ω′(A) = tr(ρA), (12)

where tr(·) is the trace on the GNS Hilbert spaceH given in (3) andρ is a trace class
operator onH, normalized as trρ = 1.

Proposition 1.1 (Spectral Characterization of RTE). Let M ⊂ B(H) be a von Neu-
mann algebra and suppose that ωβ(·) =

〈
#β, ·#β

〉 : M → C is a β-KMS state with
respect to the dynamics αt ∈ Aut(M). Suppose that the Liouvillian L generating the
dynamics on H has no eigenvalues except for a simple one at zero, so that the only
eigenvector of L is #β . Then, for any normal state ω′ w.r.t. ωβ , and for any observable
A ∈M, we have

lim
T→∞

1

T

∫ T

0
ω′(αt (A))dt = ωβ(A). (13)

This means that the system exhibits return to equilibrium in an ergodic mean sense.

The proof is given e.g. in [JP2, BFS4, M]. Better information on the spectrum ofL

yields stronger convergence; ifL has absolutely continuous spectrum, except a simple
eigenvalue at 0, then (13) can be replaced by limt→∞ ω′(αt (A)) = ωβ(A).

1.3. The PC method. This section introduces the general idea of the PC method. As we
have seen above, the Liouville operators in the class of systems we consider consist of
two parts:

L = L0 + λI,

whereL0 is the uncoupled Liouville operator, describing the two subsystems (particles
and field) when they do not interact.I is the interaction, andλ is a real (small) coupling
parameter. The spectrum ofL0 consists of a continuum covering the whole real axis,
and it has embedded eigenvalues, arranged symmetrically w.r.t. zero. Moreover, zero is
a degenerate eigenvalue. We would like to show that forλ �= 0, the spectrum ofL has
no eigenvalues, except for a simple one at zero, because then Proposition 1.1 tells us
that the system exhibits RTE!

In other words, we want to show that all nonzero eigenvalues ofL0 are unstable
under the perturbationλI , and that this perturbation removes the degeneracy of the zero
eigenvalue, see Fig. 1. We know thatL has a zero eigenvalue with eigenvector#β,λ,

X XXX XX

non-degeneratedegenerate
0 0

σ(L)σ(L0)
λ �= 0

Fig. 1. Spectra of the unperturbed and perturbed Liouvillians
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the perturbed KMS state. This means that our task reduces to showing instability of all
nonzero eigenvalues, and that the dimension of the nullspace ofL is at most one.

It is conventional wisdom that embedded eigenvalues are unstable under generic
perturbations, turning into resonances. We now outline the technique we use to show
instability of embedded eigenvalues: the PC technique.

To do so, we concentrate first on a nonzero (isolated) eigenvaluee of L0 whose
instability we want to show. The main idea is to construct an anti-selfadjoint operator
A, called theadjoint operator (toL), s.t. we have the following PC estimate:

E4(L)[L,A]E4(L) ≥ θE2
4(L), (14)

whereθ > 0 is a strictly positive number,E4(L) denotes the spectral projector ofL onto
the interval4, and[· , ·] is the commutator. Here,4 is chosen to contain the eigenvalue
e but no other eigenvalues ofL0. Equation (14) is also called a (strict)Mourre estimate.
If it is satisfied, then one sees thatL has no eigenvalues in4 by using the following
argument by contradiction: suppose thatLψ = e′ψ , with e′ ∈ 4 and‖ψ‖ = 1. Then
we haveE4(L)ψ = ψ , and the PC estimate (14) gives on one hand〈ψ, [L,A]ψ〉 ≥ θ.

On the other hand, formally expanding the commutator yields

〈ψ, [L,A]ψ〉 = 〈ψ, [L− e′, A]ψ 〉 = 2 Re
〈
(L− e′)ψ,Aψ

〉 = 0, (15)

which leads to the contradictionθ ≤ 0, hence showing that there cannot be any eigen-
value ofL in 4.

This formal proof is in general wrong. Indeed, both operatorsL andA are unbounded,
and one has to take great care of domain questions, including the very definition of the
commutator[L,A].

Relation (15) is called theVirial Theorem, and it can be made in many concrete
cases rigorous by approximating the hypothetical eigenfunctionψ by “nice” vectors.
The situation in which this works is quite generally given by the case where[L,A] is
bounded relative toL, which is in particular satisfied forN -body Schrödinger systems,
and systems of particles coupled to a fieldat zero temperature. However, in our case the
condition is not satisfied, and as mentioned above, we have to develop a more general
argument of this type.

The treatment of the zero eigenvalue is similar, except that we prove (14) only on
RanE4(L)P

⊥, whereP is the rank-one projector onto the known zero eigenvector#β,λ

of L, andP⊥ is its orthogonal complement.

2. Main Results

Our main technical result is the abstract PC estimate, Theorem 2.1. This result is the
basis for the spectral analysis of the Liouvillian, as explained above. We point out that
the PC estimate holds for infrared behaviour of the form factor (see (7)) characterized
by p > 0, which covers the physical casep = 1/2.

Theorem 2.2 characterizes the spectrum of the Liouvillian in view of the property of
RTE. To prove this result, we combine the PC estimate with a Virial Theorem type argu-
ment. It is for the latter that we need presently the more restricting infra-red behaviour
p > 2. We think that our method can be improved.

A direct consequence of Theorem 2.2 is Corollary 2.3 which says that the system
exhibits RTE (recall also Proposition 1.1).



Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics 333

All the results hold under assumption of the Fermi Golden Rule Condition, (18) and
(19). In Theorem 2.4, we give explicit conditions on the operatorG and the form factor
g so that theFermi Golden Rule Condition holds. We start by explaining this condition.
In the language of quantum resonances, it expresses the fact that the bifurcation of
complex eigenvalues (resonance poles) of the spectrally deformed Liouvillian takes
place at second order in the perturbation (i.e. the lifetime of the resonance is of the order
λ−2).

As we have mentioned above, the Liouvillian corresponding to the particle system
at positive temperature is given byLp = Hp ⊗ 1 − 1 ⊗ Hp, acting on the Hilbert
spaceHp ⊗ Hp, soLp has discrete spectrum given byσ(Lp) = {e = Ei − Ej :
Ei,Ej ∈ σ(Hp)}. For every eigenvaluee of Lp, we define an operator�(e) acting on
the corresponding eigenspace, RanP(Lp = e) ⊂ Hp ⊗Hp, by

�(e) =
∫

R×S2
m∗(u, α)P (Lp �= e)δ(Lp − e + u)m(u, α), (16)

whereδ denotes the Dirac function, and where the operatorm is given by

m(u, α) = Gl g1(u, α)−Gr g2(u, α). (17)

Recall thatg1,2 andGl,r were defined in and just before Eq. (10).
It is clear from (16) that�(e) is a non-negative selfadjoint operator. The Fermi

Golden Rule Condition is used to show instability of embedded eigenvalues. For nonzero
eigenvalues, the condition says that�(e) is strictly positive:

for e �= 0, γe := inf σ
(
�(e) � RanP(Lp = e)

)
> 0. (18)

We show in Theorem 2.4 that�(0) has a simple eigenvalue at zero, the eigenvector
being the Gibbs state of the particle system,#

p
β (see (21)). This reflects the fact that the

zero eigenvalue ofL0 survives the perturbation, however, its degeneracy is removed, i.e.
the zero eigenvalue ofL is simple. The Fermi Golden Rule Condition fore = 0 requires
strict positivity on the complement of the zero eigenspace of�(0), i.e.

γ0 := inf σ

(
�(0) � RanP(Lp = 0)P⊥

#
p
β

)
> 0. (19)

Here,P#p
β

is the projection ontoC#p
β , andP⊥

#
p
β

= 1 − P#p
β
. We give in Theorem 2.4

below explicit conditions onG andg(k) s.t. (18) and (19) hold.
Here is our main result.

Theorem 2.1 (Positive Commutator Estimate). Assume the IR and UV behaviour (7),
with p > 0. Let 4 be an interval containing exactly one eigenvalue e of L0 and let h ∈
C∞0 be a smooth function s.t. h = 1 on 4 and supph∩ σ(Lp) = {e}. Assume the Fermi
Golden Rule Condition (18) (or (19)) holds. Let β ≥ β0, for any fixed 0 < β0 < ∞.
Then there is a λ0 > 0 (depending on β0) s.t. if 0 < |λ| < λ0, then we have in the sense
of quadratic forms on D(N1/2) (see Remarks, 1. below), for some explicitly constructed
anti-selfadjoint operator A:

h(L)[L,A]h(L) ≥ 1
2λ

91/50h(L)
(
γe
(
1− 5δe,0P#β,0

)−O
(
λ1/200))h(L). (20)
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Notation. Lets be a real variable. ThenO(s) stands for a familyTs of bounded operators
depending ons, satisfying lims→0 ‖Ts‖/s = C <∞. In (20),s = λ1/200.

Remarks. 1. N = d�(1) is the number operator in the positive temperature Hilbert
space (see also (3) and (89)), andP#β,0 is the projector onto the span of#β,0, theβ-KMS
state of the uncoupled system (see (4)). Also,δe,0 is the Kronecker symbol, equal to one
if e = 0 and zero otherwise.

2. We show in Theorem A.2 thatL is essentially selfadjoint on a dense domain in the
positive temperature Hilbert space.

3. The commutator[L,A] is by construction in first approximation equal toN (see
Sect. 4), andh(L) leaves the domainD(N1/2) invariant (see e.g. [M]), so that (20) is
well defined.

4. There is no smallness condition on the interval4 (apart from it only containing one
eigenvalue ofL0).

Theorem 2.2 (Spectrum of L). Assume the IR condition p > 2 (see (7)). Let β ≥ β0,
for any fixed 0 < β0 < ∞, β < ∞. Then the Liouvillian L has the following spectral
properties:

1) Let e �= 0 be a nonzero eigenvalue of L0, and suppose that the Fermi Golden Rule
Condition (18) holds for e. Then there is a λ0 > 0 (dependent on β0) s.t. for 0 <

|λ| < λ0, L has no eigenvalues in the open interval (e−, e+), where e− is the biggest
eigenvalue ofL0 smaller than e, and e+ is the smallest eigenvalue ofL0 bigger than e.

2) Assume the Fermi Golden Rule Condition (19) holds for e = 0. Then there is a
λ0 > 0 (dependent on β0) s.t. if 0 < |λ| < λ0 and 0 < β|λ| < λ0, then L has a
simple eigenvalue at zero.

Remark. Theorem 2.2 shows that if the Fermi Golden Rule Condition holds for all
eigenvalues ofL0, thenL has no eigenvalues, except a simple one at zero.

Corollary 2.3 (Return to Equilibrium). Suppose the IR condition and the condition
on β as in Theorem 2.2, and that the Fermi Golden Rule Condition is satisfied for all
eigenvalues of L0. If |λ| > 0 is small (in the sense of Theorem 2.2, 2)), then every
normal state w.r.t. the β-KMS state #β,λ (the zero eigenvector of L) exhibits return to
equilibrium in an ergodic mean sense.

The corollary follows immediately from Theorem 2.2 and Proposition 1.1, where the
ergodic mean convergence is defined by (13).

Theorem 2.4 ( Spectrum of �(e)). Set �p(e) := P(Lp = e)�(e)P (Lp = e) and for
Ei,Ej ∈ σ(Hp), let Eij := Ei − Ej .

1) Let e �= 0. Then there is a non-negative number δ0 = δ0(G) (independent of β, λ)
whose value is given in Appendix A.2 (see before (97)) s.t.

�p(e) ≥ δ0 inf
i,j :Eij �=0

(
|Eij |

∫
S2
dS(ω, α)

∣∣g(|Eij |, α)
∣∣2)P(Lp = e).

In particular, the Fermi Golden Rule Condition (18) is satisfied if the r.h.s. is not zero.
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2) �p(0) has an eigenvalue at zero, with the particle Gibbs state #p
β as eigenvector:

#
p
β = Zp(β)

−1/2
∑
i

e−βEi/2ϕi ⊗ ϕi, (21)

where we recall that Zp(β) was defined in (2). Moreover, if

g0 := inf
m,n:Emn<0

|〈ϕn,Gϕm〉|2 eβEn

e−βEmn − 1

∫
R3

δ(Emn + ω)|g|2 ≥ 0

is strictly positive, then zero is a simple eigenvalue of �p(0) with unique eigenvector
#
p
β and the spectrum of �p(0) has a gap at zero: (0,2g0Zp) ∩ σ(�p(0)) = ∅. In

particular, the Fermi Golden Rule Condition (19) holds.

Remarks. 1. If e �= 0 is nondegenerate, i.e. ife = Em0n0 for a unique pair(m0, n0),
then (see before (97))

δ0 =
∑
n�=n0

∣∣〈ϕn,Gϕn0

〉∣∣2+ ∑
m�=m0

∣∣〈ϕm,Gϕm0

〉∣∣2 .
2. If Hp is unbounded, theng0 = 0. Indeed, letm be fixed, and taken → ∞, then
Emn < 0 and〈ϕn,Gϕm〉 → 0, sinceϕn goes weakly to zero. Notice though thatg0 > 0
is only a sufficient condition for the Fermi Golden Rule Condition to hold at zero.
3. Forg0 > 0, the size of the gap, 2g0Zp, is bounded away from zero uniformly in
β ≥ β0, since

lim
β→∞ inf

m,n:Em<En

tre−βHp

e−βEm − e−βEn
= lim

β→∞ inf
m,n:Êm<Ên

tre−βĤp

e−βÊm − e−βÊn

,

whereÊi := Ei−E0 ≥ 0 (E0 is the smallest eigenvalue ofHp) andĤp := Hp−E0 ≥ 0
(the smallest eigenvalue of̂Hp is zero).

3. Review of Previous Results

Proving the RTE property is one of the key problems of non- equilibrium statistical me-
chanics. Until recently, this property was proven for specially designed abstract models
(see [BRII]). The first result for realistic systems came in the pioneering work of Jak˘sić
and Pillet [JP1, JP2] in 1996.

In their work, Jak˘sić and Pillet prove return to equilibrium, with exponential rate of
convergence in time, for the spin-boson system (i.e. anN -level system coupled to the
free massless bosonic field withN = 2; their work easily extends to general finiteN )
for sufficiently high temperatures. Their work introduces the spectral approach to RTE.
The analysis is done in the spirit of the theory of quantum resonances, usingspectral
deformation techniques, where the deformation is generated by energy- translation. The
IR condition on the form factor isg(ω) ∼ ωp, ω→ 0, withp > −1/2, hence includes
the physical casep = 1/2. However, there is a restriction on temperature:|λ| < 1/β.
The spectral deformation technique imposes certain analyticity conditions on the form
factor.

The N -level system coupled to the free massless bosonic field is also treated in
[BFS4], but the spectrum of the Liouvillian is analyzed using complex dilation instead
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of translation. RTE with exponentially fast rate in convergence in time is established
for small coupling constantλ independent of β. Bach, Fröhlich and Sigal adapt in this
work their Renormalization Group method developed in [BFS1–BFS3] to the positive
temperature case. The IR condition isp > 0, which includes the physical case.

In a recent work, Derezi´nski and Jak˘sić [DJ] consider the Liouvillian of theN -level
system interacting with the free massless bosonic field. Their analysis of the spectrum
of the Liouvillian is based on theFeshbach method which is justified with the help of the
Mourre Theory, applied to the reduced Liouvillian (away from the vacuum sector). The
Mourre theory in turn is based on a global positive commutator estimate for the reduced
Liouvillian. The IR condition for instability of nonzero eigenvalues isp > 0, and for
the lifting of the degeneracy of the zero eigenvalue, it isp > 1.

The method for the spectral analysis of the Liouvillian we use employs the energy-
translation generator in the Jak˘sić–Pillet glued positive temperature Hilbert space, as
in [JP1, JP2] and [DJ]. We prove a Mourre estimate (PC estimate) for the original
Liouvillian with a conjugate operator which is a deformation of the energy shift generator
mentioned above. This method has been developed in the zero-temperature case in
[BFSS] (for the dilation generator though).

Our construction of the PC works for the IR conditionp > 0, which includes the
physical case. In order to conclude absence of eigenvalues from the PC estimate, the
Virial Theorem is needed. So far, the systems for which the Virial Theorem was applied
have always satisfied the condition that[L,A] is relatively bounded with respect toL,
in which case a general theory has been developed, see [ABG] (for specific systems,
see also [BFSS] for particle-field at zero temperature, [HS1] forN -body systems). We
remark though that in [S], Skibsted extends the abstract Mourre theory to certain systems
where[L,A] is not relatively bounded (but[[L,A], A] is).

We develop in this work a Virial Theorem type argument in the case where the
commutator[L,A] is not relativelyL-bounded. This comes at the price that our estimates
involve the triple commutator[[[L,A], A], A], and consequently, we need a restrictive
IR behaviour of the form factor, namelyp > 2.We think that this restriction coming from
the part of the proof using the Virial Theorem (not the PC estimate), can be improved
by a better understanding of the Virial Theorem.

It should be pointed out that the Virial Theorem is an important tool of interest on its
own, still currently under research, see e.g. [GG].

Let us mention that in order to show RTE, we need the condition 0< |λ| < λ0/β

(Corollary 2.3), so our result of RTE is not uniform in temperature asT = 1/β → 0.
The same situation occurs in [JP1, JP2]. Uniformity in temperature is obtained in [BFS].

We finish this brief review by comparing our approach to that of [DJ] which, in the
literature on the subject, is closest to ours.

The main difference is that [DJ] develop first the Mourre theory for areduced Liouville
operator, starting from a global PC estimate on the radiation sector. Using the Feshbach
method, they show then the limiting absorption principle for the Liouvillian acting on
the full space. [DJ] use the fact that the system has a global PC estimate (i.e. for positive
temperatures, one cannot avoid using the generator of translations as the adjoint operator)
and we do not see how to modify that technique for a different adjoint operator.

The use of a different adjoint operator than the Jak˘sić–Pillet translation generator
might be desirable, for instance in order to remove restrictive assumptions on the coupling
functions.

In our method, we modify the bare adjoint operator in such a way as to have a local
PC estimate right from the start for thefull (i.e. not for a reduced) Liouvillian. This
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method has the advantage that it works for various choices of the adjoint operator, in
fact, it was first developed (for zero temperatures) for the dilation generator in [BFSS].
It is true though that the use of the translation generator greatly reduces the number of
estimates to be performed, and this is the reason why we use it here.

Let us also mention that in proving our PC estimate, we do not need a smallness
condition on|4| (except that4 should contain only one eigenvalue ofLp), while in
Mourre theory it is usually necessary to assume that|4| is small.

We do not claim that either of the two methods is better, both having, in our view,
advantages and disadvantages. We do believe that our approach gives new insights and
can open doors to new techniques to handle the problem of RTE and related spectral
problems.

4. Proof of Theorem 2.1: Step 1

We prove in this section the PC estimate w.r.t. spectral localization in the uncoupled
Liouvillian L0, see Theorem 4.3. Step 2 consists in passing from this estimate to the one
localized w.r.t. the full LiouvillianL and is performed in the next section.

Our estimates are uniform inβ ≥ β0 (for any 0< β0 < ∞ fixed). For notational
convenience, we setβ0 = 1, see also the remark after Proposition A.1 in Appendix A.1.

4.1. PC with respect to spectral localization in L0. We construct an operatorB (see
(27)) which is positive on spectral subspaces ofL0, see Theorem 4.3 (the main result of
this section).

OnL2(R× S2) and fort ∈ R, we define the unitary transformation(
Ũtψ

)
(u, α) = ψ(u− t, α),

which induces a unitary transformationUt on Fock spaceF = F(L2(R × S2)):
Ut = �(Ũt ), i.e. for ψ ∈ F , the projection onto then-sector ofUtψ is given by
(Utψ)n (u1, . . . , un) = ψn(u1 − t, . . . , un − t). Here and often in the future, we do
not display the angular variablesα1, . . . , αn in the argument ofψn. Ut is a strongly
continuous unitary one-parameter (t ∈ R) group onF . Its anti-selfadjoint generatorA0,
defined in the strong sense by∂t |t=0Ut = A0, is A0 = −d�(∂u). The domain of the
unbounded operatorA0, D(A0) = {ψ ∈ F : ∂t |t=0Utψ ∈ F}, is dense inF , which
simply follows from the fact thatA0 is the generator of a strongly continuous group.
From now on, we writeUt = etA0, t ∈ R. The following result serves to motivate the
definition of an operator denoted by[L,A0] (see (23) below). The proof is not difficult
and can be found in [M].

Proposition 4.1. On the dense set D(L0)∩D(N), we have e−tA0LetA0 = L0+tN+λIt ,
where It is obtained from I by replacing the form factor g by its translate gt , and
gt (u, α) = g(u+ t, α). We obtain therefore

∂t |t=0e
−tA0LetA0 = N + λĨ , (22)

where Ĩ = Gl ⊗ (a∗(∂ug1)+ a(∂ug1))−Gr ⊗ (a∗(∂ug2)+ a(∂ug2)). The derivative in
(22) is understood in the strong topology.
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On a formal level, we have∂t |t=0 e
−tA0LetA0 = −A0L + LA0 = [L,A0], which

suggests thedefinition of the unbounded operator [L,A0] with domainD([L,A0]) =
D(N) as

[L,A0] := N + λĨ . (23)

We point out that the operator[L,A0] is defined as the r.h.s. of (23), and not as a
commutator in the sense ofLA0 − A0L. Remark that[L,A0] is positive onD(N) ∩
RanP⊥# , where# is the vacuum inF . Indeed, from Proposition A.1, it follows (take
e.g.c = 1/4) [L,A0] ≥ 3

4N − O(λ2), so thatP⊥# [L,A0]P⊥# ≥ (
3/4−O(λ2)

)
P⊥# .

On the other hand,P#[L,A0]P# = 0, so if we want to find an operator that is positive
also onC#, then we need to modifyA0.

For a fixed eigenvaluee ∈ σ(Lp), define

b(e) = θλ
(
QR2

ε IQ−QIR2
εQ
)
,

Rε =
(
(L0 − e)2+ ε2

)−1/2
.

(24)

Here,θ andε are positive parameters, andQ, Q are projection operators onH defined
as

Q = P(Lp = e)⊗ P#, Q = 1−Q. (25)

In what follows, we denoteRε := QRε .

Proposition 4.2. The operator b = b(e) is bounded and [L, b] = Lb − bL is well
defined on D0 and it extends to a bounded operator on the whole space. We denote the
extended operator again by [L, b].

Proof. The operatorb is bounded since bothIQ andQI are bounded. Furthermore,
since‖L0Rε‖ ≤ 1+ |e|/ε and‖L0Q‖ = |e|, then[L0, b] is bounded. Moreover, since

‖IQ‖ ≤ C and‖IR2
εIQ‖ ≤ Cε−2‖(N + 1)IQ‖ ≤ 2Cε−2‖IQ‖ ≤ Cε−2, then also

‖[I, b]‖ < ∞. We used the fact that RanIQ ⊂ RanP(N ≤ 1), sinceI is linear in
creators andNQ = 0. &'

We define the operator[L,A] by D([L,A]) = D(N) and

[L,A] := [L,A0] + [L, b] = N + λĨ + [L, b]. (26)

Again, we point out that[L,A] is to be understood as the r.h.s. of (26) (with[L, b]defined
in Proposition 4.2). The commutator notation[L,A] is chosen because in the sense of
quadratic forms onD(L0) ∩ D(N) ∩ D(A0), one has〈ϕ, [L,A]ϕ〉 = 2 Re〈Lϕ,Aϕ〉
with A = A0 + b. Define now the operatorB by D(B) = D(N) and

B := [L,A] − 1

10
N = 9

10
N + λĨ + [L, b]. (27)
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Here is the main result of this section:

Theorem 4.3. Let e ∈ σ(Lp) and let4 be an interval around e not containing any other
eigenvalue of Lp. Let E4 be the (sharp) indicator function of 4 and set E0

4 = E4(L0).
Assume that the Fermi Golden Rule Condition (18) (or (19)) holds. Then there is a
number s > 0 s.t. if 0 < θ, ε, εθ−1, θλ2ε−3 < s, then we have on D(N1/2), in the sense
of quadratic forms:

E0
4BE

0
4 ≥

θλ2

ε
γeE

0
4

(
1− 5

2δe,0P#β,0

)
E0
4, (28)

where P#β,0 is the projector onto the span of #β,0 defined in (4).

An essential ingredient of the proof of Theorem 4.3 is theFeshbach method, which
we explain now.

4.2. The Feshbach method. The main idea of the Feshbach method is to use an isospec-
tral correspondence between operators acting on a Hilbert space and operators acting
on some subspace. We explain this method adapted to our case. For a more general
exposition, see e.g. [BFS2] and [DJ].

Consider the Hilbert spacesHe defined byHe = RanχνE0
4, whereχν = χ(N ≤ ν)

is a cutoff inN , andν is a positive integer. With our definitions ofQ,Q, (see (25)) we
have

He = RanχνE
0
4Q⊕ RanχνE

0
4Q. (29)

DefineQ1 = χνE
0
4Q andQ2 = χνE

0
4Q and setBij = QiBQj , i, j = 1,2. The

operatorsBij are bounded due to the cutoff inN . Notice thatQ1,2 are projection operators
(i.e.Q2

1,2 = Q1,2) sinceχν commutes withE0
4 andQ.

The main ingredient of the Feshbach method is the following observation:

Proposition 4.4 (Isospectrality of the Feshbach map). If z is in the resolvent set of
B22 (i.e. if (B22− z)−1 � RanQ2 exists as a bounded operator) and if∣∣∣∣∣∣Q2(B22− z)−1Q2BQ1

∣∣∣∣∣∣ <∞,

∣∣∣∣∣∣Q1BQ2(B22− z)−1Q2

∣∣∣∣∣∣ <∞, (30)

then we have z ∈ σ#(B) ⇐⇒ z ∈ σ#(Ez), where the Feshbach map Ez = Ez(B) is
defined by B �→ Ez = B11−B12(B22− z)−1B21, and σ# stands for σ or σpp (spectrum
or pure point spectrum).

The proof of Proposition 4.4 is given in a more general setting e.g. in [BFS2, DJ]; we
do not repeat it here. We use the isospectrality of the Feshbach map to show positivity
of B in the following way (see also [BFSS]):

Corollary 4.5. Let ϑ0 = inf σ(B � He) and suppose that B22 ≥ ϑ̃Q2 for some ϑ̃ >

−∞, and that inf σ(Eϑ) ≥ F0 uniformly in ϑ for ϑ ≤ ϑ1, where F0 and ϑ1 are two
fixed (finite) numbers. Then we have ϑ0 ≥ min{ϑ̃, inf σ(Eϑ0)}.
Remarks. 1. All our estimates in this section will be independent of theN -cutoff
introduced in (29). In particular,̃ϑ, ϑ0, ϑ1, F0 are independent ofν. This will allow us
to obtain inequality (28) onD(N1/2) from the corresponding estimate on Ranχ(N ≤ ν)

by lettingν →∞ (see (50) below).
2. The condition infσ(Eϑ) ≥ F0 uniformly in ϑ for ϑ ≤ ϑ1, implies thatϑ0 �= −∞.
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Proof of Corollary 4.5. If ϑ0 > ϑ̃ , then the assertion is clearly true. Ifϑ0 < ϑ̃ , then
ϑ0 is in the resolvent set ofB22, and it is easy to show that (30) holds forz = ϑ0, so
ϑ0 ∈ σ(Eϑ0), i.e.ϑ0 ≥ inf σ(Eϑ0). &'

4.3. Proof of Theorem 4.3 (using the Feshbach method). We apply Corollary 4.5 to the
operator

B ′ = B − δe,0δP
⊥
#β,0

, (31)

whereδe,0 is the Kronecker symbol, i.e.δe,0 is one if e = 0 and zero otherwise. The
positive numberδ will be chosen appropriately below, see after (48).

First, we show thatB ′22 ≥ (3/4 − δe,0 δ)Q2 (see (33)), then we show thatEϑ ≥
−1− δe,0 δ =: F0 (see Proposition 4.6), uniformly inϑ for ϑ ≤ 1/2− δe,0 δ. Invoking
Corollary 4.5 will then yield the result. Notice that due to the cutoffχν in (29),Bij ,
i, j ∈ {1,2} are bounded operators. All the following estimates are independent ofν.

We first calculateB ′22 = Q2B
′Q2. UsingQQ2 = 0, andδe,0P⊥#β,0

Q2 = δe,0Q2, we
obtain from (31) and (27),

B ′22 = Q2

(
9

10
N + λĨ + θλ2(R

2
εIQI − IQIR

2
ε)− δe,0δ

)
Q2. (32)

Proceeding as in the proof of Proposition A.1, one shows that∀ c > 0,∣∣∣〈ψ, λĨψ〉∣∣∣ ≤ c‖N1/2ψ‖2+ C λ2

c
‖∂ug1‖2

L2‖ψ‖2.

With our assumptions ong, ‖∂ug1‖2
L2 < ∞, uniformly in β ≥ 1. Using the inequality

above withc = 1/10 and‖R2
εIQI‖ ≤ Cε−2, we obtain

B ′22 ≥ Q2

(
8

10
N −O(λ2+ θλ2ε−2)− δe,0δ

)
Q2.

As can be easily checked,Q2 = Q2P
⊥
# , so we haveNQ2 ≥ Q2, and we conclude that

there is as1 > 0 s.t. ifλ2+ θλ2ε−2 ≤ s1, then

B ′22 ≥
(

8

10
− δe,0δ −O(λ2+ θλ2ε−2)

)
Q2 ≥

(
3

4
− δe,0δ

)
Q2. (33)

In the language of Corollary 4.5, this means we can takeϑ̃ = 3/4− δe,0δ.
In a next step, we calculate a lower bound onEϑ for ϑ ≤ 1/2− δe,0δ.

Proposition 4.6. We have, uniformly in ϑ for ϑ ≤ 1/2− δe,0δ:

Eϑ ≥ 2π
θλ2

ε
(1− 5θ)Q1

(
�(e)− εδe,0δ

2θλ2 P⊥
#
p
β

−O(ε1/4+ εθ−1+ θλ2ε−3)

)
Q1,

(34)

where the error term is independent of δ. Recall that #p
β is the particle Gibbs state

defined in (21).
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Proof of Proposition 4.6. By definition,Eϑ = B ′11−B ′12(B
′
22−ϑ)−1B ′21. We show that

B ′11 is positive andB ′12(B
′
22− ϑ)−1B ′21 is small compared toB ′11.

With QQ1 = 0, QQ1 = Q1 andδe,0P⊥#β,0
Q1 = δe,0P

⊥
#
p
β

Q1, we obtain from (31)

and (27):

B ′11 ≥ 2θλ2Q1

(
IR

2
εI −

δe,0δ

2θλ2P
⊥
#
p
β

)
Q1−O(λ2), (35)

where we usedλĨ ≥ − 1
10N −O(λ2) andQ1N = 0.

Let us now examineB ′12(B
′
22− ϑ)−1B ′21. Notice that from (32), we get

Q2(B
′
22− ϑ)Q2 = 9

10Q2N
1/2(1− 10

9 (ϑ + δe,0δ)N
−1+K1)N

1/2Q2, (36)

where we defined the bounded selfadjoint operatorK1 acting on RanQ2 as

K1 = 10
9 N

−1/2
(
λĨ + θλ2(R

2
εIQI − IQIR

2
ε)
)
N−1/2. (37)

Since‖Q2N
−1/2‖ ≤ 1 and‖Ĩ (N+1)−1/2‖ ≤ C, we get‖K1‖ ≤ C(λ+θλ2ε−2). Now

on RanP⊥# , we haveN ≥ 1, so since we look atϑ s.t.ϑ + δe,0δ ≤ 1/2, we obtain

1− 10
9 (ϑ + δe,0δ)N

−1 ≥ 1− 10
9

1
2 = 4

9. (38)

Therefore we can rewrite (36) as

Q2(B
′
22− ϑ)Q2 = 9

10Q2N
1/2
(
1− 10

9 (ϑ + δe,0δ)N
−1
)1/2

(1+K2)

× (1− 10
9 (ϑ + δe,0δ)N

−1
)1/2

N1/2Q2,
(39)

where

K2 =
(
1− 10

9 (ϑ + δe,0δ)N
−1
)−1/2

K1
(
1− 10

9 (ϑ + δe,0δ)N
−1
)−1/2

,

and

‖K2‖ ≤ 9

4
‖K1‖ = O(λ+ θλ2ε−2) << 1.

We have thus from (39):

Q2(B
′
22− ϑ)−1Q2 = 10

9 Q2N
−1/2(1− 10

9 (ϑ + δe,0δ)N
−1
)−1/2

K2

× (1− 10
9 (ϑ + δe,0δ)N

−1
)−1/2

N−1/2Q2,
(40)

whereK = (1 + K2)
−1/2 is bounded and selfadjoint with‖K‖2 = ‖K2‖ = ‖(1 +

K2)
−1‖ ≤ 1

1−‖K2‖ < 2. We have therefore, from (40) and (38), and uniformly inϑ for
ϑ ≤ 1/2− δe,0δ:〈

ψ,B ′12(B
′
22− ϑ)−1B ′21ψ

〉
= 10

9 ‖K
(
1− 10

9 (ϑ + δe,0δ)N
−1
)−1/2

N−1/2B ′21ψ‖2

≤ 210
9

9
4‖N−1/2B ′21ψ‖2 = 5‖N−1/2B21ψ‖2.

(41)
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Notice thatB ′12 = B12 andB ′21 = B21. Now, remembering (27), and sinceNQ1 = 0
andQ2Q = 0= QQ1,

N−1/2B21

= N−1/2Q2
[
λĨ + θλ(L0 − e)R

2
εI − θλR

2
εI (L0 − e)+ θλ2(IR2

εI −R2
εIQI

)]
Q1.

Using ‖N−1/2Q2‖ ≤ 1, ‖ĨQ1‖ ≤ C, ‖IQ1‖ ≤ C, ‖N−1/2I‖ ≤ C,(L0 − e)Q1
= 0, ‖(L0 − e)Rε‖ ≤ 1, we get∥∥N−1/2B21ψ

∥∥2 ≤ C(λ2+ θ2λ4ε−4)‖ψ‖2+ 2θ2λ2‖RεIQ1ψ‖2,

thus with (41), we obtain

−
〈
ψ,B ′12(B

′
22− ϑ)−1B ′21ψ

〉
≥ −10θ2λ2

〈
ψ,Q1IR

2
εIQ1ψ

〉
−O(λ2+ θ2λ4ε−4)‖ψ‖2,

and so, together with (35), we get, uniformly inϑ for ϑ ≤ 1/2− δe,0δ:

Eϑ ≥ 2θλ2(1− 5θ)Q1

(
IR

2
εI −

δe,0δ

2θλ2P
⊥
#
p
β

)
Q1−O(λ2+ θ2λ4ε−4). (42)

We point out that the error term in the last inequality does not depend onδ. With the
choice of parameters we will make (see (68)), (42) shows thatEϑ ≥ −1−δe,0δ uniformly
in ϑ for ϑ ≤ 1/2− δe,0δ, i.e. in the language of Corollary 4.5,F0 = −1− δe,0δ.

The remaining part of the proof consists in relating the strict positivity of the nonneg-

ative operatorQ1IR
2
εIQ1 to the Fermi Golden Rule Condition. We letIa andIc = I ∗a

denote the parts ofI containing annihilators and creators only, so thatI = Ia+ Ic. Thus

Q1IR
2
εIQ1 = Q1IaR

2
εIcQ1 = Q1IaR

2
ε IcQ1. (43)

In the first step, we usedIaQ1 = 0 andQ1Ic = 0 (sinceIaP# = 0) and in the second
step, we usedQ1IaQ = Q1Ia (sinceIaQ = 0). Now write

Q1IaR
2
ε IcQ1 = Q1

∫ ∫
m∗(u, α)a(u, α)R2

ε (e)a
∗(u′, α′)m(u′, α′) Q1, (44)

wherem is defined (17), and where we display the dependence ofR2
ε one. The operator-

valued distributions (a anda∗) satisfy the canonical commutation relations[a(u, α),
a∗(u′, α′)] = δ(u − u′)δ(α − α′). Next, we notice that the pull-through formula
a(u, α)Lf = (Lf + u)a(u, α) implies

a(u, α)R2
ε (e) = R2

ε (e − u)a(u, α). (45)

Using the CCR and formula (45) together with the fact thata(u, α)Q1 = 0, we commute
a(u, α) in (44) to the right and arrive at

(44)= Q1

∫
m∗(u, α)R2

ε (e − u)m(u, α) Q1. (46)

We can pull a factorP# out ofQ1 and place it inside the integral next toR2
ε (e− u) and

thus replaceR2
ε (e−u) by ((Lp−e+u)2+ε2)−1. Notice thatε((Lp−e+u)2+ε2)−1 →

δ(Lp − e + u) asε → 0. More precisely, we have
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Proposition 4.7. There is an s2 > 0 s.t. for 0 < ε < s2, we have

Q1

∫
m∗(u, α)

(
(Lp − e + u)2+ ε2

)−1
m(u, α) Q1 ≥ Q1

π

ε

(
�(e)−O

(
ε1/4))Q1.

Proposition 4.7, which we prove in Appendix A.3, together with (42)–(44) and (46)
yields (34), proving Proposition 4.6.&'

Now we finish the proof of Theorem 4.3. If the Fermi Golden Rule Condition (18)
holds, then fore �= 0, we have�(e) ≥ γe > 0 on RanQ1, so we obtain from (34),
and under the conditions on the parameters stated in Theorem 4.3:Eϑ ≥ π θλ2

ε
γe, so by

Corollary 4.5:

inf σ(B � He) ≥ min{1/2, πθλ2ε−1γe} = π
θλ2

ε
γe, (47)

since by our choice of the parameters (see (68)), we will haveθλ2

ε
< (2πγe)−1.

For e = 0, we have�(0) = �(0)P⊥
#
p
β

, since�(0)#p
β = 0 (see Theorem 2.4), so

Proposition 4.6 gives

Eϑ ≥ π
θλ2

ε
Q1

({
γ0 − εδ

2θλ2

}
P⊥
#
p
β

−O(ε1/4+ εθ−1+ θλ2ε−3)

)
Q1. (48)

For some fixed 0< a <
γ0

2(π−1) (independent ofθ, λ, ε), there is as3 > 0 s.t. if

0 < θλ2ε−1 < s3, thenγ0 − εδ
2θλ2 > −a, which gives with (48):

Eϑ ≥ π
θλ2

ε
Q1

(
−aP⊥

#
p
β

−O
(
ε1/4+ εθ−1+ θλ2ε−3))Q1

≥ π
θλ2

ε

(
−a −O

(
ε1/4+ εθ−1+ θλ2ε−3))Q1

≥ −2π
θλ2

ε
a Q1.

The last step is true providedε1/4 + εθ−1 + θλ2ε−3 < s4, for some smalls4 > 0.
Remembering thatB ′ = B − δP⊥#β,0

, we obtain from Corollary 4.5,

inf σ
(
(B − δP⊥#β,0

) � H0

)
≥ min{1/2,−2πaθλ2/ε} = −2πa

θλ2

ε
,

from which we conclude that if the condition on the parameters given in Theorem 4.3 is
satisfied withs = min(s1, s2, s3, s4), then

χνE
0
4BE

0
4 χν ≥ χνE

0
4

(
−2πa

θλ2

ε
+ δP⊥#β,0

)
E0
4 , χν

= 2
θλ2

ε
γ0χνE

0
4

(
1− a(π − 1)/γ0 − (1+ a/γ0)P#β,0

)
E0
4 χν

≥ θλ2

ε
γ0χνE

0
4(1− 5

2P#β,0)E
0
4 χν,

(49)
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where we useda/γ0 ≤ 1
2(π−1) . Estimates (47) and (49) yield∀ψ :

〈
ψ, χνE

0
4BE

0
4χνψ

〉
≥ θλ2

ε
γe

〈
ψ, χνE

0
4(1− 5

2δe,0P#β,0)E
0
4χνψ

〉
. (50)

Suppose nowψ ∈ D(N1/2). Then, since(N + 1)−1/2B(N + 1)−1/2 is bounded (see
the definition ofB, (27)), and sinceχν → 1 strongly asν → ∞, we conclude that
∀ψ ∈ D(N1/2):

〈
ψ,E0

4BE
0
4ψ

〉
≥ θλ2

ε
γe

〈
ψ,E0

4(1− 5
2δe,0P#β,0)E

0
4ψ

〉
,

which proves Theorem 4.3.&'

5. Proof of Theorem 2.1: Step 2

We pass from the positive commutator estimate w.r.t.L0 given in Theorem 4.3 to one
w.r.t. the full LiouvillianL, hence proving Theorem 2.1. The essential ingredient of this
procedure is the IMS localization formula, which we apply to a partition of unity w.r.t.
N . Then, we carry out the estimates on each piece of the partition separately.

5.1. PC with respect to spectral localization in L. Let 1 = χ̂2
1(x) + χ̂2

2(x), x ∈ R+,
χ̂2

1 ∈ C∞0 ([0,1]), be aC∞-partition of unity. For some scaling parameterσ >> 1,
defineχi = χi(N) = χ̂i (N/σ), i = 1,2. The reason why we introduce the partition
of unity is thatIχ1 = O(σ 1/2) is bounded. Since theχi leaveD(N1/2) invariant, then
[χi, [χi, B]] = χ2

i B − 2χiBχi + Bχ2
i is well defined onD(N1/2) in the sense of

quadratic forms, and by summing overi = 1,2, we get the so-called IMS localization
formula (see also [CFKS]):

B =
∑
1,2

χiBχi + 1
2[χi, [χi, B]]. (51)

Furthermore, we obtain from (51) and (27), in the sense of quadratic forms onD(N1/2):

h(L)[L,A]h(L) = 1
10h(L)Nh(L)+

∑
1,2

h(L)χiBχih(L)

+ 1
2h(L)[χi, [χi, B]]h(L).

(52)

In Propositions 5.1–5.3 below, we estimate the different terms on the r.h.s. of (52).
Then we complete the proof of Theorem 2.1 by choosing suitable relations among the
parametersθ, λ, ε, σ (see (68)).

Proposition 5.1. There is a s5 > 0 s.t. if λ2σ−1 < s5, then

hχ2Bχ2h ≥ σ

2
hχ2

2h. (53)
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Proof. Recall thatB = 9
10N + λĨ + [L, b]. SinceQχ2 = 0 andQIχ2 = 0 (see also

end of proof of Proposition 4.2), we have∀ψ : 〈ψ, χ2[L, b]χ2ψ〉 = 0. Furthermore,
Proposition 6.1 gives∀ c > 0, λĨ ≥ cN −O(λ2/c), so〈

ψ, χ2(9N/10+ λĨ )χ2ψ
〉
≥
〈
ψ, χ2

[
( 9

10 − c)N −O(λ2/c)
]
χ2ψ

〉
≥ 3

4σ
〈
ψ, χ2

2ψ
〉
,

providedλ2σ < s5 and where we picked the valuec = 1/10 and usedχ2Nχ2 ≥ σχ2
2 .

&'
Proposition 5.2. We have

hχ1Bχ1h+ 1
10hNh ≥ θλ2

ε
γe

(
1−O(λσ 1/2)

)
hχ2

1h−
5

2

θλ2

ε
γ0δe,0hP#β,0h

− θλ2

ε
O
(
εθ−1+ εσ 1/2+ λσε−1

)
h2.

Proof. LetF 0
4′ := F4′(L0), where4′ is an interval whose interior contains the closure

of4, andF4′ is a smooth characteristic function with support in4′, s.t.E4(L0)F
0
4′ = 0,

where we denoted1−F 0
4′ =: F 0

4′ . We take4′ to contain only one eigenvalue ofσ(L0),
namelye, so that (28) in Theorem 4.3 holds, withE0

4 replaced byE0
4′ . We have

hχ1Bχ1h+ 1
10hNh = hχ1F

0
4′BF

0
4′χ1h (54)

+ 1
20hNh+ hχ1F

0
4′BF

0
4′χ1h+ adjoint (55)

+ hχ1F
0
4′BF

0
4′χ1h. (56)

First, we show that (55) and (56) are bounded below by small terms. To treat (55), notice
that

χ1F
0
4′BF

0
4′χ1 = χ1F

0
4′(9N/10+ λĨ + [L, b])F 0

4′χ1

= 9
10χ

2
1F

0
4′F

0
4′N + χ1F

0
4′(λĨ + [L, b])F 0

4′χ1

≥ χ1F
0
4′(λĨ + [L, b])F 0

4′χ1.

(57)

Now for φ1,2 ∈ D(N1/2), we have for anyc > 0 (see Proposition A.1)∣∣∣〈φ1, λĨφ2

〉∣∣∣ ≤ λ
(∣∣∣〈φ1, Ĩaφ2

〉∣∣∣+ ∣∣∣〈φ2, Ĩaφ1

〉∣∣∣)
≤ Cλ

(
‖φ1‖ ‖N1/2φ2‖ + ‖φ2‖ ‖N1/2φ1‖

)
≤ Cλ2c−1

(
‖φ1‖2+ ‖φ2‖2

)
+ c

(
‖N1/2φ1‖2+ ‖N1/2φ2‖2

)
.

With φ1 = F 0
4′χ1ψ , φ2 = F 0

4′χ1ψ , this yields∀ c > 0:

∣∣∣〈ψ, χ1F
0
4′λĨF

0
4′χ1ψ

〉∣∣∣ ≤ C
λ2

c
2‖χ1ψ‖2+ 2c‖N1/2χ1ψ‖2,
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soχ1F
0
4′λĨF

0
4′χ1+ adjoint≥ −4

(
C λ2

c
χ2

1 + cN
)
. Takingc < 1

40 gives then

1
20hNh+ hχ1F

0
4′λĨF

0
4′χ1h+ adjoint≥ ( 1

10 − 4c)hNh− Cλ2hχ2
1h

≥ −Cλ2hχ2
1h.

(58)

Next, usingQF 0
4′ = 0 and(L0 − e)Q = 0, we calculate

χ1F
0
4′ [L, b]F 0

4′χ1 = χ1F
0
4′ [L0 − e, b]F 0

4′χ1+ λχ1F
0
4′ [I, b]F 0

4′χ1

= θλχ1F
0
4′QIR

2
ε(L0 − e)F 0

4′χ1

+ θλ2χ1F
0
4′
(
−R2

εIQI − IQIR
2
ε +QIR

2
εI
)
F 0
4′χ1

= O(θλ+ θλ2ε−2σ 1/2),

(59)

where we used‖RεF
0
4′ ‖ ≤ |4′|−1 ≤ C and‖Iχ1‖ ≤ Cσ 1/2. Next, since supph ∩

suppF 0
4′ = ∅, thenχ1F

0
4′h(L) = χ1F

0
4′(h(L) − h(L0)), so by using the operator

calculus introduced in Appendix A.4, we obtain

χ1F
0
4′h(L) = χ1

∫
dF̃4′(z)(L0 − z)−1λI (L− z)−1h(L) = O(λσ 1/2). (60)

From (59), we then havehχ1F
0
4′ [L, b]F 0

4′χ1h ≥ −C θλ2

ε
(εσ 1/2 + λσε−1)h2, which,

together with (58) and (57) yields

(55)≥ −C θλ2

ε
(εθ−1+ εσ 1/2+ λσε−1)h2. (61)

Our next step is estimating (56). Again, usingQF 0
4′ = 0, we get

χ1F
0
4′BF

0
4′χ1

= χ1F
0
4′(9N/10+ λĨ )F 0

4′χ1− θλ2χ1F
0
4′
(
R

2
εIQI + IQIR

2
ε

)
F 0
4′χ1

≥ −C(λ2+ θλ2),

where we usedλĨ ≥ −cN − O(λ2/c) and‖F 0
4′R

2
ε‖ ≤ |4′|−2 ≤ C. We thus obtain,

sinceθ << 1:

(56)= hχ1F
0
4′BF

0
4′χ1h ≥ −C θλ2

ε

ε

θ
h2. (62)
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Finally, we investigate the positive term (54). By sandwiching (28) in Theorem 4.3 (with
E0
4 replaced byE0

4′ ) with F 0
4′ , and noticing thatF 0

4′E
0
4′ = F 0

4′ , we arrive at

hχ1F
0
4′BF

0
4′χ1h ≥ π

θλ2

ε
γehχ1F

0
4′
(
1− 5

2δe,0P#β,0

)
F 0
4′χ1h

≥ θλ2

ε
γeh

(
χ2

1(F
0
4′)

2− 5
2δe,0P#β,0

)
h

= θλ2

ε
γeh

(
χ2

1

(
1− F 0

4′
)2− 5

2δe,0P#β,0

)
h

≥ θλ2

ε
γeh

(
χ2

1

(
1− 2F 0

4′
)
− 5

2δe,0P#β,0

)
h

≥ θλ2

ε
γeh

(
χ2

1(1− Cλσ 1/2)− 5
2δe,0P#β,0

)
h,

(63)

where we used (60) in the last step once again, and−2χ2
1(F

0
4′)

2P#β,0 ≥ −2P#β,0 in the
second step. Combining (63) with (61) and (62) yields Proposition 5.2.&'
Proposition 5.3. We have

∑
1,2 h[χi, [χi, B]]h = θλ2

ε
O(εθ−1λ−1σ−3/2)h2.

Proof. Notice thatχ1 and 1− χ2 have compact supports contained in[0,2]. Now
in the double commutator, we can replaceχ2 by 1− χ2 without changing its value.
So it suffices to estimate[χ(N/σ), [χ(N/σ), B]], whereχ ∈ C∞0 ([0,2]). We have
[χ(N/σ), [χ(N/σ), B]] = [χ(N/σ), [χ(N/σ), λĨ + [L, b]]]. It is not difficult to see
that we have in the sense of operators onD(N1/2):

[χ(N/σ), [χ(N/σ), λĨ ]] = λ

σ 2

∫
dχ̃(z)

∫
dχ̃(ζ )(N/σ − z)−1(N/σ − ζ )−1

× Ĩ (N/σ − z)−1(N/σ − ζ )−1. (64)

We used the operator calculus introduced in Appendix A.4. Now since‖Ĩ (N/σ −
z)−1/2‖ ≤ C‖(N + 1)1/2(N/σ − z)−1‖ ≤ Cσ 1/2| Im z|−1, which follows from

sup
x≥0

√
x + 1

|x/σ − z| ≤ Cσ 1/2|Imz|−1,

we conclude that ∥∥[χ(N/σ), [χ(N/σ), λĨ ]]∥∥ ≤ qCλσ−3/2. (65)

Next, write for simplicityχ instead ofχ(N/σ), and look at

[χ, [χ, [L, b]]] = θλ[χ, [χ, [L,R2
εIQ]]] + adjoint.

We claim that

[χ, [L,R2
εIQ]] = 0. (66)

Write first [L,R2
εIQ] =R

2
ε [L0, I ]Q+ λ[I,R2

εIQ]. Then

[χ,R2
ε [L0, I ]Q] = [χ,R2

ε [L0, I ]Q] = χR
2
ε [L0, I ]Q−R2

ε [L0, I ]Qχ.
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Here,χ = 1−χ . Notice thatQχ = 0, and since RanR
2
ε [L0, I ]Q ⊂ RanP(N = 1), we

have alsoχR
2
ε [L0, I ]Q = 0, forσ > 2. Similarly,[χ, [I,R2

εIQ]] = 0, so (66) follows.
We obtain thus from (65):[χ, [χ,B]] = O(λσ−3/2), which proves the proposition.

&'
Now we finish the proof of Theorem 2.1. The IMS localization formula (52) together

with Propositions 5.1–5.3 yields

h[L,A]h ≥ θλ2

ε
γe

(
1−O(λσ 1/2)

)
hχ2

1h+
σ

2
hχ2

2h−
5

2

θλ2

ε
γ0δe,0hP#β,0h

− θλ2

ε
O
(
εθ−1+ εσ 1/2+ λσε−1+ εθ−1λ−1σ−3/2

)
h2.

The sum of the first two terms on the r.h.s. is bounded below by

θλ2

ε
γe

(
1−O(λσ 1/2)

)
h2,

so we get

h[L,A]h ≥ θλ2

ε
h
[
γe

(
1− 5

2δe,0P#β,0 −O(λσ 1/2)
)

−O
(
εθ−1+ εσ 1/2+ λσε−1+ εθ−1λ−1σ−3/2

) ]
h.

(67)

Finally, we choose our parameters. Letε = λε̂/100, σ = λ−σ̂ /100, θ = λθ̂/100, and
choose

(ε̂, σ̂ , θ̂ ) = (44,55,26). (68)

It is then easily verified that for smallλ, the conditions on the parameters given in
Theorem 4.3 and Proposition 5.1 hold, and furthermore, (67) becomes

h[L,A]h ≥ λ182/100h
[
γe

(
1− 5

2δe,0P#β,0 −O(λ145/200)
)
−O(λ1/200)

]
h

≥ λ91/50h
(γe

2
(1− 5δe,0P#β,0)−O(λ1/200)

)
h. &'

6. Proof of Theorem 2.2

We follow the idea of the Virial Theorem, as explained in Subsect. 1.3: Assumeψ is a
normalized eigenvector ofL with eigenvaluee. If e = 0, we assume in addition that
ψ ∈ RanP⊥#β,λ

. Let α > 0 and setfα := α−1f (iαA0), wheref is a boundedC∞-

function, such that the derivativef ′ is positive and s.t.f ′(0) = 1 (take e.g.f = Arctan).
Set

f ′α := f ′(iαA0), and hα :=
√
f ′α.

Furthermore, setf ′′α := f ′′(iαA0). For ν > 0 andg ∈ C∞0 (−1,1), defineψν =
g(νN)ψ . Here,α, ν will be chosen small in an appropriate way.We define the regularized
eigenfunctionψα,ν = hαψν . Notice that

ψα,ν → ψ, asα, ν → 0. (69)
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Set for notational convenience in this section

K := [L,A0] = N + λĨ .

The strategy is to show that〈K〉ψα,ν
:= 〈

ψα,ν,Kψα,ν

〉→ 0, asα, ν → 0 (see the next
subsection, (74)). For this estimate, we need the restrictive IR behaviourp > 2, see
after Proposition 6.1. Using the PC estimate, Theorem 2.1, we also show that〈K〉ψα,ν

is strictly positive (asα, ν → 0), see Subsect. 6.2, (86). The combination of these two
estimates yields a contradiction, hence showing that the eigenfunctionψ ofLwe started
off with cannot exist.

In the casee = 0, we need to use that the productP#β,0P
⊥
#β,λ

is small, which is
satisfied providedβ|λ| < C, see (11).

6.1. Upper bound on 〈K〉ψα,ν
. Using(L − e)ψ = 0 and that[N, I ] is N1/2-bounded,

we find that

〈fα(L− e)〉ψν
= 〈gνfα(L− e)gν〉ψ = 〈fαgν[λI, gν]〉ψ = O(λα−1ν1/2). (70)

Next, observe that

2 Im 〈fα(L− e)〉ψν
= 〈[L, ifα]〉ψν

= Re〈[L, ifα]〉ψν

= Re
〈
f ′αN + λ[I, ifα]

〉
ψν

,
(71)

where we used in the last step

[L0, ifα] =
∫

df̃ (z)(iαA0 − z)−1[L0, A0](iαA0 − z)−1

=
∫

df̃ (z)(iαA0 − z)−2N

= f ′αN,

sinceA0 andN commute (second step) and we made use of (113) withp = 1 in the last
step. The commutator[I, ifα] is examined in

Proposition 6.1. The following equality holds in the sense of operators on D(N1/2) or
in the sense of quadratic forms on D(N1/4):

[I, ifα] = f ′αad1
A0
(I )− i

2
αf ′′α ad2

A0
(I )+ R, (72)

where we assume that the k-fold commutator adkA0
(I ) := [· · · [I, A0], A0, · · · , A0] is

N1/2-bounded (orN1/4-form bounded) for k = 1,2,3. The termR satisfies the estimate
RN−1/2, N−1/4RN−1/4 = O(α2).

Proof. Using the operator calculus introduced in Appendix A.4, we write

[I, ifα]
=
∫

df̃ (z)(iαA0 − z)−1[I, A0](iαA0 − z)−1

= f ′αad1
A0
(I )− iα

∫
df̃ (z)(iαA0 − z)−2ad2

A0
(I )(iαA0 − z)−1

= f ′αad1
A0
(I )− i

2
αf ′′α ad2

A0
(I )− α2

∫
df̃ (z)(iαA0 − z)−3ad3

A0
(I )(iαA0 − z)−1.
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The last integral is defined to beR, and the estimates follow by noticing thatA0 andN
commute. &'

Notice that it is here that we need‖adkA0
(I )N1/2‖ ≤ C, k = 2,3, hence the more

restrictive IR behaviour p > 2. We obtain from (72) and recalling thatĨ = [I, A0]:
(71)= Re

〈
f ′αK

〉
ψν
− λ

2
Re
〈
iαf ′′α ad2

A0
(I )
〉
ψν

+O(λα2ν−1/2)

= 〈K〉ψα,ν
+ λRe

〈
hα[hα, λĨ ] − i

2
αf ′′α ad2

A0
(I )

〉
ψν

+O(λα2ν−1/2)

= 〈K〉ψα,ν
+O(λα2ν−1/2).

(73)

We used in the last step that the real part in the second term above is〈
[hα, [hα, Ĩ ]] − i

2
α[f ′′α , ad2

A0
(I )]

〉
ψν

= O(α2ν−1/2),

sincead3
A0
(I ) isN1/2-bounded. Combining (73) and (70), we obtain

〈K〉ψα,ν
≤ Cλ

(
ν1/2

α
+ α2

ν1/2

)
‖ψ‖2. (74)

6.2. Lower bound on 〈K〉ψα,ν
. Let4 be an interval containing exactly one eigenvalue,

e, of Lp. We introduce two partitions of unity. The first one is given by

χ2
4 + χ2

4 = 1,

whereχ4 ∈ C∞(4), χ4(e) = 1. We localize inL, i.e. we setχ4 = χ4(L). The second
partition of unity is given by

χ2+ χ2 = 1,

whereχ ∈ C∞ is a “smooth Heaviside function”, i.e.χ(x) = 0 if x ≤ 0 andχ(x) = 1
if x ≥ 1. We set forn > 0: χn = χ(N/n), χ2

n = 1− χ2
n . We will choosen < 1/ν, so

thatχnψν = χnψ . The last equation will be used freely in what follows. We are going
to use the IMS localization formula (51) with respect to both partitions of unity, and we
start with the one localizing inN :

〈K〉ψα,ν
=
〈
χnKχn + χnKχn +

1

2
[χn, [χn,K]] + 1

2
[χn, [χn,K]]

〉
ψα,ν

≥ 〈K〉χnψα,ν
+ n

2
‖χnψα,ν‖2−O(λn−3/2),

(75)

where we used thatK ≥ n/2 on RanP⊥# , and the estimate (65) withσ replaced byn.
Next, from the IMS localization formula for the partition of unity w.r.t.L, we have

〈K〉χnψα,ν
= 〈χ4Kχ4 + χ4Kχ4 + R

〉
χnψα,ν

≥ 〈χ4(K + [L, b])χ4 + χ4Kχ4 + R
〉
χnψα,ν

− λ19/50O(αn+ λn−1/2)

≥ θ‖χ4χnψα,ν‖2− Cθδe,0‖P#β,0χ4χnψα,ν‖2+ 〈χ4Kχ4 + R
〉
χnψα,ν

− λ19/50O(αn+ λn−1/2). (76)
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Here, several remarks are in order. First, we have set 2R = [χ4, [χ4,K]] + [χ4,
[χ4,K]], and we have used in the second step the fact that

〈[L, b]〉χ4χnψα,ν
= 〈[L− e, b]〉χ4χnhαψ = 2 Re〈χ4(L− e)hαχnψ, bχ4χnhαψ〉
= λ19/50O(αn+ λn−1/2).

We recall thatb is a bounded operator (see Proposition 4.2), with‖b‖ = O(λ19/50).
In the last step in (76), we used the positive commutator estimate, Theorem 2.1, in the
following way. Fore �= 0, Theorem 2.1 gives right awayχ4(K + [L, b])χ4 ≥ θχ2

4,
where we recall that[L,A] = [L,A0] + [L, b], andb is defined in (24). We have set
θ = Cλ91/50. In the zero eigenvalue case,e = 0, we have

〈K + [L, b]〉χ4χnψα,ν
≥ λ91/50

2

〈
γ0(1− 5P#β,0)−O(λ1/200)

〉
χ4χnψα,ν

≥ λ91/50

4
γ0‖χ4χnψα,ν‖2− 5λ91/50

2
γ0‖P#β,0χ4χnψα,ν‖2.

Setting againθ = Cλ91/50 yields (76).
We now estimate the remainder termR. Notice that the same observation as at the

beginning of the proof of Proposition 5.3 shows that we have the estimate〈R〉χnψα,ν
=

2i Im
〈
χ4χnψα,ν, [χ4,K]χnψα,ν

〉
. Therefore,∣∣〈R〉χnψα,ν

∣∣ ≤ C‖χ4χnhαψ‖ ‖[χ4,K]χnhαψ‖. (77)

Now we have onD(N): [χ4,K] =
∫
dχ̃4(z)(L − z)−1[K,L](L − z)−1, where we

recall that(L− z)−1 leavesD(N) invariant. Furthermore,

[K,L] = λ[N, I ] + λ[Ĩ , L0] + λ2[Ĩ , I ] = λ[N, I ] + λI (u∂ug)+ λ2[Ĩ , I ], (78)

whereI (u∂ug) is obtained fromI by replacing the form factorg by u∂ug. The last
commutator in (78) is bounded, and the other two areN1/2-bounded, so we obtain∥∥[χ4,K]χnhαψ

∥∥ = O(λn1/2)‖χnψα,ν‖. (79)

Next, we estimate the first term on the r.h.s. of (77):

‖χ4χnhαψ‖ = ‖(L− e)−1χ4(L− e)χnhαψ‖
≤ C‖(L− e)χnhαψ‖
≤ C‖n−1λ[N, I ]χ ′nhαψ‖ +O(λn−3/2)+ C‖χn(L− e)hαψ‖
≤ Cλn−1/2‖χ ′nψα,ν‖ +O(λn−3/2+ αn).

(80)

Combining this with (79) and (77), we arrive at the estimate∣∣〈R〉χnψα,ν

∣∣ ≤ Cλ2‖χ ′nψα,ν‖ ‖χnψα,ν‖ +O(λ2n−1+ λαn3/2). (81)

There is one more term in (76) we have to estimate:
〈
χ4Kχ4

〉
χnψα,ν

. SinceP⊥# (N +
λĨ )P⊥# ≥ 0 and sinceP#ĨP# = 0, we have the boundK ≥ P⊥# λĨP# + adj.≥ −Cλ,
which implies 〈

χ4Kχ4

〉
χnψα,ν

≥ −Cλ‖χ4χnψα,ν‖2. (82)
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Using (82) and (81), we obtain from (76)

〈K〉χnψα,ν
≥ θ‖χnψα,ν‖2− (θ + Cλ)‖χ4χnψα,ν‖2− Cθδe,0‖P#β,0χ4χnψα,ν‖2

− Cλ2‖χ ′nψα,ν‖ ‖χnψα,ν‖ − λ19/50O(αn+ λn−1/2)

− λO(αn3/2+ λn−1). (83)

Next, we have for anyη, ε > 0:

‖χ ′nψα,ν‖ ‖χnψα,ν‖ ≤ η‖χnψα,ν‖2+ η−1‖χ ′nψα,ν‖2

≤ (εη−1+ η)‖χnψα,ν‖2+ η−1ε−2‖χnψα,ν‖2.

In the second step, we used the standard fact that we can choose the partition of unity
s.t.‖χ ′nψ‖2 ≤ ε‖χnψ‖2 + ε−2‖χnψ‖2, for anyε > 0. Combining this with (83), we
obtain from (75):

〈K〉ψα,ν
≥ (θ − Cλ2(εη−1+ η))‖χnψα,ν‖2+ (n/2− Cλ2η−1ε−2)‖χnψα,ν‖2

− Cθδe,0‖P#β,0χ4χnψα,ν‖2− (θ + Cλ)‖χ4χnψα,ν‖2

−O(λαn3/2+ λ19/50αn+ λ69/50n−1/2).

Considerλ small and fixed. Then if

n

2
− Cη−1ε−2 ≥ θ, (84)

we obtain

〈K〉hαψν
≥ θ‖hαψν‖2− Cθδe,0‖P#β,0χ4χnhαψν‖2

−O(εη−1+ η + αn3/2+ n−1/2)− Cθ(n−1+ n−3+ α2n2).
(85)

On the last line, we used (80). Let us choose the parameters as follows:

ε = α1/10, η = α1/20, n = α−1/2,

then (84) is verified, and furthermore, (85) reduces to

〈K〉ψα,ν
≥ θ‖ψα,ν‖2− Cθδe,0‖P#β,0χ4χnψα,ν‖2−O(α1/20). (86)

On the other hand, recalling (74), we obtain by choosing the parametersν andα as
ν = α3:

〈K〉ψα,ν
≤ Cα1/2. (87)

Since‖ψα,ν‖ → ‖ψ‖ = 1 asα, ν → 0, and since

−Cθδe,0‖P#β,0χ4χnψα,ν‖2 →−Cθδe,0‖P#β,0P
⊥
#β,λ

ψ‖2

(recall thatψ = P⊥#β,λ
ψ if e = 0), we obtain thus for smallα from (86) and (87) the

inequality

θ

2

(
1− Cδe,0‖P#β,0P

⊥
#β,λ

ψ‖2
)
≤ Cα1/2. (88)
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For e �= 0, this is a contradiction, and it shows that there can not be any eigenvalues of
L in the interval4. Remark that there is no smallness condition on the size of4, except
that it must not contain more than one eigenvalue ofL0, so we can choose4 = (e−, e+).

Let us look now at the casee = 0.Again, we reach a contradiction from (88), provided
‖P#β,0P

⊥
#β,λ

ψ‖2 << 1. In this case, we conclude that zero is a simple eigenvalue ofL.

Now the fact that‖P#β,0P
⊥
#β,λ

‖ = O(β|λ|) follows immediately from (11), so taking
β|λ| small enough finishes the proof of Theorem 2.2.&'
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A. Appendix

A.1. Selfadjointness of L and some relative bounds. We introduce the positive operator
M = d�(|u|) with domainD(M) = {ψ ∈ H : ‖Mψ‖ <∞} and the number operator

N = d�(1) (89)

with natural domainD(N) = {ψ ∈ H : ‖Nψ‖ <∞}.
Proposition A.1 (Relative Bounds). Set L2 = L2(R × S2), and let 0 < β0 < ∞ be a
fixed number.

1) If f ∈ L2, then ‖a(f )N−1/2‖ ≤ ‖f ‖L2.
2) If |u|−1/2f ∈ L2, then ‖a(f )M−1/2‖ ≤ ‖ |u|−1/2f ‖L2.
3) For ψ ∈ D(N1/2) and ψ ∈ D(M1/2) respectively, we have the following bounds,

uniformly in β ≥ β0:

‖Iψ‖2 ≤ C‖G‖
(
‖N1/2ψ‖2+ ‖ψ‖2

)
,

‖Iψ‖2 ≤ C‖G‖
(
‖M1/2ψ‖2+ ‖ψ‖2

)
.

Here, C ≤ C′(1+ β−1
0 ), where C′ is independent of β, β0.

4) For ψ ∈ D(N1/2), any c > 0, and uniformly in β ≥ β0, we have

|〈ψ, λIψ〉| ≤ c‖N1/2ψ‖2+ 16λ2

c
‖G‖2‖ψ‖2

∫
R3
(1+ β−1

0 ω−1)|g|2d3k.

5) For ψ ∈ D(M1/2), any c > 0, and uniformly in β ≥ β0, we have

|〈ψ, λIψ〉| ≤ c‖M1/2ψ‖2+ 32λ2

c
‖G‖2‖ψ‖2

∫
R3
(1+ β−1

0 ω−1)
|g|2
ω

d3k.

Remarks. 1. The parameterβ0 gives the highest temperature,T0 = 1/β0, s.t. our
estimates 3)–5) are valid uniformly inT ≤ T0. T0 can be fixed at any arbitrary large
value. Since we are not interested in the large temperature limitT → ∞, we set from
now on for notational convenienceT0 = 1.
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2. Notice that 4) and 5) tell us that∀ c > 0 (with theO-notation introduced after
Theorem 2.1),

|λI | ≤ cN +O(λ2/c), |λI | ≤ cM+O(λ2/c),

where we understand these inequalities holding in a sense of quadratic forms onD(N1/2)

andD(M1/2) respectively.

Proof of Proposition A.1. The proof is standard (see e.g. [BFS4, JP1, JP2]); we only
present the proof of 3), as an example of how to keep track ofβ. From ‖Iψ‖2 ≤
4‖G‖2

(‖a∗(g1)ψ‖2+ ‖a∗(g2)ψ‖2+ ‖a(g1)ψ‖2+ ‖a(g2)ψ |2
)
, and using the CCR

[a∗(f ), a(g)] = 〈f, g〉, we get

‖a∗(g1,2)ψ‖2 = 〈ψ, a(g1,2)a
∗(g1,2)ψ

〉 = ‖a(g1,2)ψ‖2+ ‖g1,2‖2
L2‖ψ‖2,

so ‖Iψ‖2 ≤ 8‖G‖2
(
‖a(g1)ψ‖2+ ‖a(g2)‖2+ 2‖g1‖2

L2‖ψ‖2
)
, where we used

‖g1‖L2 = ‖g2‖L2, sinceg1(u, α) = −g2(−u, α). Using 1) and 2) above, we get

‖Iψ‖2 ≤ 16‖G‖2‖g1‖2
L2

(
‖N1/2ψ‖2+ ‖ψ‖2

)
,

‖Iψ‖2 ≤ 16‖G‖2
∥∥∥|u|−1/2g1

∥∥∥2

L2

(
‖M1/2ψ‖2+ ‖ψ‖2

)
.

Next, we show that‖g1‖L2 ≤ C and‖ |u|−1/2g1‖L2 ≤ C, uniformly inβ ≥ β0. Indeed,
notice that‖g1‖2

L2 =
∫

R3(1+2µ)|g(ω, α)|2dωdS(α) = ‖g2‖2
L2,where we represented

g in the integral in spherical coordinates. Since we have 1+ 2µ = 1+ 2(eβω − 1)−1 ≤
1+ 2β−1ω−1 ≤ 1+ 2β−1

0 ω−1, uniformly in β ≥ β0, we get with (7) (forp > 0) the
following uniform bound inβ ≥ β0:

‖g1,2‖2
L2 ≤ 2

∫
R3
(1+ β−1

0 ω−1)|g(k)|2d3k = C <∞. (90)

Similarly, ‖ |u|−1/2g1‖2
L2 ≤ 2

∫
R3(1 + β−1

0 ω−1)ω−1|g(ω, α)|2d3k = C < ∞, uni-
formly in β ≥ β0. It is clear from the last two estimates thatC satisfies the bound
indicated in the proposition.&'

These relative bounds and Nelson’s commutator theorem yield essential selfadjoint-
ness of the Liouvillian (cf. also Theorem 5.1 in [DJ]):

Theorem A.2 ( Selfadjointness of the Liouvillian). Since Hp is bounded below, there
is a C > 0 s.t. Hp > −C. Suppose that [G,Hp](Hp + C)−1/2 is bounded in the sense
that the quadratic form ψ �→ 2i Im

〈
Gψ,Hpψ

〉
, defined on D(Hp), is represented by

an operator denoted [G,Hp]o, s.t. [G,Hp]o(Hp + C)−1/2 is bounded. Then ∀ λ ∈ R,
L is essentially selfadjoint on

D0 := D(Hp)⊗D(Hp)⊗D(M) ⊂ Hp ⊗Hp ⊗ F(L2(R× S2)).

Proof. The proof uses Nelson’s commutator theorem (see [RS], Theorem X.37). Let
N = (Hp + C) ⊗ 1p + 1p ⊗ (Hp + C) + M + 1, thenN is selfadjoint onD0 and
N ≥ 1. Also,L is defined and symmetric onD0.
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According to Nelson’s commutator theorem, in order to prove Theorem 1.2, we have
to show that∀ψ ∈ D0 and some constantd > 0,

‖Lψ‖ ≤ d‖Nψ‖, (91)

|〈Lψ,Nψ〉 − 〈Nψ,Lψ〉| ≤ d‖N 1/2ψ‖2. (92)

Estimate (91) easily follows from‖LpN−1‖ ≤ 1, ‖LfN−1‖ ≤ 1 and‖IN−1‖ ≤
‖I (M+ 1)−1/2‖ ‖(M+ 1)1/2(M+ 1)−1‖ ≤ d (by 3) of Proposition 6.1).

To show (92), notice thatL0 commutes withN , so the l.h.s. of (92) reduces to

|〈Iψ,Nψ〉 − 〈Nψ, Iψ〉| ≤ |〈Iψ,Mψ〉 − 〈Mψ, Iψ〉| +K, (93)

where

K = ∣∣〈Iψ, ((Hp + C)⊗ 1+ 1⊗ (Hp + C))ψ
〉

− 〈((Hp + C)⊗ 1+ 1⊗ (Hp + C))ψ, Iψ
〉∣∣ . (94)

Let us examine the first term on the r.h.s. of (93). It is easily shown that since|u|g1,2 ∈
L2(R × S2), thena∗(g1,2)M = Ma∗(g1,2) + a∗(|u|g1,2) on D(M). This shows that
a#(g1,2) leaveD(M) invariant and so we have∀ψ ∈ D0:

∣∣ 〈Iψ,Mψ〉 − 〈Mψ, Iψ〉 ∣∣
= |〈ψ, (IM−MI)ψ〉|
= ∣∣〈ψ, (Gl ⊗ (a∗(|u|g1)− a(|u|g1))−Gr ⊗ (a∗(|u|g2)− a(|u|g2))

)
ψ
〉∣∣

≤ c‖ψ‖ ‖(M+ 1)1/2ψ‖ ≤ c‖N 1/2ψ‖2,

where we used Proposition 6.1 in the third step.
Now we look atK given in (94). Using the specific form ofI (see (9)), we can write

K ≤ |K1| + |K2|, where

K1 =
〈
Gl ⊗ (a(g1)+ a∗(g1))ψ, (Hp + C)⊗ 1ψ

〉
− 〈(Hp + C)⊗ 1ψ,Gl ⊗ (a(g1)+ a∗(g1))ψ

〉
,

K2 =
〈
Gr ⊗ (a(g2)+ a∗(g2))ψ,1⊗ (Hp + C)ψ

〉
− 〈1⊗ (Hp + C)ψ,Gr ⊗ (a(g2)+ a∗(g2))ψ

〉
.

We examineK1. Letψ ∈ D0, then(Hp + C)1/2ψ ∈ H, and so

K1 = 2i Im
〈
Gl ⊗ (a(g1)+ a∗(g1)), (Hp + C)⊗ 1ψ

〉
= 2i Im

〈
(a(g1)+ a∗(g1))ψ, [G,Hp]oψ

〉
,

so we obtain|K1| ≤ c‖(M+ 1)1/2ψ‖ ‖(Hp + C)1/2 ⊗ 1ψ‖ ≤ c‖N 1/2ψ‖2. The same
estimate is obtained for|K2| in a similar way. This shows (92) and completes the proof.
&'
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A.2. Proof of Theorem 2.4. For a fixed eigenvaluee �= 0 ofL0, define the subsets ofN:

N (i)
r := {j |Ei − Ej = e},

N (j)
l := {i|Ei − Ej = e},
Nr := ∪i N (i)

r = {j |Ei − Ej = e for somei},
Nl := ∪j N (j)

l = {i|Ei − Ej = e for somej}.
We also letPi denote the rank-one projector ontoCϕi , where we recall that{ϕi} is the
orthonormal basis diagonalizingHp. For any nonempty subsetN ⊂ N, put

PN :=
∑
j∈N

Pj , and PN := 0 if N is empty.

SetEmn := Em − En, and fore ∈ σ(Lp)\{0}, m ∈ Nl andn ∈ Nr , define:

δm := inf σ
(
PN (m)

r
GPN c

r
GPN (m)

r
� PN (m)

r

)
≥ 0, (95)

δ′n := inf σ
(
PN (n)

l

GPN c
l
GPN (n)

l

� PN (n)
l

)
≥ 0. (96)

Here, the superscriptc denotes the complement. Notice that ife = 0, thenN c
r = N c

l
are empty, andδm, δ′n = 0. We define alsoδ0 := infm∈Nl

{δm} + inf n∈Nr
{δ′n}. From

P(Lp = e) =∑{i,j :Eij=e} Pi⊗Pj , we obtain together with the definition of�(e) given
in (16):

�p(e) =
∑
m,n

(
1− δEmn,e

) ∑
{i,j :Eij=e}

∑
{k,l:Ekl=e}

∫
δ(Emn − e + u)Pij m

∗ Pmn m Pkl.

(97)

The idea here is to get a lower bound on the sum over(m, n) ∈ N×N by summing only
over a convenient subset ofN× N (notice that every term in the sum is positive). That
subset is chosen such that the summands reduce to simpler expressions.

Using the definition ofm (see (17)), we obtain

Pijm
∗PmnmPkl
= Pij

(
Glg1−Grg2

)
Pmn (Glg1−Grg2) Pkl

= PiGPmGPk ⊗ Pnδjnδnl |g1|2− PiGPm ⊗ PnCGCPlδjnδmkg1g2

− PmGPk ⊗ PjCGCPnδimδnlg2g1+ Pm ⊗ PjCGCPnCGCPlδimδmk|g2|2.
Summing overi, j andk, l according to (97) yields

∑
{i,j :Eij=e}

∑
{k,l:Ekl=e}

Pijm
∗PmnmPkl

=
(
g1PN (n)

l

GPm ⊗ Pn − g2Pm ⊗ PN (m)
r

CGCPn
)
· adjoint.
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For (m, n) ∈ Nl ×N c
r , we havePN (n)

l

= 0 andPN (m)
r
�= 0, and for(m, n) ∈ N c

l ×Nr ,

we havePN (n)
l

�= 0 andPN (m)
r
= 0. As explained above, we now get a lower bound on

the sum (97) by summing only over the disjoint union

(m, n) ∈ Nl ×N c
r ∪̇ N c

l ×Nr .

An easy calculation shows that

�p(e) ≥ inf
i,j :Eij �=0

(∫
S2
dS
∣∣g2(Eij , α)

∣∣2) ∑
m∈Nl

Pm ⊗ CPN (m)
r

G PN c
r
GPN (m)

r
C

+ inf
i,j :Eij �=0

(∫
S2
dS
∣∣g1(Eij , α)

∣∣2) ∑
n∈Nr

PN (n)
l

G PN c
l
GPN (n)

l

⊗ Pn.

Next, we investigate the integrals. From (10), we have∫
S2
dS|g1,2(Eij , α)|2 ≥ |Eij |

∫
S2
dS|g(|Eij |, α)|2,

uniformly in β ≥ 1. With (95), (96) and remarking thatσ(CT C) = σ(T ) for any
selfadjointT , this yields

�p(e) ≥ inf
i,j :Eij �=0

(
|Eij |

∫
S2
dS|g(Eij , α)|2

)(
inf

m∈Nl

{δm} + inf
n∈Nr

{δ′n}
)
P(Lp = e),

since
∑

m∈Nl
Pm ⊗ PN (m)

r
= ∑

n∈Nr
PN (n)

l

⊗ Pn = P(Lp = e). This shows 1) of

Theorem 2.4.
Now we look at the zero eigenvalue.A general normalized element of RanP(Lp = 0)

is of the formφ =∑i ciϕi ⊗ ϕi , with
∑

i |ci |2 = 1, so

〈φ, �(0)φ〉 =
∑
m,n

(
1− δEmn,0

)∑
i,j

cicj

∫
δ(Emn + u)

〈
ϕi ⊗ ϕi,m

∗Pmnmϕj ⊗ ϕj
〉
.

Using again the explicit form ofm given in (17) and〈ϕm, CGCϕn〉 = 〈ϕm,Gϕn〉, we
obtain

〈φ, �(0)φ〉 =
∑
m,n

(
1− δEmn,0

) ∫
δ(Emn + u) |〈ϕn,Gϕm〉|2 |cng1− cmg2|2. (98)

We split the domain of integrationR× S2 into R+ × S2 ∪̇ R− × S2 and using (10) and
g2(u, α) = −g1(−u, α), arrive at∫

δ(Emn + u)|cng1− cmg2|2 =
∫

R3

{
δ(Emn + ω)

∣∣∣√1+ µcng −√µcmg
∣∣∣2

+ δ(Emn − ω)

∣∣∣√µcng −√1+ µcmg

∣∣∣2} .
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This together with (98) gives

〈φ, �(0)φ〉 = 2
∑

{m,n:Emn<0}
|〈ϕn,Gϕm〉|2 e betaEn

e−βEmn − 1

×
∣∣∣e−βEm/2cn − e−βEn/2cm

∣∣∣2 ∫ δ(Emn + ω)|g|2,
(99)

where we usedδ(Emn +ω)µ = δ(Emn +ω)(e−βEmn − 1)−1. Equation (99) shows that
if we choosecn = Z

−1/2
p e−βEn/2, then each term in the sum is zero. Recall now that

the particle Gibbs state is given by (21), so
〈
#
p
β, �(0)#

p
β

〉
= 0. Since�(0) ≥ 0, this

implies that#p
β is a zero eigenvector of�(0).

Finally we show that there is a gap in the spectrum of�(0) at zero. Indeed, from
(99), we get by the definition ofg0 (see statement of Theorem 2.4):

〈φ, �(0)φ〉 ≥ 2g0

∑
{m,n:Emn<0}

|e−βEm/2cn − e−βEn/2cm|2

= g0

∑
m,n

|e−βEm/2cn − e−βEn/2cm|2

= g0

∑
m,n

(
e−βEm |cn|2+ e−βEn |cm|2− e−β(Em+En)/2(cncm + cncm)

)

= g0

(
Zp(β)+ Zp(β)− 2

∣∣∣∑
m

e−βEm/2cm

∣∣∣2)

= 2g0Zp(β)
(
1−

∣∣∣ 〈#p
β, φ

〉 ∣∣∣2),
where we used

∑
n |cn|2 = 1. Therefore, we obtain on RanP⊥

#
p
β

: �(0) ≥ 2g0Zp(β).

This proves that ifg0 > 0, then we have a gap at zero and zero is a simple eigenvalue.
&'

A.3. Proof of Proposition 4.7. We denote the spectrum ofLp by σ(Lp) = {ej }, where
we include multiplicities, i.e. for degenerate eigenvalues, we haveej = ek for different
j �= k. Let Pj denote the rank one projector onto span{ϕi}, whereϕj ∈ Hp ⊗ Hp is
the unique eigenvector corresponding toej . Let e be a fixed eigenvalue ofLp. Setting
mj = Pjm, we have〈

ψ,Q1

∫
m∗

(
(Lp − e + u)2+ ε2

)−1
m Q1ψ

〉

=
∑

ej∈σ(Lp)

〈
ψ,Q1

∫
m∗jmj ((ej − e + u)2+ ε2)−1Q1ψ

〉
. (100)

First, we estimate the term in the sum coming from{j : ej = e}:
∑
{ej=e}

〈
ψ,Q1

∫
m∗jmj (u

2+ ε2)−1Q1ψ

〉
≤

∑
{ej=e}

∫
u−2‖mjQ1ψ‖2. (101)
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Now ∑
{ej=e}

‖mjQ1ψ‖2 = ‖P(Lp = e)(Glg1−Grg2)Q1ψ‖2

≤ 2‖G‖2(|g1|2+ |g2|2)‖ψ‖2,

so (101)≤ 2‖G‖2‖ψ‖2
(
‖g1/u‖2

L2 + ‖g2/u‖2
L2

)
= 4‖G‖2|g1/u‖2

L2‖ψ‖2. From our

assumptions ong (see (7)) and (10), it is clear that‖g1/u‖L2 = C < ∞, uniformly in
β ≥ 1, and we conclude that

(101)≤ C‖ψ‖2. (102)

Next, we estimate the sum of the terms in (100) withej �= e and write it as∑
ej �=e

∫
R

du((ej − e + u)2+ ε2)−1m̃j (u, ψ), (103)

where we putm̃j (u, ψ) =
∫
S2 dS‖mj(u, α)Q1ψ‖2. ∀ ξ > 0, we have

∑
ej �=e

∫
{|u−(e−ej )|≥ξ}

du ((ej − e + u)2+ ε2)−1m̃j (u, ψ)

≤ ξ−2
∑
ej �=e

∫
R

du m̃j (u, ψ)

≤ ξ−2
∫
‖m(u, α)Q1ψ‖2 ≤ 4ξ−2‖G‖2‖g1/u‖2

L2‖ψ‖2 ≤ Cξ−2‖ψ‖2. (104)

Next, with the changes of variablesy = u− (e − ej ), we arrive at∑
ej �=e

∫
{|u−(e−ej )|≤ξ}

du((ej − e + u)2+ ε2)−1m̃j (u, ψ)

=
(∫ ξ

−ξ
dy (y2+ ε2)−1

)∑
ej �=e

m̃j (e − ej , ψ)

+
∫ ξ

−ξ
dy(y2+ ε2)

−1 ∑
ej �=e

[
m̃j (y + e − ej , ψ)− m̃j (e − ej , ψ)

]
. (105)

The mean value theorem yields for the last sum:

y ∂y |ỹ∈(−ξ,ξ)
∑
ej �=e

m̃j (y + e − ej , ψ). (106)

Now

∂y
∑
ej �=e

m̃j (y + e − ej , ψ)

= 2
∑
ej �=e

∫
S2
dS Re

〈
Pj (∂um)(y + e − ej , α)Q1ψ,Pjm(y + e − ej , α)Q1ψ

〉
.
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Using the Schwarz inequality for sums, we bound the modulus of the r.h.s. from above
by

2
∫
S2
dS

√∑
ej �=e

‖Pj (∂um)(y + e − ej , α)Q1ψ‖2

·
√∑

ej �=e
‖Pjm(y + e − ej , α)Q1ψ‖2.

(107)

Nowm(y + e − ej , α) = Glg1(y + e − ej , α)−Grg2(y + e − ej , α), so

‖Pjm(y + e − ej , α)Q1ψ‖2 (108)

≤ 2|g1(y + e − ej , α)|2‖PjGlQ1ψ‖2+ 2|g2(y + e − ej , α)|2‖PjGrQ1ψ‖2.

We have to evaluate this aty = ỹ ∈ (−ξ, ξ). Clearly,|e − ej + ỹ| ≥ |e − ej | − |ỹ| >
d0 − ξ ≥ d0/2, if we chooseξ ≤ d0/2, where

d0 := inf
ei �=ej

|ei − ej | > 0.

The r.h.s. of (108) can thus be estimated from above by

2 sup
|u|>d0/2

|g1(u, α)|2‖PjGlQ1ψ‖2+ 2 sup
|u|>d0/2

|g2(u, α)|2‖PjGrQ1ψ‖2,

hence we arrive at

|(106)| ≤ 32|y| ‖G‖2‖ψ‖2
∫
S2
dS

(
sup

|u|>d0/2
|∂ug1| + sup

|u|>d0/2
|g1|

)
. (109)

Using the conditions (7) withp > 0, one shows that the suprema are bounded, uniformly
in β ≥ 1, and so is|g1|, thus (109) gives

|(106)| ≤ C|y| ‖ψ‖2. (110)

Remark that the constant here depends ond0, C ∼ d
p−1/2
0 . This argument is valid for

anyp. Going back to the second term on the r.h.s. of (105), we have shown:

∣∣∣∣∣∣
∫ ξ

−ξ
dy

y2+ ε2

∑
ej �=e

[
m̃j (y + e − ej , ψ)− m̃j (e − ej , ψ)

]∣∣∣∣∣∣
≤ C‖ψ‖2

∫ ξ

−ξ
|y|

y2+ ε2dy ≤ C
|ξ |
ε
‖ψ‖2. (111)

Now we consider the first term on the r.h.s. of (105). We see that, asε/ξ → 0,

∫ ξ

−ξ
dy

y2+ ε2 =
2

ε
Arctan(ξ/ε) = 2

ε

(π
2
+ o

(
(ε/ξ)η

))
,
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for any 0 < η < 1. This simply follows from the fact that for any suchη, we have
limx→∞ xη(Arctan(x)− π/2) = 0. Also,∑

ej �=e
m̃j (e − ej , ψ) =

∫ 〈
ψ,Q1m

∗δ(u− e + Lp)P (Lp �= e)mQ1ψ
〉
.

We conclude that (103) is equal to

π

ε

{
(1−O(ε/ξ))

∫ 〈
ψ,Q1m

∗δ(u−e+Lp)P (Lp �= e)mQ1ψ
〉−O(ξ+εξ−2)‖ψ‖2

}
.

Choose e.g.ξ = ε1/4 andη close to 1, then we arrive at

(103)= π

ε

{∫ 〈
ψ,Q1m

∗δ(u− e + Lp)P (Lp �= e)mQ1ψ
〉−O(ε1/4)‖ψ‖2

}
.

This together with (102) yields

Q1

∫
m∗((Lp − e + u)2+ ε2)−1mQ1

≥ Q1
π

ε

{∫
m∗P(Lp �= e)δ(Lp − e + u)m−O(ε1/4)

}
Q1. &'

A.4. Operator calculus. We outline an operator calculus for functions of selfadjoint op-
erators, used extensively in this work. For a detailed exposition and more references, we
refer to [HS3].

Let f ∈ Ck
0(R), k ≥ 2, and define the compactly supported complex measure

df̃ (z) = − 1
2π

(
∂x + i∂y

)
f̃ (z)dxdy, wherez = x + iy and f̃ is an almost analytic

complex extension off in the sense that
(
∂x + i∂y

)
f̃ (z) = 0, z ∈ R. Then, for a

selfadjoint operatorA, one shows that

f (A) =
∫

df̃ (z)(A− z)−1,

where the integral is absolutely convergent. Givenf , one can construct explicitly an
almost analytic extensioñf supported in a complex neighbourhood of the support off .
One shows that forp ≤ k − 2,∫ ∣∣df̃ (z)∣∣ | Im z|−p−1 ≤ C

k∑
j=0

‖f (j)‖j−p−1, (112)

where‖f ‖n =
∫
dx〈x〉n|f (x)|, and〈x〉 = (1+ x2)1/2. Furthermore, the derivatives of

f (A) are given by

f (p)(A) = p!
∫

df̃ (A)(A− z)−p−1. (113)

We finish this outline by mentioning that these results extend by a limiting argument to
functionsf that do not have compact support, as long as the norms in the r.h.s. of (112)
are finite.
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