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Analyzing the dynamics of open quantum systems has a long history in mathematics

and physics. Depending on the system at hand, basic physical phenomena that one

would like to explain are, for example, convergence to equilibrium, the dynamics

of quantum coherences (decoherence) and quantum correlations (entanglement), or

the emergence of heat and particle fluxes in non-equilibrium situations. From the

mathematical physics perspective, one of the main challenges is to derive the irre-

versible dynamics of the open system, starting from a unitary dynamics of the system

and its environment. The repeated interactions systems considered in these notes are

models of non-equilibrium quantum statistical mechanics. They are relevant in quan-

tum optics, and more generally, serve as a relatively well treatable approximation

of a more difficult quantum dynamics. In particular, the repeated interaction models

allow to determine the large time (stationary) asymptotics of quantum systems out of

equilibrium. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879240]

I. INTRODUCTION

A. Motivations

The study of the dynamics of open quantum systems is a venerable topic due to its relevance

in the description of several basic physical mechanisms of interest, such as convergence towards a

thermodynamical equilibrium state of onset of heat or particle fluxes between reservoirs at different

temperatures or chemical potentials, for example. At the same time, it is a very active field of present

research in mathematical physics. One of the reasons for this is to be found in the fact that the

description of return to equilibrium or onset of stationary states in open quantum systems appeals

explicitly to the description in the large time regime of the unitary dynamics of quantum systems

and the effective dispersive effects induced by the intrinsic properties of the reservoirs. Besides non-

trivial modeling aspects, the mathematical analysis still represents a challenge for many physically

relevant models.

The repeated interaction systems considered in these notes are models of non-equilibrium

quantum statistical mechanics whose specificities to be explained below make it possible to determine

large times asymptotic properties which are characteristic of stationary systems out of equilibrium.

Repeated interaction models are quite relevant in quantum optics, and also appear as approximate

quantum dynamics, as will be detailed below.

In order to put repeated interaction systems in perspective within the wider framework of open

quantum systems, we briefly recall the description and characteristics of what we call open quantum
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systems in these notes and the main features of two popular and fruitful approaches of their dynamical

properties.

Open quantum systems often consist of a reference quantum system also called “small system,”

S characterized by its Hilbert space hS and Hamiltonian hS put in contact with an infinitely

extended quantum environment or reservoirR. The state of the latter is characterized by macroscopic

thermodynamical properties such as temperature or chemical potential and can be formally described

as a density matrix in a Hilbert space hR which is invariant under the dynamics driven by a

Hamiltonian hR. The coupling between these two systems is provided by an interaction operator

v acting on the Hilbert space of the total system given by the tensor product hS ⊗ hR. In order to

describe genuine non-equilibrium effects, the environment may have more structure and consist,

for example, of the union of several reservoirs R = ∨ j=1,...,nR j , the state of each reservoir R j

characterized by its own thermodynamical properties, on a formal Hilbert space, and being driven

by its Hamiltonian.

The general approach of open systems consists in focusing on the dynamics of the refer-

ence system S under the influence of the environment, giving up the idea to describe precisely

the dynamics of the environment. This is in keeping with the a priori difference in nature of the

reference system S and of the environment R: the latter plays the role of an infinite reservoir

of energy and/or particles, so that the small system of interest has very little influence on R.

Hence the macroscopic characteristics of the environment will remain constant in time, whereas

the dynamics of the reference system will be significantly influenced by the presence of the

environment.

One approach of this question, dubbed the Hamiltonian approach, consists in the following

procedure. One adopts a microscopic description of both the small system and the environment on

their Hilbert space as above, and one considers a decoupled initial state of the form ρS ⊗ ρR, where

ρ# is a (formal) density matrix on h#, # = S,R. One then lets this state evolve up to time t > 0

under the dynamics generated by the coupled microscopic Hamiltonian hS + hR + v on the space

of the full system hS ⊗ hR, to get a state of the full system. Then, tracing out the degrees of freedom

of the environment, one gets from this procedure the state ρS (t) of the small system S at time t,

from the initial state ρS , in which the influence of the environment is encoded exactly. The price

to pay is that the dynamical process which maps ρS to ρS (t) is, in general, not a semigroup and is

not the solution of a differential equation, but that of a complicated integro-differential equation. In

certain asymptotic regimes like the van Hove limit, approximations of ρS (t) are provided in terms

of solutions of an effective evolution equation of Lindblad type.

Another popular approach of quantum open systems, called the Markovian approach, is based on

the general assumption that the perturbations of the state of the reservoir generated by the interaction

with the small system propagate to infinity fast enough so that, for all practical purposes, the memory

effects can be neglected. In other words, without attempting to provide a description of the reservoir,

it is assumed that its effect on the reduced dynamics of states on the space hS of the small system

amounts to a modification of the free generator by a dissipative part which yields a Markovian

effective dynamics. The actual determination of the effective dissipative generator usually takes

into account the physical peculiarities of the small system, of the reservoir, and of the interaction

operator. Moreover, the generator of the effective dynamics is often chosen to take the form of a

Lindbladian in order to produce a CP map. One of the main features of the Markovian framework is

that the main dynamical properties of the evolution of states of the small system can be read off the

spectral properties of the effective generator. The drawback lies in the deliberate approximation of

the effective evolution by a one parameter semigroup.

Let us come to repeated interaction systems now. The situation addressed in these notes shares the

same general characteristics with the setup loosely described above: a small systemS interacting with

a large environment. However, the environment in repeated interaction quantum systems is structured

in a quite different way: it consists of an infinite chain of quantum subsystems E1, E2, E3, . . . , each

of which is defined on its Hilbert space hE j
by its Hamiltonian hE j

, j ∈ N∗. The formal Hilbert

space of this structured environment E1 ∨ E2 ∨ E3 ∨ . . . is denoted by henv = ⊗
j≥1 hE j

with formal

free Hamiltonian
∑

j≥1 hE j
. The dynamics of the compound system S plus chain taking place on

hS ⊗ henv is characterized by a time dependent interaction with the following property: the small
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system interacts with the elements of the chain E j , in sequence and one by one, for a single interaction

duration that may depend on the considered element. In the simplest case which we call ideal, all

elements of the chain are identical, i.e., E j = E , hE j
= hE , hE j

= hE , and interact with S by means

of the same coupling operator v on S ⊗ E for the same duration τ .

The defining features of repeated interaction systems provide their dynamics with the unique

property of being at the same time Hamiltonian (though time-dependent) and Markovian. Indeed,

in the ideal case, the dynamics restricted to the small system is shown to be determined by the map

L which assigns ρS (τ ) to ρS , as the result of the interaction of S with one subsystem E for the

duration τ . Heuristically, from the point of view of the small system, all subsystems interacting in

sequence with S are equivalent, so that the result of n ∈ N repeated interactions amounts to iterating

n times the map L on the initial condition ρS . This expresses the Markovian character of repeated

interactions in discrete time. As a consequence, spectral methods will be available to perform the

analysis of the exact dynamics restricted to states on the Hilbert space hS of the small system,

which allows to determine efficiently several thermodynamical properties of repeated interaction

systems. Let us note here that when the dimension of hS is finite the spectral analysis of the map L
is, in principle, straightforward. However, in case hS is infinite dimensional, as is necessary in some

of the physical applications described below, it becomes much more delicate and requires rather

sophisticated tools.

It will be shown in these notes that this picture is correct, together with generalizations to

non-ideal cases, both in deterministic and random setups.

After this rather abstract description of repeated interaction systems, let us provide some insight

into the physical relevance of this kind of model. The physical situation which is perhaps the most

tightly linked to the repeated interaction models is that of the one atom maser,40,26,66,86,87 and some

of its subsequent elaborations.30,43,77,76 In rough terms the setup is the following. The system of

reference S consists of the monochromatic electromagnetic field in a cavity, or a finite number of its

modes. This field interacts with a beam of atoms coming out of an oven which are sent through the

cavity. With a good approximation, one can consider that the atoms enter the cavity one by one and

interact with the field for a duration τ corresponding to their time of flight through the cavity, before

leaving it and never returning. Therefore, the infinite sequence of atoms leaving the oven form the

chain of subsystems E j , j ≥ 1, which interact one by one in sequence with the reference system S for

a duration τ . Assuming ideal experimental conditions, the atoms, their incoming states, and times

of flight can be considered as identical which amounts to adopting the model we dubbed ideal. Note

that even in the ideal case considering a full mode of the electromagnetic field as the small system

amounts to describing S as a harmonic oscillator, which leads to an infinite dimensional Hilbert

space hS . Also, in order to take into account more realistic experimental conditions in which the

times of flight through the cavity, incoming state of the atoms, etc., vary slightly around some fixed

quantities, we consider below random versions of the model allowing some of these parameters to

fluctuate.

An important aspect of the physics of one atom masers is the control of effects due to losses

within the cavity, measured in terms of the quality factor of the cavity. Such effects are often taken

into account in an effective way, by the inclusion of ad hoc dissipative terms in the generator of the

dynamics. In order to have a Hamiltonian description of the losses the reference system experiences

with the environment, we generalize the model in the following way. We add to the small system

S and chain E1 ∨ E2 ∨ E3 ∨ . . . considered so far a reservoir R with which S keeps interacting

continuously, whereas there is no interaction between the chain and R. This extra reservoir models

in an effective but Hamiltonian way the effect of the environment which is responsible for losses of

the cavity. Moreover, it does not spoil the repeated interaction dynamical structure, since it can be

considered jointly with the small system so that S ∨ R becomes formally the new reference system

in repeated interaction with the chain. This generalized model allows us to study the effect of losses

by means of more sophisticated spectral methods including resonance theory.

From a mathematical point of view, the systematic study of repeated interaction systems has

been initiated in the papers7, 10 (they can however be traced back at least to Refs. 59 and 60 who

introduced them as dilations of Markov chains). These works are devoted to the analysis of models

of open quantum systems in which the reservoir R is modeled by fields of quantum noises living in a
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Fock space based on an L2 space in a continuous time variable. Taking into account the interactions

with the small system S,10 describes the continuous limit of the system S and the environment R,

in a way which is consistent with the quantum stochastic calculus, see, e.g., Ref. 45. Brought back

to the Hilbert space hS of the small system, these models provide an exact Markovian description

of the dynamics of states. Based on Ref. 7, the paper10 proposes a version of the model in which

the continuous variable of the reservoir space is discretized so that the reservoir becomes effectively

a chain of independent quantum subsystems, with which the small system interacts in sequence

according to the repeated interaction scheme described above. The point of Ref. 10 is to show

that within a subtle continuous limit procedure where the discretization step tends to zero in some

definite regime of other interaction parameters, a natural model of open quantum system with a

continuous reservoir of quantum noises emerges, providing the reservoir with intrinsic quantum

features. See also the review35 for other aspects on this mechanism. Moreover, the corresponding

effective Markovian dynamics on hS is generated by an explicit Lindblad generator obtained in terms

of the chosen interactions between S and R. A version of this construction providing the reservoir

with thermal properties can be found in Ref. 9.

While we shall not address models of quantum stochastic differential equations below, we will

consider various regimes of repeated interaction systems in which the strength of the coupling, the

duration of each interaction and number of interactions can be coupled in ways that are reminiscent

of the weak coupling or Van Hove limit in continuous Hamiltonian systems. Although simpler

technically, they bear some resemblance with the limiting procedure of Refs. 7 and 10 alluded to

above, and give rise to continuous models generated by various Lindblad operators depending on

the chosen scaling.

The theory of continuous time models for the evolution of open quantum systems as semi-groups

of completely positive maps, also known as quantum Markov semigroups, has a long history which

we shall not attempt to retrace here. Let us simply mention the determination of the generators of

quantum Markov semigroup by Refs. 44 and 63, and their dilations as unitary operators by means

of stochastic quantum calculus by Refs. 35, 45, and 41, as two milestones of the theory directly

related to the discussion above. We refer the reader to the reviews78,38 and references therein for a

complete overview. In our framework, once the effective dynamics of the small system is shown to

be given by a quantum Markov semigroup in some regime, the analysis of this dynamics remains to

be done. In particular, questions about the long time behavior of the system and its potential return

to equilibrium are certainly quite relevant. These important aspects are not addressed in these notes

about RI systems, and the interested reader should consult the review39 and references therein for

information about this rich topic.

II. MATHEMATICAL DESCRIPTION OF RI SYSTEMS

We now describe more precisely the mathematical setup of repeated interaction systems and

explain how their particular structure allows one to derive a Markovian, discrete-time, dynamics for

S from the Hamiltonian dynamics of the entire system.

The various elements needed to describe a RI system are:

1. the Hilbert space hS and Hamiltonian hS describing the small system S “alone,”

2. Hilbert spaces hEn
and Hamiltonians hEn

describing the various subsytems En ,

3. a sequence of duration times (τ n)n where τ n ≥ τ > 0 for any n and some given τ . The time τ n

is the amount of time the system S spends interacting with the subsytem En ,

4. operators vn describing the interactions between S and the subsystems En .

The Hilbert space describing the RI system is then

h := hS ⊗ henv, henv :=
⊗

n≥1

hEn
.

We also denote tn := τ 1 + · · · + τ n. During the time interval [tn − 1, tn), the system S interacts

with the nth subsystem, i.e., En , and with none of the others. The full evolution of the system is thus
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described by the Hamiltonian

h(t) = hS +
∑

n≥1

hEn
+

∑

n≥1

χn(t)vn, (2.1)

where χn is the characteristic function of the interval [tn − 1, tn). We will use the following notation:

hn := hS + hEn
+ vn and h̃n := hn +

∑

k 6=n

hEk
.

Note that h(t) ≡ h̃n when t ∈ [tn − 1, tn). We have also omitted trivial factors 1, e.g., hS should be

hS ⊗ 1env.

Given any initial state ρ for the system S at time t = 0 (i.e., ρ is a positive trace class operator

on hS with trace one), and a sequence (ρEn
)n of initial states for the subsystems En , the state of the

total repeated interaction system after n interactions is thus given by

ρ tot(n) := e−iτn h̃n · · · e−iτ1 h̃1

(
ρS ⊗

⊗

k≥1

ρEk

)
eiτ1 h̃1 · · · eiτn h̃n .

We are mainly interested in the system S (see however Sec. III A for more general observables), i.e.,

in expectation values of observables of the form

O = OS ⊗
⊗

k≥1

1Ek
.

Therefore, we are rather interested in ρ(n) := Trhenv
(ρ tot(n)), the reduced density matrix on S. It is

defined as the unique state on hS such that, for any observable OS on S,

TrhS
(ρ(n)OS ) = Trh

(
ρ tot(n) ×

(
OS ⊗

⊗

k≥1

1Ek

))
.

To obtain the state ρ(n) of the system S after these n interactions we thus take the following partial

trace:

ρ(n) := Trhenv

[
e−iτn h̃n · · · e−iτ1 h̃1

(
ρ ⊗

⊗

k≥1

ρEk

)
eiτ1 h̃1 · · · eiτn h̃n

]
. (2.2)

Of course, the above calculation is a little bit formal. Indeed, in order to define a countable

tensor product of Hilbert spaces one should specify a stabilizing sequence, i.e., a sequence of vectors

(ψn)n where ψn ∈ hEn
. The Hilbert space henv is then obtained by taking the completion of the vector

space of finite linear combinations of the form ⊗n≥1φn, where φn ∈ hEn
, φn = ψn except for finitely

many indices, in the norm induced by the inner product

〈⊗nϕn,⊗nφn〉 =
∏

n

〈ϕn, φn〉hEn
.

In general, the infinite tensor product
⊗

k≥1 ρEk
then does not make sense. It is however easy to make

sense of the formal expression (2.2). Indeed, at time tn only the n first elements of the environment

have played a role so that we can replace
⊗

k≥1 ρEk
by ρ(n)

env := ⊗n
k=1 ρEk

and the partial trace over

the environment by the partial trace over the finite tensor product h(n)
env := ⊗n

k=1 hEk
, i.e.,

ρ(n) = Tr
h

(n)
env

[
e−iτn h̃n · · · e−iτ1 h̃1

(
ρ ⊗

n⊗

k=1

ρEk

)
eiτ1 h̃1 · · · eiτn h̃n

]
. (2.3)

Remark. Another possibility would be to define the infinite tensor product “with respect to the

sequence of states (ρEn
)n .” For that purpose one should first represent the states ρEn

as vector states

with vector 9n (using the GNS representation), and then consider the stabilizing sequence (9n)n.

This then leads to the “Liouvillian” description of the RI system which will be presented in details

in Sec. VII A.
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The very particular structure of the repeated interaction systems allows us to rewrite ρ(n) in a

much more convenient way. The two main characteristics of these systems are:

1. The various subsystems of the environment do not interact directly (only via S), i.e.,

[hEk
, hEn

] = 0 for any k 6= n,

2. The system S interacts only once with each subsystem En , and with only one at a time, i.e.,

[hEk
, hn] = 0 for any k 6= n.

We therefore have the following decomposition which serves to isolate the dynamics of the subsys-

tems which do not interact at a given time

e−iτn h̃n · · · e−iτ1 h̃1 = u−
n × e−iτn hn · · · e−iτ1h1 × u+

n , (2.4)

where

u−
n = exp

(
−i

n−1∑

k=1

(tn − tk)hEk

)
and u+

n = exp

(
−i

n∑

k=2

tk−1hEk
− itn

∑

k>n

hEk

)

are respectively the propagator at time tn of the subsystems Ek after their interaction with S, and the

one before their interaction. Inserting (2.4) into (2.3), we get

ρ(n) = Tr
h

(n)
env

[
e−iτn hn · · · e−iτ1h1

(
ρ ⊗

n⊗

k=1

ρEk
(tk−1)

)
eiτ1h1 · · · eiτn hn

]
,

where ρEk
(tk−1) = e−itk−1hEk ρEk

eitk−1hEk is the state of the kth subsytem when it begins to interact

with S.

It is now easy to see that the evolution of S is Markovian: the state ρ(n) only depends on the

state ρ(n − 1) and the nth interaction. More precisely, one can write

ρ(n) = Ln(ρ(n − 1)), (2.5)

where

Ln(ρ) := TrhEn

[
e−iτn hn ρ ⊗ ρEn

(tn−1) eiτn hn
]
. (2.6)

This explains why we take as an initial state for S a density matrix and not necessarily a pure state.

Since S interacts with another system, and because of the reduction procedure, after already a single

interaction we are led to a density matrix. Of course, this formula simplifies if ρEk
is invariant under

the free dynamics of Ek , e.g., a thermal state, and from now on we will always assume that this is

the case.

Definition 2.1. The map Ln , acting on B1(hS ), is called the reduced dynamics map (RDM) at

time n.

Note: B1(hS ) denotes the space of trace class operators on hS .

The following properties of a reduced dynamics map follow directly from its definition.

Proposition 2.2. A RDM L is a contracting, completely positive and trace preserving map.

As a corollary of the trace preserving property, 1 is always an eigenvalue of the dual map L∗

(for the B1(hS )/B(hS ) duality) with eigenstate the identity operator.

The map Ln describes the effective evolution of S under the influence of the nth subsystem.

Using (2.5), we therefore have for any initial state ρ of the small system S,

ρ(n) = Ln ◦ Ln−1 ◦ · · · ◦ L1(ρ). (2.7)

In the particular case of ideal interactions, i.e., hEn
≡ hE , hEn

≡ hE ,... and if the ρEn
are invariant

for the dynamics of En , we then have Ln ≡ L for all n and (2.7) becomes simply

ρ(n) = Ln(ρ). (2.8)
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The map L is the discrete-time generator of a semi-group of completely positive, trace preserving

maps on the state space of S. In other words, the particular structure of RI systems leads to an

effective description of S as in the Markovian approach, starting from a Hamiltonian description

and without any further scaling limit.

The study of the large time behaviour of S reduces to the analysis of the RDM L defined in

(2.6). Since L is a contraction, to understand the limit n → ∞ of ρ(n) = Ln(ρ) we therefore have to

understand what the invariant states are, i.e., the eigenspace for the eigenvalue 1, and also if there are

other eigenvalues of modulus 1. Note that, in the case where hS has finite dimension, the fact that L
is trace preserving implies that 1 is also an eigenvalue of L so that there is always an invariant state

when Ln ≡ L (moreover, because of the contraction property, the remaining part of the spectrum is

inside the open unit disk and thus leads to exponential decay). However, if hS has infinite dimension,

L may have an invariant state or not (see Secs. V A and V B).

Example 2.3. As a first example, let us consider the simplest non-trivial example of RI system,

where all the subsystems (S and the Ek’s) are 2-level systems (or spin 1
2
). The Hilbert spaces for S

and the Em are copies of C2. Let E, E0 > 0 be the “excited” energy level of S and of E , respectively.

Accordingly, the Hamiltonians are given by

hS =
(

0 0

0 E

)
and hE =

(
0 0

0 E0

)
.

We will denote by |0〉, resp. |1〉, the ground state, resp. excited state, of S or E . If we denote by a/a∗,

resp. b/b∗, the annihilation/creation operators for S, resp. E , i.e.,

a = b =
(

0 1

0 0

)
, a∗ = b∗ =

(
0 0

1 0

)
, (2.9)

we can then write

hS = Ea∗a and hE = E0b∗b.

The interaction operator is

v(λ) = λ

2
(a ⊗ b∗ + a∗ ⊗ b).

It induces an exchange process between S and the subsystem Ek it is coupled to: S flips from its

ground state to its excited state, while Ek flips the other way around, or vice versa (the parameter

λ is just a coupling constant). Note that v has the particular feature that it commutes with the total

number operator N tot = a∗a ⊗ 1 + 1 ⊗ b∗b.

It remains to specify the reference states of the subsystems Ek . They will be thermal states at

some inverse temperature βk,

ρEk
= e−βk hE

Tr
(
e−βk hE

) = Z−1
βk

e−βk hE =: ρEk ,βk
.

The calculation of the RDM L associated with a subsystem E at inverse temperature β and

interacting withS for an amount of time τ is a straightforward calculation since h = hS + hE + v(λ)

can be easily diagonalized.

Exercise 2.4. Prove that

L(ρ) =
∑

σ,σ ′=0,1

Vσ ′σρV ∗
σ ′σ

where the operators Vσ ′σ are given by

V00 = 1√
Zβ

e−iτ
E+E0

2
N C(N )∗, V10 = 1√

Zβ

e−iτ
E+E0

2
N S(1 − N ) a,

V01 = e−βE0/2

√
Zβ

e−iτ
E+E0

2
N S(N ) a∗, V11 = e−βE0/2

√
Zβ

e−iτ
E+E0

2
N C(1 − N ),
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with N = a∗a the number operator for S,

C(x) = cos
(ντ

2
x
)

+ i
1

ν
sin

(ντ

2
x
)

, S(x) = λ

ν
sin

(ντ

2
x
)

,

and where 1 = E − E0 and ν =
√

12 + λ2.

Hint: Diagonalize h using [h, Ntot] = 0, calculate eiτh and insert it in (2.6).

III. ASYMPTOTIC STATE OF RIS

In the first sections, and in order to keep the exposition as simple as possible, we shall stick to

the case where the RI system is described using the Hamiltonian formalism. Only when we will add

an extra reservoir we will have to turn to the Liouvillian description. Throughout this section, we

will assume that the small system is finite dimensional, i.e., dim(hS ) < +∞.

A. Ideal case

We start our analysis of RI systems with the simplest “ideal” case of identical interactions, i.e.,

En ≡ E , τ n ≡ τ , etc. In this case, the reduced dynamics maps Ln do not depend on n and we are

essentially led to the study of powers of L. Since L is a contraction for the trace norm, its spectrum

lies in the complex unit disk. Moreover, since 1 is an eigenvalue for L∗ and S has finite dimension,

it is also an eigenvalue for L. This means that the system possesses at least one invariant state which

is therefore a natural candidate for the limiting state of the system. The results of this section are the

direct translation into the Hamiltonian formalism of the ones of Ref. 20.

We first consider observables on the small system S, i.e., A = AS ⊗ 1env. As we argued in

Sec. II, the asymptotic behaviour of expectation values for such observables can be reduced to the

analysis of Ln as n goes to infinity. In all this section, we will assume the following ergodicity

hypothesis which is a kind of Fermi Golden Rule Condition.

(E) The spectrum of L on the complex unit circle consists of the single eigenvalue {1} and this

eigenvalue is simple.

Remark 3.1. If Assumption (E) holds, then the eigenspace corresponding to the eigenvalue 1

has dimension 1. It then follows from the fact that L is a (completely) positive and trace preserving

map that L possesses a unique invariant positive and trace one element ρS,+, i.e., a unique invariant

state.

Theorem 3.2. Suppose Assumption (E) is satisfied. Then there exist C, γ > 0 such that for any

initial state ρ ∈ B1(hS ),

‖Ln(ρ) − ρS,+‖1 ≤ Ce−γ n, ∀n ∈ N,

where ρS,+ is the unique invariant state of L. In other words, for any observable OS ∈ B(hS ),

Trh
(
ρ tot(n)OS ⊗ 1env

)
= TrhS

(ρ(n)OS ) = ρS,+(OS ) + O(e−γ n). (3.1)

Note that the asymptotic state does not depend on the initial state of S.

Remark 3.3. If the ergodic assumption (E) is not satisfied, then the limit lim
n→∞

Ln(ρ) still exists,

in a weaker sense. Namely, if there are eigenvalues different from 1 on the circle, then the limit exists

in the ergodic mean sense,
1

N

N−1∑

n=0

Ln(ρ) = ρS,+ + O

(
1

N

)
. Further, if 1 is a degenerate eigenvalue

of L, then L possesses several invariant states. Hence one can still prove that Ln(ρ) has a limit but

the latter will depend on the initial state ρ.
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Exercise 3.4. Consider the RI system of Example 2.3.

(1) Prove that the eigenvalues of L are 1, e± = e±iτ
E+E0

2

(
cos

(ντ

2

)
± i

1

ν
sin

(ντ

2

))
and

e0 = 1 − λ2

ν2
sin2

(ντ

2

)
. (3.2)

(2) At what condition does the map L satisfy (E)? In that case, show that the unique invariant

state is ρS,+ = ρS,β∗ where ρS,β∗ is the Gibbs state of S at inverse temperature β∗ = E0

E
β, and

that one can take γ = − log
(√

e0

)
.

B. Random case

In this section, we turn to a more general situation where the various interactions are not identical.

Of course, if one considers arbitrary interactions it is hopeless to expect any convergence (even in

the ergodic mean) to some invariant state. As we mentioned in Sec. II, see (2.7), the asymptotic

behaviour of the system is essentially described by the product of reduced dynamics operators:

Ln ◦ · · · ◦ L1. If the Ln’s are more or less arbitrary, anything can happen. We shall consider here

the case where the interactions are random (but still independent identically distributed). Closely

related results can be found in Ref. 68. This randomness may have various origins: the interaction

time, the reference state of the En’s (via, e.g., the temperature), the subsystems En themselves (and

hence the interaction operators),.... All these parameters are eventually encoded in the RDM and our

assumption will be that the sequence (Ln)n will be independent and identically distributed (i.i.d.).

To motivate this analysis, consider the “One-Atom Maser” experiment where a beam of atoms

interacts with modes of the quantized electromagnetic field. It is clear that in actual experiments,

neither the interaction time τ n nor the reference states of the subsystems En can be exactly the same

for all n! Typically, the interaction time will be random (because of the random velocities of the

atoms in the beam, see Refs. 18 and 40), given, e.g., by a Gaussian distribution around some mean

value, and the state of the incoming atoms will be random as well, for instance, determined by a

temperature that fluctuates slightly around a mean temperature (in experiments, the atoms are ejected

from an atom oven, then they are cooled down to a wanted temperature before entering the cavity).

One could also imagine that the subsystems En themselves are not all the same (e.g., different kind

of atoms, or maybe some impurities).

Another motivation is to consider a non-equilibrium situation. In the general setup of open

quantum systems, one gets a non-equilibrium situation when the environment is made of several

reservoirs, each of them being in an equilibrium state but with different intensive thermodynamic

parameters (different temperatures, for instance). Then one expects the joint system S + R1 + · · ·
to relax towards a non-equilibrium steady state (NESS). Such states have been constructed in

Refs. 80, 3, 53, 6, 64, and 29. Among other things, they carry currents and have non-vanishing

entropy production rate. These transport properties were investigated in Refs. 42, 28, 5, and 69. The

linear response theory (Green-Kubo formula, Onsager reciprocity relations, central limit theorem)

was developed in Refs. 42 and 46–50.

In the framework of RI systems, we can create a non-equilibrium situation by imposing the initial

state of the subsystems En to be, for example, thermal equilibrium states at different temperatures.

In other words, we assume that the system S interacts with K “reservoirs” at a priori different

temperatures, i.e., for any m ∈ N, ρEmK+1
= ρE1,β1

, ρEmK+2
= ρE2,β2

, etc..., where ρE,β is the KMS-

state of E at inverse temperature β, see Sec. VI C. (One could imagine a “One-Atom Maser” where

the field in the cavity is coupled to K beams at different temperatures.) However, the particular

structure imposed here leads to a lack of symmetry and in particular the system is not at all time

reversal invariant (reservoir 2 always interacts right after reservoir 1, while the converse is not true).

A direct consequence is that Onsager reciprocity relations do not hold. One way to restore symmetry

is then to chose the temperature of the nth subsystem in a random way from the set {β1, . . . , βK},

each temperature having probability 1
K

to occur. The results of this section come from Ref. 22.
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Let (Ä0,F , p) be a probability space. To describe the stochastic dynamical process at hand, we

introduce the standard probability measure dP on Ä := ÄN∗
0 ,

dP = 5 j≥1dp j , where dp j ≡ dp, ∀ j ∈ N∗.

We denote by ω = (ωn)n the elements of Ä. As we already mentioned, we will assume that the

various interactions are i.i.d. This is precisely the meaning of the following randomness assumption.

(R1) The reduced dynamics maps Ln are i.i.d. random operators (on B1(hS )). We write Ln =
L(ωn), where L : Ä → B

(
B1(hS )

)
is an operator valued random variable.

Throughout this section, we will assume, without further mentioning it, that Assumption (R1)

is satisfied. Finally, let M(E) be the set of RDMs which satisfy the ergodic assumption (E).

To indicate the randomness we shall denote the state “at time n” (i.e., after n interactions) by

ρ(n, ω) = (L(ωn) ◦ · · · ◦ L(ω1)) (ρ).

The following theorem shows that the RI system relaxes almost surely in the ergodic mean towards

a deterministic asymptotic state.

Theorem 3.5. Suppose that p(L(ω0) ∈ M(E)) > 0. Then,

1. E(L) satisfies (E),

2. there exists a set Ä̃ ⊂ Ä, s.t. P (Ä̃) = 1, and s.t. for any ω ∈ Ä̃, any initial state ρ,

lim
N→∞

1

N

N∑

n=1

ρ(n, ω) = ρS,+,

where ρS,+ is the unique invariant state of E(L).

The convergence in the ergodic mean is rather generic for systems out of equilibrium. Actually,

in an equilibrium-like situation one could expect a stronger convergence result. In our setting of

random RI systems this appears in the following.

Theorem 3.6. Suppose that p(L(ω0) ∈ M(E)) > 0 and that there exists ρS,+ such that

L(ω0)(ρS,+) = ρS,+ for a.e. ω0, i.e., there is a deterministic invariant state. Then there exists a

set Ä̃ ⊂ Ä, s.t. P (Ä̃) = 1 and α > 0 s.t. for any ω ∈ Ä̃, there exists C(ω) > 0 such that for any

ρ ∈ B1(hS ),

‖ρ(n, ω) − ρS,+‖1 ≤ C(ω)e−αn, ∀n ∈ N.

Exercise 3.7. Consider the RI system of Example 2.3.

(1) Suppose that βn ≡ β, and that τ (ω0) is a random variable satisfying p (ντ /∈ 2πN) 6= 0. Prove

that there exists α > 0 such that for any initial state ρ and P -a.s,

‖ρ(n, ω) − ρS,β∗‖ ≤ C(ω)e−αn, ∀n ∈ N,

for some C(ω) > 0 and where β∗ = E0

E
β.

(2) Suppose that β(ω0) is a random variable, and that τ n ≡ τ > 0 satisfies ντ /∈ 2πN. Prove

that, for any initial state ρ, ρ(n, ω) converges P -a.s. in the ergodic mean towards the Gibbs

state of S at inverse temperature β ′ := −E−1 log
(
E[Z−1

S,β(ω0)E0/E ]−1 − 1
)
. In other words,

ρS,+ = E
(
ρS,β∗(ω0)

)
where β∗(ω0) = β(ω0)E0/E.

IV. RIS IN VARIOUS LIMITING REGIMES

This section is devoted to the study of the weak coupling limit, or Van Hove limit, and variations

thereof, of RIS of the sort described above. The weak coupling limit is a widely used tool to produce

effective dynamics in a regime in which the total duration of the evolution scales like the square of the

inverse power of the coupling intensity between the small system and the environment. In the weak

coupling limit, the focus is again put on the small system so that the environment only appears in the
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effective dynamics provided in the limit. When dealing with a discrete time dynamics, this procedure

of perturbative nature allows one in general to define a continuous dynamics on the small system

that captures some essential features of the original dynamics. The existence of effective dynamics

obtained by a weak limit procedure is known for a large class of time-independent Hamiltonian

systems, as well as in certain time-dependent situations, see, e.g., Refs. 31–33, 62, 36, and 72. The

results provided in Ref. 8 which we describe here, show that RIS can be added to this list. See also

Ref. 83 for generalizations.

As mentioned above, the primary motivation to study weak coupling regimes comes from

Ref. 10. Although the setup considered here is much simpler, some conclusions of Ref. 10 can be

reached without going to a continuous limit of Quantum Noises. We refer the reader to volume two

of Ref. 72 for a detailed presentation of the latter. A particular consequence of models in which the

environment is described in terms of Quantum Noises, is that if one traces over the environment

degrees of freedoms, a Lindbladian description of the reduced dynamics of states on hS naturally

emerges from the analysis, see Ref. 10. See also Ref. 9 for positive temperature results. Similar

conclusions are drawn below in the simpler setup of RIS.

The framework is that of the ideal case in which the small quantum system is defined on

a finite dimensional Hilbert space hS coupled to an environment made of an infinite chain of

identical independent n + 1-level sub-systems, with n finite, on henv := ⊗
m≥1 hEm

. The coupling

between the system S and the environment is provided by identical interactions with each individual

sub-system of the chain, for the same duration τ > 0. Hence, over a macroscopic time interval

]0, kτ ], k ∈ N∗, the small system is coupled with elements 1, 2, ..., k of the chain, in sequence

with the same interaction of strength λ. The interaction is given by λ times an operator acting on

h ⊗ hEm
of the form vm = ∑n

j=0 V ∗
j ⊗ a j + V j ⊗ a∗

j . Here the a∗
j ’s and aj’s are similar to creation

and annihilation operators relative to the levels of the kth sub-system Ek and the V j ’s are arbi-

trary operators on hS . Instead of the evolution of states, we consider equivalently the Heisenberg

evolution of observables on the small system when the chain is initially at equilibrium at positive

temperature.

The large time results presented in Sec. III allow one to expect that an effective continuous

dissipative dynamics on the small system arises when the number k of discrete interactions goes to

infinity and the coupling λ with the chain elements is weak.

We start with the familiar weak coupling regime by choosing t > 0 fixed and considering

N ∋ k = t/λ2, so that the macroscopic time scale equals T = τ t/λ2. We show the existence of an

effective dynamics driven by a τ dependent generator which we determine. The supplementary

parameter given by the microscopic interaction time τ allows us to explore different asymptotic

regimes, as τ goes to zero: We extend the analysis to the whole range τ → 0, λ2τ → 0 over

macroscopic time scales T = t/(τλ2) → ∞. The analysis of these first two regimes is strongly

related to regular perturbation theory in the parameter λ2τ . The divergence of the macroscopic time

scale imposes, as usual, some renormalization of the dynamics by the restriction of the uncoupled

dynamics. Note however that in the second regime, the interaction strength λ is not required to go

to zero and can even diverge. The common feature of the generators of the dynamics of observables

obtained in these first two regimes is that they commute with the generator i[hS , ·] of the uncoupled

unitary evolution restricted to hS . In other words, the corresponding effective dynamics admits the

commutant of hS as a non-trivial invariant sub-algebra of observables. This is a well-known feature

of the weak coupling regime for time-independent Hamiltonians.31,62,36

The third regime, tightly linked to the scaling used in Ref. 10, is characterized by τ → 0,

while the product λ2τ is kept constant. This leads us beyond the perturbative regime and yields a

macroscopic time scale T = t/(λ2τ ), which is finite. The analysis of this critical case makes use of

Chernoff’s theorem, rather than perturbative methods. Within this scaling one shows that an effective

Heisenberg dynamics for observables on hS arises at any temperature. It is generated by a general

Lindblad operator whose dissipative part is explicitly constructed in terms of the V j ’s defining the

coupling in the Hamiltonian, whereas its conservative part is simply i[hS , ·]. The Lindblad generator

coincides with the one driving the effective Heisenberg dynamics of observables on hS obtained by

means of quantum noises10,9 at zero and positive temperature. A particular trait of these generators is

that they do not commute with i[hS , ·] anymore, the generator of the uncoupled evolution restricted
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to hS . Hence, there is no obvious sub-algebra of observables left invariant by the effective dynamics

of observables.

We remark at his point that the modeling of the dynamics of observables (or states) of a small

system in contact with a reservoir at a certain temperature often starts with a choice of a certain

Lindblad generator suited to the physical phenomena to be discussed. The analysis presented allows

to assign to any given Lindblad generator a simple model of repeated quantum interactions, with

explicit couplings constructed from the Lindblad generator, whose effective dynamics in the limit

τ → 0, λ = 1/
√

τ , is generated by the chosen Lindblad operator.

The links between the generators obtained in the three regimes considered are discussed below.

A. Setup

The small system, described by the Hilbert space hS of dimension d + 1 > 1, is characterized

by a Hamiltonian hS . The Hilbert space of the chain elements is Cn+1, that of the infinite chain is

henv = ⊗ j≥1Cn+1, n ≥ 1 so that the total Hilbert space is hS ⊗ henv. We introduce some notations

that will prove useful below.

The vacuum vector Ä ∈ henv is defined as the infinite tensor product of the vacuum vector

ω =
(

0 · · · 0 1
)T

in Cn+1, the stabilizing sequence,

Ä = ω ⊗ ω ⊗ ω ⊗ · · · ∈ Cn+1 ⊗ Cn+1 ⊗ Cn+1 ⊗ · · · . (4.1)

We define the ith excited vector by xi = (0 · · · 0 1 0 · · · 0)T , where the 1 sits at the ith

line, starting from the bottom, i = 1, 2, · · · , n. Hence the corresponding excited state at site j ≥ 1 is

given by

xi ( j) = ω ⊗ · · · ⊗ ω ⊗ xi ⊗ ω ⊗ · · · , (4.2)

where xi sits at site j ≥ 1. More generally, given a finite set

S = {(k1, i1), (k2, i2), · · · , (km, im)} ⊂ (N∗ × {1, 2, · · · , d})m with all k j ’s distinct, (4.3)

we denote by XS the vector given by an infinite tensor product as above, with ijth excited vectors

xi j
(k j ) at all sites kj ≥ 1, j = 1, · · · , m, and ground state vectors ω everywhere else. Then, henv is the

completion under the norm arising from the inner product of linear combinations of such vectors.

This construction together with the vacuum Ä ≡ X∅ yield an orthonormal basis of henv, when S runs

over all finite sets of the type above.

Correspondingly, we introduce “creation” and “annihilation” operators associated with the

vectors xi(j) as follows. Let ai and a∗
i , i = 1, 2, · · · , n, denote the operators corresponding to {ω, x1,

· · · , xn} in Cn+1, i.e., such that

ai xi = ω, aiω = ai x j = 0, if j 6= i,

a∗
i ω = xi , a∗

i x j = 0 for any j = 1, 2, · · · , n. (4.4)

Then, for j ≥ 1, the operators ai(j) and ai(j)
∗ on henv are defined as acting as ai and a∗

i on the jth

copy of Cn+1 at site j, and as the identity everywhere else. The Hamiltonian of one sub-system at

site j ≥ 1 can thus be written as

hE j
=

n∑

i=1

δi ai ( j)∗ai ( j), with δi ∈ R. (4.5)

Exercise 4.1. Compare the operators (4.4) with the familiar creation and annihilation operators.

Show that for i fixed, they satisfy the canonical anti-commutation rules when restricted to the two-

dimensional subspace spanned by {ω, xi} and are zero on the orthogonal complement of this

subspace. Show that the spectrum σ (hE j
) = {0} ∪ {δi }i=1,...,n , for each j ∈ N∗.

In keeping with this notation, we can introduce a basis of eigenvectors of hS in hS of the form

{ω, x1, x2, · · · , xd}, where d = dim(hS ) − 1. (4.6)
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While d 6= n in general, we shall nevertheless write sometimes ω(0) and {xi(0)}i = 1, 2, · · · , d to denote

these vectors, slightly abusing the notation. No confusion should arise with vectors of henv above,

since we labelled the sites of the sub-systems, or spins, by positive integers.

The corresponding time dependent Hamiltonian h(t, λ), acting on hS ⊗ henv, (2.1) is now

completely defined with the interaction given for t ∈ [τ (k − 1), τk[ by

vk =
n∑

i=1

V ∗
i ⊗ ai (k) + Vi ⊗ ai (k)∗, (4.7)

where the Vi ’s are bounded operators on hS . Notations are made more compact by introduc-

ing vectors with operator valued entries. Let a( j)♯ =
(

a1( j)♯ a2( j)♯ · · · an( j)♯
)T

, V ♯ =(
V

♯

1 V
♯

2 · · · V
♯

n

)
where ♯ denotes either nothing or ∗. Then, with the rules of matrix com-

position, we write V ♯1 ⊗ a( j)♯2 = ∑n
i=1 V

♯1

i ⊗ a
♯2

i ( j), so that the interaction for t ∈ [τ (k − 1),

τk[ reads vk = V ∗ ⊗ a(k) + V ⊗ a(k)∗. Similarly, with δ =
(
δ1 δ2 · · · δn

)
, and a( j)∗a( j) =(

a1( j)∗a1( j) a2( j)∗a2( j) · · · an( j)∗an( j)
)T

we have hE j
= δa( j)∗a( j).

Let us denote the corresponding evolution operator between the time τ (k − 1) and τk by Uk,

Uk = e
−iτ (hS+hEk

+λvk+
∑

j 6=k hE j
) ≡ e

−iτ (hk+
∑

j 6=k hE j
)
, (4.8)

so that the evolution from time 0 to τn is given by

U (n, 0) = UnUn−1 · · · Uk · · · U1. (4.9)

Finally, let P be the projection from hS ⊗ henv to the subspace hS ⊗ CÄ defined by

P = 1 ⊗ |Ä〉〈Ä|, (4.10)

such that P hS ⊗ henv can be identified with hS , the Hilbert space of the small system. This projector

is directly linked to the partial trace to be performed on henv.

B. Preliminary estimates

The limit λ → 0 of the unitary evolution operators (4.9) in a controlled way as τ → 0 rests on

general perturbative estimates we describe here.

Dropping the index k in (4.8) the generator takes the form

H (λ) = H (0) + λW, with H (0) = hS + hEk
+

∑

j 6=k

hE j
and W = V ∗a + V a∗, (4.11)

and the projector P restricted to hS ⊗ hEk
writes P = 1 − a∗a.

Assume the following general framework:

(H1) Let P be a projector on a Banach space B and H(λ) be an operator of the form

H (λ) = H (0) + λW, (4.12)

where H(0) and W are bounded and 0 ≤ λ ≤ λ0 for some λ0 > 0. Further assume that

[P, H (0)] = 0 and W = PW Q + QW P where Q = 1 − P. (4.13)

We consider

Uτ (λ) = e−iτ H (λ). (4.14)

For later purposes, we also take care of the dependence in τ of the error terms, as both λ and τ tend

to zero, independently of each other. The first perturbative result reads the following.
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Lemma 4.2. Let H1 be true. Then, as λ and τ go to zero,

e−iτ (H (0)+λW ) = e−iτ H (0) + λF(τ ) + λ2G(τ ) + O(λ3τ 3), (4.15)

Pe−iτ (H (0)+λW ) P = Pe−iτ H (0) P + λ2 PG(τ )P + P O(λ4τ 4)P, (4.16)

where

F(τ ) =
∑

n≥1

(−iτ )n

n!

∑

m j ∈N

m1+m2=n−1

H (0)m1 W H (0)m2

= −ie−iτ H (0)

∫ τ

0

ds1eis1 H (0)W e−is1 H (0), (4.17)

G(τ ) =
∑

n≥2

(−iτ )n

n!

∑

m j ∈N

m1+m2+m3=n−2

H (0)m1 W H (0)m2 W H (0)m3

= −e−iτ H (0)

∫ τ

0

ds1

∫ s1

0

ds2eis1 H (0)W e−i(s1−s2)H (0)W e−is2 H (0). (4.18)

Remark. Formula (4.15) is true without assuming that W is off-diagonal with respect to P

and Q.

Specialized to the Hilbert space context, we have some more properties of the expansion of

Uτ (λ) for λ > 0 small, τ > 0.

Corollary 4.3. Assume B is a Hilbert space, H(0), W , and P are self-adjoint and λ, τ are real.

As λ → 0, the operator Uτ (λ) = e− iτH(λ) satisfies

Uτ (λ) = e−iτ H (0) + λF(τ ) + λ2G(τ ) + O(λ3τ 3), (4.19)

Uτ (λ)−1 = Uτ (λ)∗ = U−τ (λ)

= eiτ H (0) + λF(−τ ) + λ2G(−τ ) + O(λ3τ 3). (4.20)

Exercise 4.4. Prove Lemma 4.2 by making use of an expansion of the exponential and by

the Dyson series in the interaction picture 2(λ, τ ) = eiτ H (0)e−iτ (H (0)+λW ) given by the convergent

expansion

2(λ, τ ) =
∞∑

n=0

(−iλ)n

∫ τ

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsneis1 H (0)W × (4.21)

×e−i(s1−s2)H (0)W e−i(s2−s3)H (0) · · · e−isn−1−sn )H (0)W e−isn H (0).

Then prove Corollary 4.3, making use of the fact that H(λ) is self-adjoint.

The technical basis underlying all weak limit results to follow is contained in Proposition 4.5,

essentially due to Davies.31 In words, this proposition relates high powers of an approximate isometry

to high powers of an exponential, to leading order.

Proposition 4.5. Let V (x), x ∈ [0, x0) and R be bounded operators on a Banach space B such

that, in the operator norm, V (x) = V (0) + x R + O(x2), where V (0) is an isometry admitting the

spectral decomposition V (0) = ∑r
j=0 e−i E j Pj and let h = ∑r

j=0 E j Pj . Then, for any 0 ≤ t ≤ t0, if
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x → 0 in such a way that t/x ∈ N,

V (0)−t/x V (x)t/x = eteih R
#

+ O(x), in norm, (4.22)

where K # = ∑r
j=0 Pj K Pj , for any K ∈ L(B).

Exercise 4.6.

(i) Show that the projectors Pj are of norm one, using Von Neumann’s ergodic theorem.

(ii) Prove the alternative expression K # = limT →∞ 1
T

∫ T

0
eish K e−ish ds for any bounded operator

K, and deduce the estimate ‖K #‖ ≤ ‖K‖.

(iii) Check that the operator in the exponent can be rewritten as

eih R# = R#eih = (eih R)# = (Reih)#. (4.23)

Remark 4.7. All hypotheses are made on the isometry V (0), not on the operator h.

Let us now further assume the following.

(H2) The restriction HP(0) of H(0) to PB is diagonalizable and reads

HP (0) =
r∑

j=0

E j Pj , with dim(Pj ) ≤ ∞, r finite. (4.24)

Moreover, the operator Pe−iτ H (0) = Pe−iτ HP (0) is an isometry on PB.

Note that this implies Pe−iτ HP (0) is invertible and

P =
r∑

j=0

Pj , E j ∈ R ∀ j = 0, · · · , r, and Pe−iτ H (0) =
r∑

j=0

e−iτ E j Pj , (4.25)

where the projectors Pj are eigenprojectors of Pe− iτH(0) if the e−iτ E j ’s are distinct. In case B is a

finite dimensional Hilbert space and H(0) is self-adjoint, H2 is automatically true.

The perturbation formulas above together with Proposition 4.5 yield a general statement in a

Banach space framework under assumptions H1 and H2, taking into account both parameters λ

and τ .

Theorem 4.8. Suppose Hypotheses H1 and H2 hold true and further assume the spectral

projectors Pj, j = 0, · · · , r, of e−iτ HP (0) coincide with those of HP(0) on PB. Set K # = ∑r
j=0 Pj K Pj ,

for K ∈ L(B) and GP(τ ) = PG(τ )P.

(A) Then, for any 0 < t0 < ∞, there exists 0 < c < ∞ such that for any 0 ≤ t ≤ t0, the following

estimate holds in the limit λ2τ → 0, λ2τ 2 → 0, and t/(λτ )2 ∈ N:
∥∥∥ei H (0)t/(λ2τ )

[
Pe−iτ (H (0)+λW ) P

]t/(λτ )2

− et eiτ H (0)G P (τ )#/τ 2
∥∥∥ ≤ c(λ2τ 2 + λ2τ ). (4.26)

(B) Then, for any 0 < t0 < ∞, there exists 0 < c < ∞ such that for any 0 ≤ t ≤ t0, the following

estimate holds in the limit λ2τ → 0, τ → 0, and t/(λτ )2 ∈ N:
∥∥∥ei H (0)t/(λ2τ )

[
Pe−iτ (H (0)+λW ) P

]t/(λτ )2

− e−t(W 2)#/2
∥∥∥ ≤ c(τ + λ2τ ). (4.27)

Remark 4.9. If τ is small enough, the spectral projectors of e−iτ HP (0) and HP(0) on PB coincide.

C. Heisenberg representation for non-zero temperature

We now come back to our model and consider the evolution of observables, instead of density

matrices. The two points of view are of course equivalent. The Markovian nature of the model

allows us to express the evolution of observables B of the small system at positive temperature

after k repeated interactions as the action of the kth power of an operator Uβ(λ, τ ) on hS , see
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Proposition 4.15. Then, we apply Proposition 4.5 to Uβ(λ, τ ) to get weak limit type results stated as

Theorem 4.19 and Chernoff’s Theorem to go beyond the perturbative regime (4.25).

We consider the equilibrium state
⊗N

k=1 ρE,β of a chain of N spins at inverse temperature β

where

ρE,β = e−βδa∗a

Z(β)
. (4.28)

If ρ is any state on Cd+1, the initial state of the small system plus spin chain is ρ ⊗ ⊗N
k=1 ρE,β .

The Heisenberg evolution of observables of the form B ⊗ 1henv
, where B ∈ Md+1(C), can be con-

veniently described as follows, for k ≤ N,

Bβ(k, λ, τ ) = Trhenv
((1 ⊗

N⊗

k=1

ρE,β) U (k, 0)−1(B ⊗ 1henv
)U (k, 0)) ∈ L(hS ), (4.29)

where, for any A ∈ L(hS ⊗ henv) and x0 = ω,

Trhenv
(A) =

(
∑

S

〈xi ⊗ xS| A x j ⊗ xS〉
)

i, j∈{0,··· ,d}
∈ L(hS ) (4.30)

denotes the partial trace taken on the spin variables only.

Remark 4.10. The operator (4.29) is actually the dual expression of the reduced dynamics map

defined in Eq. (2.6).

Hence, the expectation in the state ρ of the observable B after k interactions over a time interval

of length kτ with the chain at inverse temperature β is given by

〈B(k, β)〉ρ = TrCd+1 (ρBβ(k, λ, τ )). (4.31)

Recall that

U (k, 0)−1(B ⊗ 1henv
)U (k, 0) = U ∗

1 U ∗
2 · · · U ∗

k (B ⊗ 1henv
)UkUk−1 · · · U1, (4.32)

where Uj is non-trivial on Cd+1 ⊗ Cn+1
j only.

The partial trace operator Trhenv
((1 ⊗ ⊗N

k=1 ρE,β) A), where A is an operator on Cd+1 ⊗
5N

j=1Cn+1
j can be made more explicit.

Lemma 4.11. Let us denote the matrix elements of A as follows:

A
i, j

S,S′ = 〈xi ⊗ X S|A x j ⊗ X S′〉, (4.33)

where i, j belong to {0, · · · , d}, and S, S′ run over subsets of {{1, · · · , N} × {1, · · · , n}}m, for m

= 0, · · · , N as in (4.3). Then

TrH((1 ⊗
N⊗

k=1

ρE,β ) A)i, j =
∑

S

e−β
∑n

l=1 δl |S|l

(1 + ∑n
l=1 e−βδl )N

A
i, j

S,S (4.34)

where, for

S = {(k1, i1), (k2, i2), · · · , (km, im)} ⊂ (N × {1, 2, · · · , n})m (4.35)

with all 1 ≤ kj ≤ N distinct and m = 0, · · · , N,

|S|l = #{kr s.t. ir = l}. (4.36)

Exercise 4.12. Prove the formula (4.34), making use of the identity

N⊗

k=1

ρE,β X S = 5m
r=1e−βδir

(1 + ∑
j e−δ j β)N

X S = e−β
∑n

l=1 δl |S|l

(1 + ∑
j e−δ j β)N

X S. (4.37)
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We now further compute the action of U(k, 0) given by the product of U ′
j s. Let us denote the

vectors ω ⊗ XS and xj ⊗ XS by n0 ⊗ |n1, n2, · · · , nN 〉 ≡ n0 ⊗ |En〉, where n0 ∈ {0, 1, · · · d}, and nj

∈ {0, 1, · · · n}, for any j = 1, · · · N, with ω ≃ 0 and xk ≃ k and X{(1,n1),··· ,(N ,nN )} ≃ |En〉.
Recall (4.8),

U j = e−iτ (h j +
∑

k 6= j hEk
) = e−iτh j e−iτ

∑
k 6= j hEk , (4.38)

where e−iτ
∑

k 6= j hEk is diagonal. More precisely, with the convention δ0 = 0,

e−iτ
∑

k 6= j hEk n0 ⊗ |n1, n2, · · · , nN 〉 = e
−iτ

∑N
k=1
k 6= j

δnk
n0 ⊗ |n1, n2, · · · , nN 〉. (4.39)

Let us denote the k-independent matrix elements of e−iτhk |Cd+1⊗C
n+1
k

by

U
n,n′

m,m ′ = 〈n ⊗ m|e−iτhk n′ ⊗ m ′〉. (4.40)

Exercise 4.13. Iterating the formula

U1 n0 ⊗ |n1, · · · , nN 〉 =
∑

m1
0
=0,1,··· ,d

m1=0,1,··· ,n

e
−iτ

∑
j>1 δn j U

m1
0,n0

m1,n1
m1

0 ⊗ |m1, n2, n3, · · · , nN 〉 (4.41)

show that for any N ≥ k,

UkUk−1 · · · U2U1 n0 ⊗ |n1, · · · , nN 〉 =
∑

Em0∈{0,··· ,d}k
Em∈{0,··· ,n}k

e−iτϕ( Em,En) × (4.42)

×U
mk

0,m
k−1
0

mk ,nk
· · · U

m2
0,m

1
0

m2,n2
U

m1
0,n0

m1,n1
mk

0 ⊗ |m1, m2, · · · , mk, nk+1, · · · , nN 〉,
where

ϕ( Em, En) =
k∑

j=1


 ∑

j<l≤N

δnl
+

∑

l< j

δml


 . (4.43)

As already noted, the tensor product structure of the initial state allows us to consider k spins of

the chain only: For any N ≥ k,

Trhenv
(1 ⊗

N⊗

k=1

ρE,β U ∗
1 U ∗

2 · · · U ∗
k (B ⊗ 1henv

)UkUk−1 · · · U1) = (4.44)

Trhenv
(1 ⊗

k⊗

k=1

ρE,β U ∗
1 U ∗

2 · · · U ∗
k (B ⊗ 1henv

)UkUk−1 · · · U1).

We now adopt the following block matrix notation on hS ⊗ Cn+1
k as a block matrix with respect

to the ordered basis of hS ⊗ Cn+1
k ,

{ω ⊗ ω, x1 ⊗ ω, · · · , xd ⊗ ω,

ω ⊗ x1, x1 ⊗ x1, · · · xd ⊗ x1,
...

ω ⊗ xn, x1 ⊗ xn, · · · xd ⊗ xn}

(4.45)

to proceed with hk = h. We get

U = e−iτh =




U0,0 U0,1 · · · U0,n

U1,0 U1,1 · · · U1,n

...
...

. . .
...

Un,0 Un,1 · · · Un,n




, (4.46)
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where, see (4.40),

Um,m ′ =




U
0,0
m,m ′ U

0,1
m,m ′ · · · U

0,d
m,m ′

U
1,0
m,m ′ U

1,1
m,m ′ · · · U

1,d
m,m ′

...
...

. . .
...

U
d,0
m,m ′ U

d,1
m,m ′ · · · U

d,d
m,m ′




. (4.47)

Also, in terms of the notations of Sec. IV B,

U =
(

PU P PU Q

QU P QU Q

)
, (4.48)

we have the identifications

PU P ≃ U0,0, QU Q ≃




U1,1 · · · U1,n

...
. . .

...

Un,1 · · · Un,n




,

PU Q ≃
(

U0,1 · · · U0,n

)
, QU P ≃

(
U1,0 · · · Un,0

)T
. (4.49)

Let us finally denote the inverse of U = (U
n,n′

m,m ′) by

V = (V
n,n′

m,m ′ ) = U−1 = (U−1n,n′

m,m ′ ) ∈ M(1+d)(1+n)(C), (4.50)

so that we have for any m and n,

U ∗
n,m = Vm,n ∈ M1+d (C). (4.51)

Exercise 4.14. Show with these notations by means of (4.42) and (4.43) that the matrix elements

of U (k, 0)−1 (B ⊗ IH) U (k, 0) in the orthonormal basis {n0 ⊗ |n1, · · · , nk〉} = {n0 ⊗ |En〉} read

〈ñ0 ⊗ Ẽn|(Uk · · · U1)∗ B ⊗ IH (Uk · · · U1) n0 ⊗ En〉 = (4.52)

e−iτ (ϕ(0,En)−ϕ(0,Ẽn))
∑

Em∈{0,··· ,n}k

(Vñ1,m1
· · · Vñk ,mk

BUmk ,nk
· · · Um1,n1

)ñ0,n0 .

We are thus lead with (4.29) to study the matrix in Md+1(C),

Bβ(k, λ, τ ) =
∑

En=(n1 ,··· ,nk )

Em=(m1 ,···mk )

e−β
∑n

l=0 δl |En|l

(1 + ∑n
j=1 e−δ j β)k

Vn1,m1
· · · Vnk ,mk

BUmk ,nk
· · · Um1,n1

(4.53)

in various limiting cases as λ and/or τ go to zero, with the notation

|En|l = ♯{nr s.t. nr = l} = |S|l . (4.54)

Consider the Hilbert space Md+1(C) equipped with the scalar product 〈A|B〉 = Tr(A∗B), for any

A, B ∈ Md+1(C), and the following linear operators on this Hilbert space

Um,m ′ (A) := Vm ′,m A Um,m ′ , (m, m ′) ∈ {0, 1, · · · , n}2. (4.55)

One has with respect to the above scalar product,

U∗
m,m ′ (·) = (Vm ′,m · Um,m ′ )∗ = Um,m ′ · Vm ′,m, (4.56)
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and the composition of such operators will be denoted as follows:

Um ′,n′ Um,n(A) = Vn′,m ′ Vn,m A Um,nUm ′,n′ . (4.57)

The Markovian nature of the evolution of observables reads as follows:

Proposition 4.15. In terms of the operators defined above, we can write

Bβ(k, λ, τ ) = 1

(1+∑n
j=1 e

−δ j β )k

(
U0,0 + e−βδ1U0,1 + · · · + e−βδnU0,n

+U1,0 + e−βδ1U1,1 + · · · + e−βδnU1,n

+ Un,0 + e−βδ1Un,1 + · · · + e−βδnUn,n

)k
(B)

≡ Uβ(λ, τ )k(B). (4.58)

Exercise 4.16. Prove this proposition.

D. Weak limit in the Heisenberg picture

The λ-dependence in Bβ(k, λ, τ ) comes from the definition

U = Uτ (λ) = e−iτ (H (0)+λW ), (4.59)

which implies that the Un,m’s depend on λ as well, in an analytic fashion, and will be denoted

Un,m(λ). Expliciting the λ dependence in Bβ(k, λ, τ ), the weak limit corresponds to taking k = t/λ2

and computing the behavior of Bβ(t/λ2, λ, τ ), as λ → 0 (keeping τ fixed). We shall use the same

strategy as in Sec. IV C and Corollary 4.3 to identify the weak limit by means of perturbation theory.

We shall also eventually consider the possibility of letting τ → 0, therefore we explicit the behavior

in τ of the expansions below.

Consequently, with (4.49) and Corollary 4.3, we get the following.

Lemma 4.17. Let U be given by (4.59), with H(0), W self-adjoint and satisfying H1, and further

assume H(0) is diagonal with respect to the basis (4.45). If Um,m ′ (λ) is defined by (4.55). As λ → 0,

we get the expansions

U0,0(λ) = U0,0(0) + λ2U (2)
0,0 + O(λ4τ 4), (4.60)

Um,m ′ (λ) = Um,m ′ (0) + λ2U (2)
m,m ′ + O(λ4τ 4), m, m ′ ≥ 1, (4.61)

U0,m(λ) = λ2U (1)
0,m + O(λ4τ 4), m ≥ 1, (4.62)

Um,0(λ) = λ2U (1)
m,0 + O(λ4τ 4), m ≥ 1, (4.63)

where, for all 0 ≤ m, m′ ≤ n,

Um,m ′ (0)(B) = δm,m ′eiτ Hm,m (0) B e−iτ Hm,m (0), (4.64)

U (2)
m,m ′ (B) = δm,m ′ (Gm,m(−τ )Be−iτ Hm,m (0) + eiτ Hm,m (0) BGm,m(τ )), (4.65)

and, for all 1 ≤ m,

U (1)
0,m(B) = Fm,0(−τ )B F0,m(τ ), (4.66)

U (1)
m,0(B) = F0,m(−τ )B Fm,0(τ ). (4.67)

This Lemma allows us to perform the analysis, as λ → 0, of the operator defined in

Proposition 4.15,

Uβ(λ, τ ) = Z(β)−1
∑

0≤m≤n

0≤l≤n

Ul,m(λ)e−δmβ , (4.68)
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with the convention δ0 = 0 and Z(β) = ∑n
j=0 e−δ j β . Recall that

Bβ(k, λ, τ ) = Uβ(λ, τ )k(B). (4.69)

Moreover, using the fact,

Hm,m(0) = H0,0(0) + δm ≃ hS + δm, (4.70)

we get for all 0 ≤ m ≤ n,

Um,m(0)(B) = U0,0(0)(B) ≃ eiτhS Be−iτhS = eiτ [h0,·](B). (4.71)

We have thus shown the following.

Lemma 4.18. Assume the hypotheses of Lemma 4.17. Then

Uβ(λ, τ ) = U0,0(0) + λ2

Z(β)

[
n∑

m=1

{
e−βδm

(
U (1)

0,m + U (2)
m,m

)
+ U (1)

m,0

}
+ U (2)

0,0

]
+ O(λ4τ 4)

≡ U0,0(0) + λ2Z(β)−1Tβ + O(λ4τ 4), (4.72)

with Tβ = Tβ(τ ) = O(τ 2).

The weak limit can thus be obtained from Proposition 4.5 to get the following.

Theorem 4.19. Let Uβ(λ, τ ) be given by (4.68), and U0,0(0), Tβ by (4.72). Let {eiτ1l }l=1,··· ,r be

the set of distinct eigenvalues of U0,0(0) and denote by Pl the corresponding orthogonal projectors.

Then

lim
λ→0

t/λ2∈N

U0,0(0)−t/λ2

Bβ(t/λ2, λ, τ ) = (4.73)

lim
λ→0

t/λ2∈N

U0,0(0)−t/λ2

Uβ(λ, τ )t/λ2

(B) = etŴw
β (B),

where

Ŵw
β (B) = 1

Z(β)

(
U0,0(0)−1 Tβ

)#
(B), (4.74)

with # corresponding to the set of projectors {Pl}l = 1, · · · , r.

Remark 4.20.

(i) To make the generator Ŵw
β completely explicit, one needs to investigate the properties of Tβ ,

i.e., of the operators V j defining the coupling, within the eigenspaces of U0,0(0).

(ii) The degeneracy of the eigenvalue 1 of U0,0(0) is responsible for the existence of a non-trivial

invariant sub-algebra of observables which is the commutant of h0.

The result is then generalized to the regime λ2τ → 0, τ → 0, by switching to the macroscopic

time scale T = t/(λ2τ ) → ∞. First compute

Ŵβ(B) = lim
τ→0

U0,0(0)−1 Tβ

Z(β)τ 2
(B) = − 1

2Z(β)
(W 2

0,0 B + BW 2
0,0) + (4.75)

1

Z(β)

n∑

m=1

{
e−δmβ

(
Wm,0 BW0,m − 1

2
(W 2

m,m B + BW 2
m,m)

)
+ W0,m BWm,0

}
.

Then, the formulas for m ≥ 1,

W0,m = V ∗
m, Wm,0 = Vm, W 2

m,m = Vm V ∗
m, W 2

0,0 =
n∑

j=1

V ∗
j V j , (4.76)
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allow one to express the operators Wmm ′ in terms of Vm , which yields

Ŵβ(B) = 1

Z(β)

n∑

m=1

e−βδm

(
Vm BV ∗

m − 1

2
(Vm V ∗

m B + BVm V ∗
m)

)

+V ∗
m BVm − 1

2
(V ∗

m Vm B + BV ∗
m Vm). (4.77)

Remark 4.21. The operator (4.77) has the form of the dissipative part of a Lindblad generator.

Corollary 4.22. Assume the hypotheses of Theorem 4.19. Then with t/(τλ)2 = k ∈ N,

lim
τ→0,λ2τ→0

t/(τλ)2∈N

U0,0(0)−t/(τλ)2

Bβ(t/(τλ)2, λ, τ )) = (4.78)

lim
τ→0,λ2τ→0

t/(τλ)2∈N

U0,0(0)−t/(τλ)2

Uβ(λ, τ )t/λ2

(B) = etŴβ
#

(B),

were Ŵβ(B) is defined in (4.77).

Remark 4.23. The proof is obtained essentially along the line of the proof Theorem 4.8 taking

into account the following facts: The operator U0,0(0) = eiτ [h0,·] is unitary on Md+1(C) with spectral

projectors that are independent of τ as τ → 0 and eigenvalues of the form eiτ1 j . Introducing the

perturbation parameter x = (λτ )2, (4.72) states that uniformly in τ ,

Uβ(λ, τ ) = U0,0(0) + xTβ(τ )/(τ 2Z(β)) + O(x2), (4.79)

where Tβ(τ )/τ 2 → Ŵβ as τ → 0.

For generalizations to infinite dimensional Hilbert spaces hS and henv, see Ref. 83.

Explicit formulas for Ŵw
β and Ŵβ are provided in Ref. 8 for the case d = n = 1.

E. Beyond the perturbative regime: λ2τ = 1

We consider here the regime λ2τ = 1 and τ → 0. It can be viewed as a regime where the weak

limit scaling holds at the microscopic level, while, at the macroscopic level, T = t/(τλ2) is kept finite.

The determination of the dynamics in this regime amounts to computing the limit

lim
τ→0

t/τ∈N

Uβ(1/
√

τ , τ )t/τ (B). (4.80)

The technical tool used in this case will be Chernoff’s theorem, see, e.g., Ref. 17.

Theorem 4.24. Let S(τ ) defined on a Banach space B be such that S(0) = 1, and ‖S(τ )‖ ≤
1, for all τ ≥ 0. If limτ→0 τ−1(S(τ ) − 1) = Ŵ in the strong sense exists in L(B) and generates a

contraction semi-group, then

s − lim S(t/n)n = etŴ. (4.81)

Theorem 4.25. Let Uβ(λ, τ ) be as in Proposition 4.15. Then

s − lim
τ→0

t/τ∈N

Uβ(1/
√

τ , τ )t/τ (B) = et(i[h0,·]+Ŵβ (·))(B) (4.82)

with a Lindblad generator i[h0, · ] + Ŵβ( · ), where Ŵβ is given by

Ŵβ(B) =
2m∑

j=1

L j BL∗
j − 1

2

(
L j L∗

j B + BL j L∗
j

)
(4.83)
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with

L j = e−βδ j /2

√
Z(β)

V j , 1 ≤ j ≤ m and L j = 1√
Z(β)

V ∗
j , m + 1 ≤ j ≤ 2m. (4.84)

Remark 4.26.

(i) In Ref. 10, Sec. IV B, the scaling is the same with a supplementary structure allowing one to

make the suitably renormalized spins forming the chain merge in the limit τ → 0 to yield a

heat bath represented by a Fock space of quantum noises. When restricted to hS , the effective

dynamics of observables at zero temperature corresponds to a contraction semigroup generated

by

Ŵ∞(·) = i[h0, ·] +
n∑

m=1

(
V ∗

m · Vm − 1

2
(V ∗

m Vm · + · V ∗
m Vm)

)
, (4.85)

which coincides with Theorem 4.25 at β = ∞. A similar comparison holds with9 which deals

with the finite temperature case.

(ii) The generator Ŵβ coincides with the generator (4.77) obtained in Corollary 4.22 in the scaling

λ2τ → 0, τ → 0, modulo the # operation, which appears as a trade mark of the perturbative

regime.

Proof. The proof of Theorem 4.25 consists in checking the hypotheses of Chernoff’s theorem.

First recall the formula (see (4.34)),

Uβ(λ, τ )(B) = Trhenv

(
(1 ⊗ ρE,β )U−1(1, 0)(B ⊗ 1)U (1, 0)

)
(4.86)

=
n∑

q=0

e−βδq

Z(β)
B(τ )qq ,

where B(τ )qq = (U−1(1, 0)(B ⊗ 1)U (1, 0))qq = PqU−1(1, 0)(B ⊗ 1)U (1, 0)Pq according to the

block notation (4.46), with the corresponding orthogonal projectors Pq. Identifying PqC(n+1)(d+1)

with hS = Cd+1, we deduce from the above formula that Uβ(λ, τ ) is a contraction for any value of

the parameters

‖Uβ(λ, τ )(B)‖hS
≤

n∑

q=0

e−βδq

Z(β)
‖B(τ )qq‖hS

(4.87)

≤
n∑

q=0

e−βδq

Z(β)
‖PqU−1(1, 0)(B ⊗ 1)U (1, 0)Pq‖C(n+1)(d+1)

≤
n∑

q=0

e−βδq

Z(β)
‖(B ⊗ 1)‖C(n+1)(d+1) = ‖B‖hS

.

Moreover, Uβ(1/
√

τ , τ )|τ=0 = 1, so we are left with the computation of the derivative with respect

to τ at the origin. This involves the control of the operator Uτ (λ), see (4.14), as τ → 0 and

λ = 1/
√

τ → ∞. The expansion of Uτ (λ) in powers of λ is convergent, with τ dependent coefficients

we control sufficiently well. Indeed, (4.21) yields

Uτ (λ) = e−iτ H (0)2(λ, τ ) =
∑

n≥0

e−iτ H (0)2n(λ, τ ), (4.88)

where 2n contains n operators W and satisfies ‖2n(λ, τ )‖ = O((τλ)n/n!). Using the fact that (λτ )n

= τ n/2 → 0 and that W is off-diagonal with respect to P and Q, we get that the replacement of λ by

1/
√

τ does not spoil the estimates as τ → 0 given in Proposition 4.15 and Lemma 4.17. Together
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with the computation (4.77), one gets

Uβ(1/
√

τ , τ )(B) = eiτh0 Be−iτh0 + (Z(β)τ )−1Tβ(τ )(B) + O(τ 2)

≡ eiτh0 Be−iτh0 + τŴβ(B) + O(τ 2). (4.89)

Hence, the derivative at the origin exists and is given by

Uβ(1/
√

τ , τ )′(B)|τ=0 = i[h0, B] + Ŵβ(B), (4.90)

where Ŵβ(B) is the dissipative part of a Lindblad operator which has the form given in the statement.

Hence,

i[h0, B] + Ŵβ(B) (4.91)

generates a completely positive semigroup of contractions. Therefore Chernoff’s theorem eventually

yields the result. 2

Remark 4.27. We finally recall some consequences of these results about the evolution of states,

within the duality provided by the scalar product 〈A|B〉 = Tr(A∗B). If Ŵ is the generator of the

dynamics of observables, B is an observable and ρ is a state, then for any t ∈ R,

Tr(ρetŴ(B)) = Tr(etŴ∗ (ρ)B), (4.92)

where the generator of the dynamics of the states is Ŵ∗ such that for all states ρ and observables B,

Tr((Ŵ∗(ρ))∗ B) = 〈ρ|Ŵ(B)〉 = 〈Ŵ∗ρ|B〉. (4.93)

The link between asymptotic states in time described by Theorem 3.2 and asymptotic states of weak

limit effective dynamics as t → ∞ is further explored in Ref. 83. Under certain genericity hypotheses,

it is proven there that the former type of asymptotic states converges to the latter, as λ → 0.

V. APPLICATION TO CONCRETE MODELS

In this section, we present two concrete models of the repeated interaction type. These models

show how repeated interaction systems can be used to address some physically relevant situations.

A. One atom maser

We first consider a specific model describing the “One-Atom Maser” experiment where S is

the quantized electromagnetic field in a cavity through which a beam of atoms, the subsystems En ,

is shot. Such systems play a fundamental role in the experimental and theoretical investigations

of basic matter-radiation processes. They are also of practical importance in quantum optics and

quantum state engineering.66,86,87,77,85 We consider here only the ideal case, i.e., the question of

thermal relaxation: is it possible to thermalize a mode of a QED cavity by means of 2-level atoms if

the latter are initially at thermal equilibrium? One particular feature here is that the Hilbert space of

the small system S is not finite dimensional. There are very few models of open quantum systems

in the literature with an infinite small system and for which return to equilibrium is proven. The

RI structure of the model allows us to provide such a model. Moreover, one usually makes use of

perturbation theory in the coupling constant to obtain information on the spectrum of the relevant

operator. Here, we do not make use of any perturbation theory, i.e., our results are not restricted to

small coupling constants. The results described here come from Ref. 24.

1. Description of the model and the RDM

We consider the situation where the atoms of the beam are prepared in a stationary mixture of

two states with energies Ẽ < E0, and without loss of generality we set Ẽ = 0. We assume the cavity

to be nearly resonant with the transition between these two states. Neglecting the non-resonant modes

of the cavity, we can describe its quantized electromagnetic field by a single harmonic oscillator of

frequency E ≃ E0.
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The Hilbert space for a single atom is hE = C2 ≃ Ŵ−(C), the Fermionic Fock space over C.

The Hamiltonian of a single atom is thus

hE = E0b∗b,

where b∗, b denote the creation/annihilation operators on hE , see (2.9). The Hilbert space of the

cavity field is hS := ℓ2(N) = Ŵ+(C), the Bosonic Fock space over C. Its Hamiltonian is

hS = Ea∗a ≡ E N ,

where a∗, a are the creation/annihilation operators on hS satisfying the commutation relation

[a, a∗] = 1 and N is the number operator on Ŵ+(C).

In the dipole approximation, an atom interacts with the cavity field through its electric dipole

moment. The full dipole coupling is given by λ
2
(a + a∗) ⊗ (b + b∗), acting on hS ⊗ hE , where λ ∈ R

is a coupling constant. Neglecting the counter rotating term a ⊗ b + a∗ ⊗ b∗ in this coupling (this is

the so-called rotating wave approximation) leads to the well-known Jaynes-Cummings Hamiltonian

h = hS ⊗ 1E + 1S ⊗ hE + λv, v = 1

2
(a∗ ⊗ b + a ⊗ b∗), (5.1)

for the coupled system S + E (see, e.g., Refs. 15, 26, and 37). (Example 2.3 in Sec. II is very

similar. One simply replaces the bosonic Fock space hS = Ŵ+(C) by the fermionic one Ŵ−(C)

= C2.) The rotating wave approximation, and thus the dynamics generated by the Jaynes-Cummings

Hamiltonian, is known to be in good agreement with experimental data as long as the detuning

parameter 1 ≡ E − E0 satisfies |1| ≪ min (E0, E) and the coupling is small |λ| ≪ E0. To our

knowledge, there is however no mathematically precise statement about this approximation.

Finally, the initial state of the atoms will be the equilibrium state at inverse temperature β, i.e.,

ρE,β ≡ e−βhE /Tr e−βhE .

As for the toy model of Example 2.3, using the fact that h commutes with the total number

operator N tot = a∗a ⊗ 1E + 1S ⊗ b∗b, we can calculate explicitly e− iτh and hence the RDM Lβ

associated with this RI system. One gets

Lβ(ρ) =
∑

σ,σ ′=0,1

Vσ ′σρV ∗
σ ′σ , (5.2)

where the operators Vσ ′σ are given by

V00 = 1√
ZE,β

e−iτ E N C(N ), V10 = 1√
ZE,β

e−iτ E N S(N + 1) a,

V01 = e−βE0/2

√
ZE,β

e−iτ E N S(N ) a∗, V11 = e−βE0/2

√
ZE,β

e−iτ E N C(N + 1)∗,

(5.3)

with

C(N ) ≡ cos(π
√

ξ N + η) + iη1/2 sin(π
√

ξ N + η)√
ξ N + η

, S(N ) ≡ ξ 1/2 sin(π
√

ξ N + η)√
ξ N + η

,

and where

η ≡
(

1τ

2π

)2

, ξ ≡
(

λτ

2π

)2

, (5.4)

are the dimensionless detuning parameter and coupling constant.

2. Spectral analysis of the RDM

We know from the general results on RI systems that Lβ is a contraction on B1(hS ), and that the

state ρ(n) of S evolves according to the discrete semigroup Ln
β , i.e., ρ(n) = Ln

β(ρ). To understand

the asymptotic behavior of ρ(n), we shall thus study the spectral properties of Lβ . In particular, we

will be interested in its peripheral eigenvalues eiθ , for θ ∈ R, and especially in the eigenvalue 1 (the

corresponding eigenstate(s) will give the candidates for the asymptotic state(s)).
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To understand the difficulty in the spectral analysis, assume that the atom-field coupling is turned

off. The reduced dynamics is then nothing but the free evolution of S, i.e., Lβ(ρ) = e−iτhSρ eiτhS . It

is easy to see that the spectrum of Lβ is then pure point:

sp(Lβ) = sppp(Lβ) = {eiτ Ed | d ∈ Z}.
This spectrum is finite if τ E ∈ 2πQ and fills the unit circle with a dense set of eigenvalues in the

opposite case. In any case, all the eigenvalues (and in particular 1) are infinitely degenerate. This

explains why perturbation theory in λ fails for this model. Note also that, since hS has infinite

dimension, it is not automatic that Lβ has 1 as an eigenvalue (we only know that it is in the spectrum

since it is in the one of L∗
β).

To describe the spectral results we need to introduce a notion of resonance. An essential feature

of the dynamics generated by the Jaynes-Cummings Hamiltonian h are Rabi oscillations. In the

presence of n photons, the probability for the atom to make a transition from its ground state to its

excited state is a periodic function of time:

P(t) =
∣∣〈n − 1,+| e−i t H |n,−〉

∣∣2 =
(

1 − 12

ν2
n

)
sin2

(
νnt

2

)
,

where the circular frequency is νn =
√

λ2n + 12. (In our units, λ is thus the one photon Rabi-

frequency of the atom in a perfectly tuned cavity.) If the interaction time τ is a multiple of the

Rabi-oscillation period for n photons, then no transition will be possible from the n-photon state to

the previous one. Such a resonance occurs when, for some integer k,

τ = k
2π√

λ2n + 12
⇐⇒ ξn + η = k2,

where η and ξ are defined in (5.4). We therefore introduce the following set.

Definition 5.1. R(η, ξ ) := {n ∈ N | ξn + η = k2 for some k ∈ N}. An element n ∈ R(ξ , η) is

called a Rabi resonance.

The Hilbert space hS thus has a decomposition hS = ⊕r
k=1 h

(k)
S , where r − 1 is the number of

Rabi resonances, h
(k)
S ≡ ℓ2(Ik) and {Ik | k = 1, . . . , r} is the partition of N induced by the resonances.

Following Ref. 24, we call h
(k)
S the kth Rabi sector and denote by Pk the corresponding orthogonal

projection.

It is easy to show that, according to the arithmetic properties of ξ and η (rational or not), the

set R(η, ξ ) possesses either no, one or infinitely many elements ( Lemma 3.2 of Ref. 24). We shall

say accordingly that the system is non-resonant, simply resonant, or fully resonant. A fully resonant

system will be called degenerate if there exist n ∈ {0} ∪ R(η, ξ ) and m ∈ R(η, ξ ) such that n <

m and n + 1, m + 1 ∈ R(η, ξ ), i.e., there are two pairs of consecutive Rabi resonances. (Such

degenerate systems exist, if, e.g., ξ = 840 and η = 1, then (1, 2) and (52, 53) are pairs of consecutive

resonances. We refer to Ref. 24 for more details on degenerate systems.)

The main ingredients for the spectral analysis of Lβ are:

(1) The gauge symmetry.

For any θ ∈ R, Lβ(e−iθ N ρ eiθ N ) = e−iθ NLβ(ρ) eiθ N , which follows from [h, N tot] =
[hE , ρE,β ] = 0. As a consequence, Lβ leaves invariant the subspaces

B1,(d)(hS ) ≡ {X ∈ B1(hS ) | e−iθ N Xeiθ N = eiθd X for all θ ∈ R},
and hence admits a decomposition

Lβ =
⊕

d∈Z

L(d)
β ,

so that one can analyze separately the L(d)
β .

(2) How Lβ acts on diagonal states, i.e., on B1,(0)(hS ).
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Because of the gauge symmetry, if ρ is an invariant state so is its “diagonal part” ρ0 =∑
n〈n|ρn〉|n〉〈n| ∈ B1,(0). It is thus important to understand the diagonal invariant states.

If we denote by xn the diagonal elements of X ∈ B1,(0)(hS ), we can identify B1,(0)(hS ) with

ℓ1(N). Introducing the number operator (Nx)n ≡ nxn and the finite difference operators

(∇x)n ≡
{

x0 for n = 0,

xn − xn−1 for n ≥ 1,
(∇∗x)n ≡ xn − xn+1 for n ≥ 0,

a simple algebra from (5.2) and (5.3) leads to

L(0)
β = 1 − ∇∗ D(N )e−βE0 N ∇eβE0 N , (5.5)

where

D(N ) := 1

1 + e−βE0
sin2(π

√
ξ N + η)

ξ N

ξ N + η
. (5.6)

In particular, the diagonal invariant states ρ are solutions of D(N )e−βE0 N ∇eβE0 N ρ = 0. Hence

they satisfy (e−βE0 N ∇eβE0 N ρ)n = 0 ⇔ ρn = e−βE0ρn−1 unless D(n) = 0, i.e., n is a Rabi

resonance. We therefore have three situations:

• If the system is non-resonant, it follows from (5.6) that D(n) = 0 if and only if n = 0 and

hence there is a unique diagonal invariant state
e−βE0 N

Tr e−βE0 N
= ρS,β∗ where β∗ = β E0

E
if β >

0 (this is the same renormalization as for the toy model of Sec. II) and none if β ≤ 0.

• If the system is simply resonant there exists n1 ∈ N∗ such that D(n) = 0 if and only if n =
0 or n = n1. The eigenvalue equation then splits into two decoupled systems

ρn = e−βE0ρn−1, n ∈ I1 ≡ {1, . . . , n1 − 1},
ρn = e−βE0ρn−1, n ∈ I2 ≡ {n1 + 1, . . .}.

The first one yields the invariant state
e−βE0 N P1

Tr (e−βE0 N P1)
= ρ

(1)
S,β∗ , for any β ∈ R. The second

system gives another invariant state
e−βE0 N P2

Tr (e−βE0 N P2)
= ρ

(2)
S,β∗ , provided β > 0.

• If the system is fully resonant, D(n) has an infinite sequence n0 = 0 < n1 < n2 < · · · of zeros.

The eigenvalue equation now splits into an infinite number of finite dimensional systems

ρn = e−βE0ρn−1, n ∈ Ik ≡ {nk−1 + 1, . . . , nk − 1},
where k = 1, 2, . . . For any β ∈ R, we thus have an infinite number of invariant states

e−βE0 N Pk

Tr (e−βE0 N Pk)
= ρ

(k)
S,β∗ , one for each Rabi sector.

(3) The following Perron-Frobenius type theorem due to Schrader.

Theorem 5.2 (Theorem 4.1 of Ref. 82). Let φ be a 2-positive map on B1(H) such that its spectral

radius r(φ) = ‖φ‖. If λ is a peripheral eigenvalue of φ with eigenvector X, i.e., φ(X) = λX, X 6= 0,

|λ| = r(φ), then |X | =
√

X∗ X is an eigenvector of φ to the eigenvalue r(φ): φ(|X|) = r(φ)|X|.

Since the RDM Lβ is a completely positive trace preserving map we can apply Theorem 5.2.

Hence, if eiθ is a peripheral eigenvalue of L(d)
β for some d, with eigenvector X, then |X | ∈ B1,(0)(hS )

is an invariant state of L(0)
β , which we already know by 2.

Putting all these ingredients together we have a full description of the peripheral eigenvalues of

Lβ .

Lemma 5.3 Ref. 24.

1. The only peripheral eigenvalue of L(0)
β is 1.

2. If the system is not degenerate, then the only peripheral eigenvalue of Lβ is 1 and the corre-

sponding eigenvectors are diagonal.
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3. If the system is degenerate we note N(η, ξ ) := {n ∈ {0}∪R(η, ξ ) | n + 1 ∈ R(η, ξ )} and

D(η, ξ ) := {d = n − m | n, m ∈ N (η, ξ ), n 6= m}. In this case, the set of peripheral eigenval-

ues of Lβ is given by {1} ∪ {ei(τω+ξπ)d | d ∈ D(η, ξ )}.

3. Convergence results

Thermal relaxation is an ergodic property of the map Lβ and of its invariant states. For any

density matrix ρ, we denote the orthogonal projection on the closure of Ran ρ by s(ρ), the support

of ρ. We also write µ ≪ ρ whenever s(µ) ≤ s(ρ).

A state ρ is ergodic, respectively, mixing, for the semigroup generated by Lβ whenever

lim
N→∞

1

N

N∑

n=1

(
Ln

β(µ)
)

(A) = ρ(A), (5.7)

respectively,

lim
n→∞

(
Ln

β(µ)
)

(A) = ρ(A), (5.8)

holds for all states µ ≪ ρ and all A ∈ B(hS ). ρ is exponentially mixing if the convergence in (5.8)

is exponential, i.e., if
∣∣(Ln

β(µ)
)

(A) − ρ(A)
∣∣ ≤ CA,µ e−αn,

for some constant CA, µ which may depend on A and µ and some α > 0 independent of A and µ. A

mixing state is ergodic and an ergodic state is clearly invariant.

A state ρ is faithful if ρ > 0, that is s(ρ) = Id. Thus, if ρ is a faithful ergodic (resp. mixing)

state the convergence (5.7) (resp. (5.8)) holds for every state µ and one has global relaxation. In this

case, ρ is easily seen to be the only ergodic state of Lβ . Conversely, one can show that if Lβ has a

unique faithful invariant state, this state is ergodic:

Theorem 5.4. Ref. 24. Let φ be a completely positive trace preserving map on B1(H). If φ has

a faithful invariant state ρ inv and 1 is a simple eigenvalue of φ then ρ inv is ergodic.

Using Lemma 5.3, we have the following theorem which is the main result of this section.

Theorem 5.5. Ref. 24.

1. If the system is non-resonant then Lβ has no invariant state for β ≤ 0 and has the unique

ergodic state

ρS,β∗ = e−β∗hS

Tr e−β∗hS

for β > 0. In the latter case, any initial state relaxes in the mean to the thermal equilibrium

state at inverse temperature β∗ = β E0

E
.

2. If the system is simply resonant, then Lβ has the unique ergodic state ρ
(1)
S,β∗ if β ≤ 0 and two

ergodic states ρ
(1)
S,β∗ , ρ

(2)
S,β∗ if β > 0. In the latter case, for any initial state ρ, one has

lim
N→∞

1

N

N∑

n=1

(
Ln

β (ρ)
)

(A) = ρ(P1) ρ
(1)
S,β∗ (A) + ρ(P2) ρ

(2)
S,β∗ (A),

for all A ∈ B(hS ) (recall Pk is the projection onto the k-th Rabi sector).

3. If the system is fully resonant, then for any β ∈ R, Lβ has infinitely many ergodic states ρ
(k)
S,β∗ ,

k = 1, 2, . . . Moreover, if the system is non-degenerate,

lim
N→∞

1

N

N∑

n=1

(
Ln

β(ρ)
)

(A) =
∞∑

k=1

ρ(Pk) ρ
(k)
S,β∗ (A), (5.9)

holds for any initial state ρ and all A ∈ B(hS ).
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4. If the system is non-degenerate, any invariant state is diagonal and can be represented as a

convex linear combination of ergodic states.

5. Whenever the state ρ
(k)
S,β∗ is ergodic, it is also exponentially mixing if the corresponding Rabi

sector h
(k)
S is finite dimensional.

Remarks.

(i) In the non-degenerate cases, this result implies some weak form of decoherence in the energy

eigenbasis of the cavity field: the time averaged off-diagonal part of the state Ln
β (ρ) decays

with time.

(ii) If the system is degenerate, (5.9) and the conclusions of Assertion 4 still hold provided a further

non-resonance condition is satisfied. Namely, if ei(τ E+ξπ)d 6= 1 for all d ∈ D (see Lemma 5.3),

then all eigenvectors of Lβ to the eigenvalue 1 are diagonal.

(iii) Numerical experiments support the conjecture that all the ergodic states are mixing. However,

our analysis does not provide a proof of this conjecture if h
(k)
S is infinite dimensional.

Open problem 1. Prove that all ergodic states are mixing.

Actually, due to the presence of an infinite number of metastable states in the non-resonant and

simply resonant cases, see Ref. 24, Sec. 4.5.4., one expects slow, i.e., non-exponential, relaxation.

Open problem 2. How slow is the relaxation in infinite dimensional sectors?

Open problem 3. For this model, only the ideal situation has been considered in Ref. 24. One can

also consider the situation where some randomness is included, in particular when the interaction

time is random. Besides the mathematical interest of an infinite dimensional example of a random

repeated interaction system, this also has some physical relevance. Experimentally, one observes

exponential convergence to the stationary state. Is the slow convergence mentioned above, and due

to metastable states, only an artefact of the assumption that all the interaction times are identical?

In other words, do random times enhance mixing? The non-exponential mixing has its origin in

quasi-resonances, the location of which is very sensitive to the various parameters and in particular

the interaction time.

B. Electron in tight binding band

In the second model we consider, the system S describes a spinless electron in the single band

tight-binding approximation and subject to an homogeneous static electric field. For the electron

alone, Bloch oscillations prevent a current from being set up in the system (see (5.11)). It is

furthermore expected that if the electron is in contact with a thermal environment, the resulting

scattering mechanisms will suppress the Bloch oscillations and lead to a steady current. In the model

considered here, the environment is described by a chain of two-level atoms with which the electron

interacts in the RI scheme. We show that a dc current is indeed created due to the interaction of the

particle with its environment. In addition to drifting in the direction of the applied field, the electron

diffuses around its mean position. The results concerning this model come from Ref. 19.

1. Description of the model

The small system.

The system S is a spinless particle on the one-dimensional lattice Z and submitted to a constant

external force F ≥ 0. The quantum Hilbert space and Hamiltonian of the particle are

hS = ℓ2(Z), hS = −1 − F X,

where 1 is the discrete nearest neighbor Laplacian and X is the lattice position operator

−1 =
∑

x∈Z

(
2 |x〉〈x | − |x+1〉〈x | − |x〉〈x+1|

)
, X =

∑

x∈Z

x |x〉〈x |.
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We shall also identify hS with L2(T 1, dξ ) via the discrete Fourier transform, so that

−1 = 2(1 − cos ξ ), X = i∂ξ .

Here T 1 ≃ [0, 2π [ is the first Brillouin zone and ξ is the crystal momentum. If T =
∑

x∈Z

|x+1〉〈x | =

e−iξ denotes the translation operator, one easily shows that:

1. When F = 0, hS has a single band of absolutely continuous spectrum, sp(hS ) = [0, 4], and the

motion of the particle is described by

T (t) = eithS T e−ithS = T, X (t) = eithS Xe−ithS = X + i(T − T ∗)t,

showing its ballistic nature.

2. When F 6= 0, hS has discrete spectrum, sp(hS ) = 2 − FZ. This is the well-known Wannier-

Stark ladder. In the position representation, the normalized eigenvector ψk to the eigenvalue

Ek = 2 − Fk is given by

ψk(x) = Jk−x

(
2

F

)
, (5.10)

where the Jν are Bessel functions. From their asymptotic behavior for large ν (see, e.g.,

Formula (10.19.1) in Ref. 71) we infer that

ψk(x) ∼ 1√
2π |k − x |

(
e

F |k − x |

)|k−x |
for |k − x | → ∞,

which shows that ψk(x) is sharply localized around x = k. The motion of the particle, described

by

T (t) = eithS T e−ithS = e−it F T,

X (t) = eithS Xe−ithS = X + 4

F
sin

(
Ft

2

)
sin

(
ξ + Ft

2

)
,





(5.11)

is now confined by Bloch oscillations.

The environment.

As in Sec. V A, it consists of 2-level atoms, each of which has a quantum Hilbert space hE = C2

which we identify with Ŵ−(C), the fermionic Fock space over C, and a Hamiltonian given by

hE = Eb∗b,

where E ≥ 0 is the Bohr frequency of the atoms and b∗, b are the usual Fermi creation and annihilation

operators.

The initial state of the two-level atoms will be their equilibrium state at inverse temperature β

described by the density matrix

ρβ = Z−1
β e−βhE , Zβ = Tr(e−βhE ) = 1 + e−βE .

The interaction.

The interaction between the particle and a two-level atom is chosen so that its effect is to give a

right or left kick to the particle, depending on whether the atom is in its ground state or in its excited

state. More precisely, we set

v =
∑

x∈Z

(
|x+1〉〈x | ⊗ b∗ + |x〉〈x+1| ⊗ b

)
= T ⊗ b∗ + T ∗ ⊗ b.

To understand this interaction, note that when F > 0 the translation operator T can also be thought

of as a lowering operator for the particle. Indeed, from (5.10) one finds

T ψk = ψk+1. (5.12)
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Similarly, T∗ acts as a raising operator. As a result, v describes an exchange of energy between the

two-level system and the particle. The model considered here is thus very similar to the one studied in

Sec. V A except that the spectrum of hS , contrary to the spectrum of the mode of the electromagnetic

field, is not bounded from below. As a result, the system we treat here has no invariant state (see the

end of Sec. V B 2).

2. Interaction with a single atom. The RDM Lβ

As for the Jaynes-Cummings Hamiltonian, h = hS + hE + λv can easily be diagonalized by

exploiting the fact that it commutes with the “number operator”

N = hS − 2

F
+ hE

E
. (5.13)

Introducing the unitary operator

U = (T b∗b + bb∗) cos θ − (T b∗ − b) sin θ,

where θ is chosen such that

cos(2θ ) = E − F

ω0

, sin(2θ ) = 2λ

ω0

, and ω0 =
√

(E − F)2 + 4λ2,

one gets the following explicit formula for the propagator,

eith = Ueit(E−F)/2eitω0(b∗b−1/2)eithSU ∗. (5.14)

It follows then that

eith X e−ith = eithS Xe−ithS

+
(

4λ2

ω2
0

(bb∗ − b∗b) + 2λ(E − F)

ω2
0

(T b∗ + T ∗b)

)
sin2

(
ω0t

2

)

− i
λ

ω0

(T b∗ − T ∗b) sin(ω0t).

We conclude that the coupling to a single atom does not substantially alter the long term behavior

of the particle: it turns the periodic Bloch oscillations (5.11) of frequency ωBloch = F into quasi-

periodic motion with the two frequencies ωBloch and ω0. In particular, when F 6= 0, the motion

remains bounded. As we will see, the situation is very different for repeated interactions with a

sequence of atoms.

The following result describes the RDM Lβ of this system. It follows directly from (5.14).

Lemma 5.6. For any ρ ∈ B1(hS ), one has Lβ(ρ) = U ◦ L̃β(ρ) = L̃β ◦ U(ρ) with

U(ρ) = e−iτhSρ eiτhS , L̃β(ρ) = p−T ∗ρT + p0ρ + p+TρT ∗, (5.15)

where

p− = e−βE

1 + e−βE
p, p0 = 1 − p, p+ = 1

1 + e−βE
p,

with p = 4λ2

ω2
0

sin2
(

ω0τ

2

)
.

If ρ describes the state of the particle, then T∗ρT (respectively, TρT∗) represents the same state

translated by one lattice spacing to the left (respectively, right). Note moreover that

p− + p0 + p+ = 1,

so that the reduced dynamics consists of a free evolution with the Hamiltonian hS , followed by a

random translation by ± 1 or 0, and with probabilities p± or p0. Note that the dynamics is trivial if p =
0, i.e., if ω0τ = 2πm with m ∈ Z. In that case there is no translation and the particle evolves according
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to hS . This can be seen directly on (5.14) by noticing that in such a case UhSU ∗ = hS + Fb∗b. It

follows that the propagator factorizes

eiτh = (−1)meiτ (E−F)/2 eiτhS ⊗ eiτ Fb∗b,

and, up to an inessential phase factor and a renormalization of the atomic Bohr frequency, the particle

and the two-level system evolve as if they were not coupled. This resembles the “Rabi oscillation”

phenomenon which appears in the Jaynes-Cummings model (see Sec. V A 2). In the following, we

will avoid this resonance and assume p 6= 0.

We can now see that the system has no stationary state as we already mentioned, i.e., there

exists no density matrix ρ on hS such that Lβ(ρ) = ρ. Indeed, it follows from the gauge invariance

Lβ(e−ithSρ eithS ) = e−ithSLβ(ρ) eithS that the subspaces B1,(d)(hS ), d ∈ Z, defined by

B1,(d)(hS ) = {ρ ∈ B1(hS ) | e−ithSρ eithS = eitdρ for all t ∈ R}
= {ρ ∈ B1(hS ) | ρ =

∑

k∈Z

ρk |ψk〉〈ψk+d |},

are globally invariant under Lβ . Hence, if a state ρ is stationary so is its diagonal part ρ0 =∑
kpk|ψk〉〈ψk|, where pk = 〈ψk|ρψk〉. From (5.15) one gets

pk−1 − Zβ pk + e−βE pk+1 = 0,

which implies that pk = a + b eβEk for some constants a, b ∈ R. But this contradicts the fact that

1 = Tr ρ = ∑
kpk.

3. Asymptotic behaviour of the particle

Since the system has no invariant state, our concern here is not the large time behaviour of the

state of the particle but of expectation values of some functions of the position observable X. Given

an observable B on hS , we write 〈B〉n = Tr(BLn
β(ρ)), for its expectation value at time t = nτ . As

already announced, the following theorem shows that the repeated interactions make the motion of

the particle diffusive. The motion is characterized by a drift velocity

vd = vd(E, F) = p

τ
tanh

(
βE

2

)
,

and a diffusion constant

D = D(E, F) = p

2τ

(
1 − p tanh2

(
βE

2

))
.

More precisely, the following holds.

Theorem 5.7 Ref. 19. Assume that F > 0, λ 6= 0 and ω0τ /∈ 2πZ so that p ∈ ]0, 1]. Let the

density matrix ρ ∈ B1(hS ) describe the initial state of the particle and denote by µn the spectral

measure of the position observable X on the state ρ(n),

µn( f ) =
∫

f (x) dµn(x) = 〈 f (X )〉n.

1. The Central Limit Theorem (CLT) holds: For any bounded continuous function f on R,

lim
n→∞

∫
f

(
x − vdnτ√

2Dnτ

)
dµn(x) =

∫
f (x) e−x2/2 dx√

2π
.

2. If Tr(X2ρ) < + ∞, then

lim
n→∞

〈X〉n

nτ
= vd, lim

n→∞
〈(X − vdnτ )2〉n

nτ
= 2D.
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3. If Tr(eα|X|ρ) < + ∞ for all α > 0, then a Large Deviation Principle (LDP) holds in the sense

that, for any interval J ⊂ R,

lim
n→∞

1

n
log µn(n J ) = − inf

x∈J
I (x),

where I(x) is the Legendre-Fenchel transform of

e(α) = log

(
(1 − p) + p

cosh( 1
2
βE + α)

cosh 1
2
βE

)
, (5.16)

that is, I (x) = sup
α∈R

αx − e(α).

Note that when E = F, the mobility µ = lim
F→0

vd

F
= β sin2(λτ )

2τ
, and the diffusion constant

D = µβ−1

(
1 − sin2(λτ ) tanh2

(
βF

2

))
, satisfy the Einstein relation

lim
F→0

D = µβ−1 = µkB T .

Open problem 4. When E 6= F the Einstein relation holds only in the limit E → 0 and not

F → 0 (also in the definition of the mobility), meaning that it is actually the interaction with the

atoms which drive the electron and not the applied electric field. The chosen coupling is in a sense too

strong. Consider a similar model but with a different interaction, e.g., with scattering in the electron

momentum instead of the electron position so that there is a sort of momentum conservation.

The rate function in Part 3 is explicitly given by

I (x) =





−x

(
βE

2
+ log

(
R(x) − x

a(1 − x)

))
− log

(
(1 − p)(R(x) + 1)

1 − x2

)
for x ∈ [−1, 1],

+∞ otherwise,

where

a = p

(1 − p) cosh(βE/2)
, R(x) =

√
x2 + a2(1 − x2).

It is strictly convex on [ − 1, 1] and satisfies I (vdτ ) = 0 and I(x) > 0 for x 6= vdτ .

Note that the drift velocity and diffusion constant do not depend on the initial state of the

particle. The CLT gives us the probability to find the particle at time nτ in a region of size O(
√

n)

around the mean value vdnτ , whereas the LDP gives information on this probability for a region of

size O(n). To put it differently, it yields information on the probability that the particle’s mean speed

falls asymptotically in an interval of size O(1). Loosely speaking, it says that

µn({n(vd + δv)τ }) ≃ e−nI ((vd+δv)τ ).

The peculiar symmetry e( − βE − α) = e(α) immediately leads to the relation I(x) = − βEx

+ I( − x) which tells us that

lim
δv↓0

lim
n→∞

1

nτ
log

µn(n[−v − δv,−v + δv]τ )

µn(n[v − δv, v + δv]τ )
= −βEv,

that is, that negative mean velocities are exponentially less likely than positive ones. One can

recognize here a form of fluctuation theorem. We refer to Ref. 19 for more details on the origin of

this peculiar symmetry.

Open problem 5. Consider a similar model but when the electron moves in the continuum. The

idea is that now the interactions would slow down the motion instead of creating a current. Can we
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have similar results as in the discrete case, i.e., drift+diffusion, not instead of a bounded motion but

of a uniformly accelerated one?

Open problem 6. Look at the various limiting regime à la Attal et al. of this model, in particular

the continuous limit, see Sec. IV E, and analyze the properties of the corresponding process on R.

C. Link with quantum walks

The previous model allows us to make a link between RIS and another popular kind of discrete

quantum dynamical systems, namely, Quantum Walks, or QW for short. There are many different

versions of QW, suited to the many applications they have in computer science, quantum physics,

or even probability theory. For a description of the many aspects of QW, the reader is referred to

reviews.84,81,58,57 We start by describing what is understood here under the name QW and we later

make the connection with the previous model of RIS.

In one of their simplest forms, QW describes the dynamics of a particle or walker on a lattice,

say Zd , d ≥ 1, which carries an internal degree of freedom, a spin, that lives on C2d . The total Hilbert

space of this system is thus h = C2d ⊗ l2(Zd ) and the discrete dynamics of the walker is defined

by the repeated action of a sequence of unitary operators on h. The peculiarity of the model is that

these unitary operators are not generated by a physical Hamiltonian, but are instead constructed on

the basis of an analogy with classical random walks on Zd . A typical example of dynamics taken

from Ref. 55, see also Ref. 1, is the following. Denote the canonical basis of C2d by {|τ 〉}τ ∈ I, with

I = { ± 1, ± 2, · · · , ± d} and define a jump function as a map

r : I → Zd . (5.17)

A symmetric choice of jump function often considered is r(τ ) = sign(τ )e|τ |, where ej, j ∈ {1, 2,

. . . , d} denotes the canonical basis of Zd . We will assume that r(τ ) 6= 0 for any τ . Let C ∈ U(2d)

by a unitary matrix on the spin Hilbert space and let Pτ , τ ∈ I be the orthogonal projectors of the

canonical basis vectors of C2d . We are now ready to construct the dynamics of the walker. We first

define a shift operator on h by

S =
∑

x∈Zd

τ∈I

Pτ ⊗ |x + r (τ )〉〈x |. (5.18)

This shift is unitary, as the direct sum over τ of shifts on l2(Zd ) and makes the walker’s spin

component along |τ 〉 jump on the lattice by a step of length r(τ ) . Second, we define the unitary

operator C ⊗ 1 on h, which updates the spin variable of the walker, without making it move on the

lattice. The one step unitary evolution operator of the walker is then defined as

U (C) = S(C ⊗ 1) =
∑

x∈Zd

τ∈I

Pτ C ⊗ |x + r (τ )〉〈x |, (5.19)

where C can be considered as a parameter. Correspondingly, the one step evolution of a state in

B1(h),

ρ =
∑

x∈Zd

y∈Zd

ρ(x, y) ⊗ |x〉〈y|, with ρ(x, y) ∈ M2d (C) (5.20)

is defined by

UC (ρ) = U (C)ρU (C)∗ =
∑

(x,y)∈Zd ×Zd

(τ,σ )∈I×I

Pτ Cρ(x − r (τ ), y − r (σ ))C∗ Pσ ⊗ |x〉〈y|. (5.21)

By iteration, we get a state on h at time n given by Un
C (ρ). Thus, tracing over the spin states, we get a

time dependent density matrix on l2(Zd ) ≡ hS which describes the expectation values of observables

on the lattice.
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The link with the previous model is best made in case we consider a symmetric jump function.

Under this assumption, at each time step, the spin of the walker is kicked by the action of the

unitary matrix C, which induces a jump of the walker to its nearest neighbors, according to the spin

components. This is in keeping with the effect of the interaction with the two-level atoms chosen in

the model above. Also, the quantum mechanical interpretation of the one step dynamics of a QW

viewed as a random walk on the lattice is similar to that provided in Lemma 5.6 for the dynamics of

the electron in a tight binding after one interaction with the environment. Hence, although there is

no proper environment in the construction of QW, there exists a proximity between QW with RIS,

at least with the RI model of Sec. V B, in the following sense: In both models, the motion of the

particle on the lattice is a consequence of the repeated interaction of an exterior agent on the internal

degree of freedom of the particle. Note, however, that the spin state which indirectly makes the

walker move on the lattice undergoes a dynamics in which all interferences are taken into account,

by contrast with RIS in which the environment induces a loss of coherence. This is transparent if one

looks at the spectral properties of U(C)n: Because the definition (5.19) of U(C) is invariant under the

translations on the lattice, the Fourier image of U(C) acts as a multiplication operator on L2(T d ).

It is not difficult to check that for generic jump functions r and unitary matrices C, the spectrum

of U(C) is absolutely continuous, which implies ballistic transport on the lattice. In order to mimic

the effect of an environment, as in the RI model of Sec. V B, one can consider different matrices

C ∈ U(2d) at each time step. In particular, one can pick them at random, according to a certain law

on U(2d), a well-known procedure to induce loss of coherence.

Exercise 5.8. Given a sequence C1, C2, · · · , Cn of unitary matrices on C2d , show that the

evolution ρn = UCn
◦ · · · ◦ UC2

◦ UC1
(ρ0) at time n of a compactly supported state ρ0 of the form

(5.20) takes the form

ρn(x, y) =
∑

(k,k ′)∈Zd×Zd

Jk(n)ρ0(x − k, y − k ′)J ∗
k ′(n), (5.22)

where

Jk(n) =
∑

τ1 ,τ2 ,...,τn∈I±n
∑n

s=1
r (τs )=k

Pτn
Cn Pτn−1

Cn−1 · · · Pτ1
C1 ∈ M2d (C) (5.23)

and Jk(n) = 0, if
∑n

s=1 r (τs) 6= k.

The following theorem on the random case taken from Ref. 55 gives a flavor of the type of

results we can get in the framework of unitary random quantum walks. It is to be compared with

Theorem 5.7.

We deal with a quantum walk with random update of the internal degrees of freedom at each

time step. Let C(ω) be a random unitary matrix on C2d with probability space (Ä, σ, dµ), where

dµ is a probability measure. We consider the random evolution operator obtained from sequences

of i.i.d. coin matrices on (ÄN∗
,F , dP ), where F is the σ -algebra generated by cylinders and

dP = ⊗k∈N∗dµ, by

Uω(n, 0) = Un(ω)Un−1(ω) · · · U1(ω), where Uk(ω) = S (C(ωk) ⊗ I), (5.24)

and ω = (ω1, ω2, ω3, . . . ) ∈ ÄN∗
. The evolution operator at time n is now given by a product

of i.i.d. unitary operators on h, and similarly for the evolution of density matrices Uω(n)(·) =
UC(ωn ) ◦ · · · ◦ UC(ω2) ◦ UC(ω1)(·).

Consider for simplicity the initial condition ρ0 = |ψ0〉〈ψ0| ⊗ |0〉〈0| and define for p = 1, 2,

〈X p〉ψ0
(n) = Eω(Trh(Uω(n)(ρ0)1 ⊗ X p)), (5.25)

where X is the position operator on hS = l2(Zd ). Similarly, one defines the corresponding charac-

teristic function 8
ψ0
n by

8ψ0

n (y) = Eω(Trh(Uω(n)(ρ0)1 ⊗ ei X y)), for all y ∈ [0, 2π )d ≡ T d . (5.26)
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We need a spectral assumption on a certain matrix defined as follows: Let d(y) = ∑
τ ∈ Ie

iyr(τ )|τ 〉〈τ |
∈ U(2d) for y ∈ T d and define

M(y, y′) = (d(y) ⊗ d(y′))E(C(ω) ⊗ C(ω)) ∈ M4d2 (C). (5.27)

Theorem 5.9. Let r = 1
2d

∑
τ∈I r (τ ) ∈ Rd and assume that for all v ∈ T d ,

σ (M(v,−v)) ∩ {|z| = 1} = {1} and the eigenvalue 1 is simple. (5.28)

Then, there exists an analytic map T d ∋ v → D(v) ∈ M+
d (R), the set of non-negative matrices, such

that uniformly in y in compact sets of Cd and in t in compact sets of R∗
+,

lim
n→∞

8
ψ0

[tn](y/n) = ei t yr , (5.29)

lim
n→∞

e
−i[tn]

r y√
n 8

ψ0

[tn](y/
√

n) =
∫

T d

e− t
2
〈y|D(v)y〉 dv

(2π )d
, (5.30)

where the right-hand side admits an analytic continuation in (t, y) ∈ C × C2.

In particular, for any (i, j) ∈ {1, 2, . . . , d}2,

lim
n→∞

〈X i 〉ψ0
(n)

n
= r i , (5.31)

lim
n→∞

〈(X − nr )i (X − nr ) j 〉ψ0
(n)

n
=

∫

T d

Di j (v)
dv

(2π )d
. (5.32)

Remark 5.10. The matrix D(v) is determined explicitly by the spectral data of M(v, v′).
In case D(v) = D is independent of v ∈ T d , a central limit theorem holds in the limit n → ∞

for the centered rescaled random variable associated with the characteristic function (5.26).

Moderate deviations results can also be proven under further hypotheses on the map T d ∋ v →
D(v) ∈ M+

d (R), see Ref. 55.

Another way to randomize a QW is to associate a different matrix C to each site of Zd in (5.19)

so that

U (C) = S(C ⊗ 1) =
∑

x∈Zd

τ∈I

Pτ Cx ⊗ |x + r (τ )〉〈x |, (5.33)

where C = {Cx }x∈Zd , Cx ∈ U(2d). If the Cx’s are given by i.i.d. random matrices, we get a random

unitary operator, which bears similarities with the self-adjoint Anderson model of solid state physics.

Under certain hypotheses, the dynamics is radically different and it can be shown that there exists

regimes in which dynamical localization takes place, which forbids the walker to propagate on the

lattice. For more details, see, e.g., the review.56

VI. THERMODYNAMIC PROPERTIES

Contrary to the usual context of open systems, as already mentioned, in RI systems the total

Hamiltonian is (piecewise constant) time-dependent as we can see from (2.1). Hence the energy of

the full system is not necessarily constant. It is constant during each interaction (where the total

Hamiltonian is constant) but we may have energy changes when one switches from an interaction

to the next one. In other words, the switch from one interaction to the other may require some

external work. In this section, we show how to define an “external work” observable and study the

expectation value of the mean external work in the large time limit. Then, in the case where “several

reservoirs” are present, e.g., RI systems with several beams at different temperature, we also study

the energy fluxes. Finally, we consider entropy production in RI systems and relate it to the external

work and the fluxes.
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A. External work in RI systems

1. General setup

As already mentioned, since the total Hamiltonian of a repeated interaction system is time-

dependent, the total energy is not necessarily constant: to switch from an interaction to the other may

require some external work. Since the total system is infinite (there are infinitely many subsystems

En), the total energy makes no sense. However, energy variation does. Formally, the total energy at

time t is simply

u(t, 0)∗h(t)u(t, 0),

where u(t, 0) is the propagator between time 0 and t, i.e., if t ∈ [tn, tn + 1), then

u(t, 0) = e−i(t−tn )h̃n+1 e−iτn h̃n · · · e−iτ1 h̃1 .

The change of energy between time t and time t′ is therefore

1E(t ′, t) = u(t ′, 0)∗h̃(t ′)u(t ′, 0) − u(t, 0)∗h̃(t)u(t, 0).

Now, for tn − 1 ≤ t < tn ≤ t′ < tn + 1, it is easy to see that

1E(t ′, t) = u(tn, 0)∗(vn+1 − vn)u(tn, 0) =: w(n).

The observable w(n) is the work observable at time tn. If S is initially in the state ρ, one therefore

has

δE(n):=Trh
(
ρ ⊗

⊗

k≥1

ρEk
× w(n)

)
= Trh

(
ρ tot(n) × (vn+1 − vn)

)
(6.1)

=TrhS⊗hEn+1

[
ρ(n) ⊗ ρEn+1

vn+1

]
− TrhS⊗hEn

[
ρ(n − 1) ⊗ ρEn

eiτn hn vne−iτn hn
]
.

The mean work per unit time in the large time limit, i.e., the power delivered to the system, finally

is (if it exists)

1W := lim
n→∞

1

tn
1E(n),

where 1E(n) =
n∑

k=1

δE(k) is the total work between time 0 and time tn.

A simple algebraic computation shows that the total work can also be written as

1E(n) =
n∑

k=1

TrhS⊗hEk

[
ρ(k − 1) ⊗ ρEk

(
eiτk hk hEk

e−iτk hk − hEk

)]
(6.2)

+TrhS [(ρ(n) − ρ(0)) hS ]

+TrhS⊗hEn+1

[
ρ(n) ⊗ ρEn+1

vn+1

]
− TrhS⊗hE1

[
ρ(0) ⊗ ρE1

v1

]
.

The first term in the right-hand side is then the amount of energy transferred to the chain, and the

second term is the amount of energy gained by S. Of course, except when the elements Ek are finite

systems, the free Hamiltonians hEk
are typically unbounded operators. One may however write the

energy difference observable appearing in (6.2) as

eiτk hk hEk
e−iτk hk − hEk

=
∫ τk

0

eishk 8ke−ishk ds,

where 8k = d
dt

ei thk hEk
e−i thk ⌈t=0= [ivk, hEk

] is the energy flux observable corresponding to the kth

subsystem.
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2. The ideal situation

In the ideal case, the expectation value δE(n) of the work observable at time n simplifies as

δE(n) = TrhS⊗hE [ρ(n) ⊗ ρE × v] − TrhS⊗hE

[
ρ(n − 1) ⊗ ρE × eiτhv e−iτh

]
. (6.3)

Combining this with Theorem 3.2 we immediately get the following.

Proposition 6.1. Suppose Assumption (E) is satisfied. Then for any initial state ρ ∈ B1(hS ),

δE(n) = TrhS⊗hE

[
ρS,+ ⊗ ρE ×

(
v − eiτhv e−iτh

)]
+ O

(
e−γ n

)
.

As a consequence, the mean work per unit time exists and equals

1W = 1

τ
TrhS⊗hE

[
ρS,+ ⊗ ρE ×

(
v − eiτhv e−iτh

)]
. (6.4)

Remark 6.2. Of course in the invariant state ρS,+ the external work is constant as one can see

from (6.3).

Exercise 6.3. Prove that

1W = 1

τ
TrhS⊗hE

[
ρS,+ ⊗ ρE ×

∫ τ

0

eish8 e−ishds

]
, (6.5)

where 8 = [iv, hE ]. Hint : use (6.2).

Exercise 6.4. Consider the RI system of Exercise 3.4. Prove that 1W = 0.

Remark 6.5. The fact that the mean work vanishes is specific to this particular example. If one

changes the interaction, e.g., taking the full dipole interaction (a + a∗) ⊗ (b + b∗), this is not true

anymore. Namely, one can then calculate

1W = λ2τ 2 E

2
tanh

(
βE0

2

)
× sinc2

(
ντ
2

)
sinc2

(
µτ

2

)

sinc2
(

ντ
2

)
+ sinc2

(
µτ

2

) ,

where µ =
√

(E + E0)2 + λ2 and sinc(x) = sin(x)

x
. To switch from one element of the environment

to the other therefore requires some non-trivial external work.

3. The random situation

The total work at time n is given by

1E(n) =
n∑

k=1

TrhS⊗hEk

[
ρ(k − 1) ⊗ ρEk

(
vk − eiτk hk vke−iτk hk

)]

+TrhS⊗hEn+1

[
ρ(n) ⊗ ρEn+1

vn+1

]
− TrhS⊗hE1

[
ρ ⊗ ρE1

v1

]
.

The last two terms are typically bounded and will therefore give no contribution to the mean work

in the large time limit. Thus we need to understand the large time limit, in the ergodic mean sense,

of expectation values of the form

TrhS⊗hE (ωn )

[
ρ(n − 1, ω) ⊗ ρE(ωn ) A(ωn)

]
,

where A(ωn) ∈ B(hS ⊗ hE(ωn )). The following proposition is an extension of Theorem 3.5 to the

expectation values of such observables.
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Proposition 6.6. Suppose that p(L(ω) ∈ M(E)) > 0 and A(ω0) ∈ B(hS ⊗ hE(ω0)) is a random

observable. Then,

lim
N→∞

1

N

N∑

n=1

TrhS⊗hE (ωn )

[
ρ(n − 1, ω) ⊗ ρE(ωn ) A(ωn)

]

= E
(
TrhS⊗hE (ω0)

[
ρS,+ ⊗ ρE(ω0) A(ω0)

])
= TrhS

[
ρS,+ × E (AS (ω0))

]
,

where AS (ω0) = TrhE(ω0)

[
1 ⊗ ρE(ω0) A(ω0)

]
.

Idea of the proof. We write

TrhS⊗hE (ωn )

[
ρ(n − 1, ω) ⊗ ρE(ωn ) A(ωn)

]
= TrhS [ρ(n − 1, ω)AS (ωn)]

= TrhS [L(ωn−1) ◦ · · · ◦ L(ω1)(ρ)AS (ωn)] .

Introducing the map AS (ω0) : B1(hS ) ∋ ρ 7→ ρ AS (ω0), we have to understand the ergodic average

limit of the product AS (ωn) ◦ L(ωn−1) ◦ · · · ◦ L(ω1). In the same way as in Theorem 3.5, one proves

that for any initial state ρ,

lim
N→∞

1

N

N∑

n=1

(AS (ωn) ◦ L(ωn−1) ◦ · · · ◦ L(ω1)) (ρ) = E(AS )(ρS,+),

from which the result follows.

As a corollary of the previous Proposition we immediately get

Proposition 6.7. Suppose that p(L(ω) ∈ M(E)) > 0. Then, the mean work per unit time exists

P -almost surely and equals

1W = 1

E(τ )
TrhS

[
ρS,+ × E

(
TrhE

[
1 ⊗ ρE ×

(
v − eiτhv e−iτh

)] )]

= 1

E(τ )
E

(
TrhS⊗hE

[
ρS,+ ⊗ ρE ×

(
v − eiτhv e−iτh

)])
. (6.6)

Exercise 6.8. Prove that

1W = 1

E(τ )
E

(
TrhS⊗hE

[
ρS,+ ⊗ ρE ×

∫ τ

0

eish8 e−ishds

])
. (6.7)

Exercise 6.9. In the two cases of Exercise 3.7 prove that 1W = 0.

B. Entropy production

For a thermodynamic interpretation of the entropy and its relation to the total work, when we

will deal with entropy we will always assume that all the initial states ρEk
are Gibbs states at some

inverse temperature βk.

1. General setup

We fix a reference state ρS of the small system. Given an initial state ρ of S we are interested in

the variation of relative entropy of the state ρ tot(n) of the system with respect to the reference state

ρ0 = ρS ⊗ ⊗
k≥1 ρEk ,βk

between time 0 and time n and where ρEk ,βk
= e−βk hEk

Tr
(
e−βk hEk

) .

The relative entropy of two states (density matrices) ρ and ρ ′ is the (possibly infinite) non-

positive quantity

Ent(ρ ′|ρ) = Tr(ρ ′ log ρ − ρ ′ log ρ ′).
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We are interested in the mean entropy production per time unit, i.e.,

1S := lim
n→∞

− 1

tn

[
Ent(ρ tot(n)|ρ0) − Ent(ρ tot(0)|ρ0)

]
,

and its relation to the external work. (Note that since the relative entropy is negative, the entropy

production is indeed a positive quantity.)

As we mentioned in Sec. II, the infinite tensor product
⊗

k≥1 ρβk
does not make sense, and

neither does ρ tot(n). However at time tn only the n first elements of the chain have interacted with S
and the other ones are “at equilibrium.” Therefore, the elements with index k > n give no contribution

to the entropy production at time tn and we may write

Ent(ρ tot(n)|ρ0) := Tr
[
ρ tot(n) log ρ0 − ρ tot(n) log(ρ tot(n))

]

= Tr
h

(n)
env

[
ρ̃(n) log(ρ̃0) − ρ̃(n) log(ρ̃(n))

]
, (6.8)

where

ρ̃(n) = e−iτn h̃n · · · e−iτ1 h̃1

(
ρ ⊗

n⊗

k=1

ρEk ,βk

)
eiτ1 h̃1 · · · eiτn h̃n and ρ̃0 = ρS ⊗

n⊗

k=1

ρEk ,βk
.

Using the cyclicity of the trace and the fact that ρ̃0 is a product state, we thus have

1S(n) = Ent(ρ tot(n)|ρ0) − Ent(ρ tot(0)|ρ0)

= Tr
h

(n)
env

[
ρ̃(n) log(ρ̃0) − ρ̃(n) log(ρ̃(n))

]
− TrhS

[
ρ log(ρS ) − ρ log(ρ)

]

= Tr
h

(n)
env

[
ρ̃(n) log(ρ̃0) − ρ̃(0) log(ρ̃(0))

]
− TrhS

[
ρ log(ρS ) − ρ log(ρ)

]

= TrhS

[
ρ(n) log(ρS ) − ρ log(ρ)

]
−

n∑

k=1

βkTr
h

(n)
env

[
(ρ̃(n) − ρ̃(0)) hEk

]

−TrhS

[
ρ log(ρS ) − ρ log(ρ)

]

= TrhS

[
(ρ(n) − ρ) log(ρS )

]
−

n∑

k=1

βkTr
h

(n)
env

[
(ρ̃(k) − ρ̃(k − 1)) hEk

]

= TrhS

[
(ρ(n) − ρ) log(ρS )

]
(6.9)

−
n∑

k=1

βkTrhS⊗hEk

[
ρ(k − 1) ⊗ ρEk ,βk

×
∫ τk

0

eishk 8ke−ishk ds

]
,

which can also be rewritten as

1S(n) = TrhS

[
(ρ(n) − ρ) log(ρS )

]
+

n∑

k=1

βkTrhS [(ρ(k − 1) − ρ(k)) hS ]

+
n∑

k=1

βkTrhS⊗hEk

[
ρ(k − 1) ⊗ ρEk ,βk

(
eiτk hk vke−iτk hk − vk

)]
. (6.10)

2. Ideal situation

In the case of identical interactions, Eq. (6.9) simplifies as

1S(n) = TrhS

[
(ρ(n) − ρ) log(ρS )

]
− β

n∑

k=1

TrhS⊗hE

[
ρ(k − 1) ⊗ ρE,β ×

∫ τ

0

eish8 e−ishds

]
.

(6.11)

As a consequence, using also (6.5), we immediately get
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Proposition 6.10. Suppose Assumption (E) is satisfied. Then for any initial state ρ ∈ B1(hS ),

1S = lim
n→∞

−1S(n)

nτ
= β1W. (6.12)

3. Random situation

A direct application of Proposition 6.6 with A = β

∫ τ

0

eish8 e−ishds gives

Proposition 6.11. Suppose that p(L(ω) ∈ M(E)) > 0. Then, for any initial state ρ, the mean

entropy production per unit time exists P -almost surely and equals

1S = 1

E(τ )
E

(
βTrhS⊗hE

[
ρS,+ ⊗ ρE ×

∫ τ

0

eish8 e−ishds

])
. (6.13)

As for the external work, the entropy production is also deterministic. Comparing (6.13) with

(6.7), one can recognize a sort of 2nd law of thermodynamics. If in particular the inverse temperature

β of the various subsystems is not random (i.e., we are at equilibrium), then 1S = β1W as expected.

Of course, if β is not constant, we are in a non-equilibrium situation and the fact that there is no

clear relation between 1S and 1W should not come as a surprise.

Exercise 6.12. Consider the two situations of Exercise 3.7. Prove that in case (1) 1S = 0 and

in case (2) 1S = E0(1−e0)

τ
Cov

(
β, 1

1+e−βE0

)
, where e0 is defined in (3.2). When does then entropy

production vanish?

C. Energy fluxes

When several reservoirs are present one is also interested in the energy transfer between the

various reservoirs. We shall consider here the following situation: RI systems with K “beams.” This

can be achieved in two ways: either assuming that for each j = 1, . . . , K the (mK + j)-th subsystems,

m ∈ N, are identical, or considering a random situation where the underlying probability space is

the set {1, . . . , K} with the uniform probability measure. A third situation will be considered in

Sec. VII B where, besides the chain, the system S is also coupled to an extra reservoir.

1. Several beams I: Deterministic

The first non-equilibrium situation we consider is that of K ideal “beams,” or subchains. More

precisely, hEmK+ j
≡ hE j

, hEmK+ j
≡ hE j

, ...We denote by L1, L2,... the corresponding RDM’s. The state

of S at time n is therefore

ρ(n) = (L j ◦ L j−1 ◦ · · ·L1 ◦ LK ◦ · · · ◦ L j+1)m
(
L j ◦ · · · ◦ L1(ρ)

)
, n = mK + j. (6.14)

Obviously, the jth beam can exchange energy only when it interacts with S, that is in the time

intervals [tmK + j − 1, tmK + j). During such an interval, and if the system S is in a state ρ at the beginning

of the interaction, the amount of energy lost by that beam is

δE j (n) = −TrhS⊗hE j

[
ρ ⊗ ρE j

×
∫ τ j

0

eish j 8 j e−ish j ds

]
. (6.15)

The total amount of energy lost by the jth beam between time 0 and time tn is therefore

1E j (n) = −
[n/K ]∑

m=0

TrhS⊗hE j

[
ρ(mK + j − 1) ⊗ ρE j

×
∫ τ j

0

eish j 8 j e−ish j ds

]
, (6.16)

and the energy flux in the jth beam is therefore (if it exists)

φ j = lim
n→∞

1E j (n)

tn
.
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Generically, in non-equilibrium situation, the usual limit n → ∞ of ρ(n) does not exist and

one has to resort to limits in the ergodic mean. However here, in view of (6.16), we are not only

interested in the limit of ρ(n) but also in the large m limit of the K subsequences ρ(mK + j). The

latter will depend on the spectral properties of the maps

L̃ j = L j ◦ L j−1 ◦ · · ·L1 ◦ LK ◦ · · · ◦ L j+1.

Proposition 6.13. Assume the map L̃ j satisfies Assumption (E), and let ρ
j

S,+ denote its unique

invariant state. Then

φ j = −1

τ1 + · · · + τK

TrhS⊗hE j

[
ρ

j

S,+ ⊗ ρE j
×

∫ τ j

0

eish j 8 j e−ish j ds

]
.

In this situation, using (6.2) and (6.16), the total work between time 0 and time tn becomes

1E(n) = −
K∑

j=1

1E j (n) + TrhS [(ρ(n) − ρ(0)) hS ]

+TrhS⊗hEn+1

[
ρ(n) ⊗ ρEn+1

vn+1

]
− TrhS⊗hE1

[
ρ(0) ⊗ ρE1

v1

]
.

Similarly, if furthermore the initial states ρE j
are Gibbs states, the variation of entropy production

between time 0 and time tn is

1S(n) = TrhS
[(ρ(n) − ρ) log(ρS )] −

K∑

j=1

β j1E j (n).

As a consequence we get

Proposition 6.14. Assume the maps L̃ j satisfy Assumption (E). Then the mean work 1W and

mean entropy production 1S exist. Moreover, one has

1W = −
K∑

j=1

φ j and 1S = −
K∑

j=1

β jφ j .

Remark 6.15. The non-equilibrium steady state of the system is ρS,+ = 1
K

∑K
j=1 ρ

j

S,+.

Exercise 6.16. Consider again Example 2.3. Prove that L̃ j satisfies (E) iff ντ /∈ 2πN. In that

case, prove that

ρ
j

S,+ = 1 − e0

1 − eK
0

(
ρS,β∗

j
+ e0ρS,β∗

j−1
+ · · · + eK−1

0 ρS,β∗
j+1

)
.

Prove that φ j = E0(1−e0)2

K τ (1−eK
0 )

∑K
k=1(Z−1

βk
− Z−1

β j
)e

[ j−k−1]

0 , where [n] denotes the residue class mod K.

Calculate 1W and 1S. When does 1S vanish?

2. Several beams II: Random

As we mentioned, another way to have a non-equilibrium situation with K beams is to consider

a random situation where the underlying probability space is the set {1, . . . , K} with the uniform

probablity measure. The calculation of the mean external work 1W and of the mean entropy

production 1S are thus particular cases of (6.7) and (6.13). It remains to define the various energy

fluxes and relate them to 1W and 1S.

According to (6.15), the energy lost by the jth beam during the time interval [tn − 1, tn), i.e.,

during the nth interaction, is

δE j (n, ω) =
{−TrhS⊗hE j

[
ρ(n − 1, ω) ⊗ ρE j

×
∫ τ j

0
eish j 8 j e−ish j ds

]
, if E(ωn) = E j ,

0, otherwise.
(6.17)
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The total amount of energy lost by the jth beam between time 0 and time tn is therefore

1E j (n, ω) =
n∑

k=1

δE j (k, ω). (6.18)

Introducing the random observable

8̃ j (ω0) =
{∫ τ j

0
eish j 8 j e−ish j ds if E(ω0) = E j ,

0, otherwise,

we have

1E j (n, ω) = −
n∑

k=1

TrhS⊗hE(ωk )

[
ρ(k − 1, ω) ⊗ ρE(ωk )8̃ j (ωk)

]
.

Using Proposition 6.6 we therefore have the following.

Proposition 6.17. Suppose that p(L(ω) ∈ M(E)) > 0. Then, for any initial state ρ, the energy

flux in the jth beam exists P -a.s. and is given by

φ j = − 1

E(τ )
E

(
TrhS⊗hE

[
ρS,+ ⊗ ρE × 8̃ j

])
(6.19)

= −1

τ1 + · · · + τK

TrhS⊗hE j

[
ρS,+ ⊗ ρE j

×
∫ τ j

0

eish j 8 j e−ish j ds

]
. (6.20)

Moreover, one has

1W = −
K∑

j=1

φ j and 1S = −
K∑

j=1

β jφ j .

Remark 6.18. Note the difference between the energy flux in this random situation compared

to the previous deterministic situation. In both case one calculates the expectation value of the

observable

∫ τ j

0

eish j 8 j e−ish j ds but not in the same state.

Exercise 6.19. Consider the random version of Exercise 6.16. Prove that

φ j = E0(1 − e0)

K 2τ

K∑

k=1

(Z−1
βk

− Z−1
β j

). (6.21)

Calculate 1W and 1S. When does 1S vanish?

One interest in considering the random situation rather than the deterministic non-equilibrium

situation is when one turns to linear response theory (and beyond). For example, do the Green-

Kubo formula and the Onsager reciprocity relations hold for repeated interaction systems? In

the deterministic setting, one should not expect neither the Green-Kubo formula nor the Onsager

reciprocity relations to hold because the system is not at all time reversal invariant. Indeed, the

various beams interact with the system S in a precise order: 1, 2, . . . , K, 1, 2, . . . . It is therefore

reasonable to expect that a change (of temperature say) in beam 1 will have a greater influence on

the energy flux in beam 2 than on the one in beam K. In the same spirit, one expects that a change

in beam 1 will have a greater influence on the flux in beam 2 than a change in beam 2 on the flux

in beam 1. More precisely if, for j = 1, . . . , K, Xj = β − β j denote the thermodynamical forces

and L jk = ∂φ j

∂ Xk
⌈X=0 are the kinetic coefficients, one would expect, e.g., |L21| > |L12|, and the larger

K the greater should be the difference (beam 2 arrives right after beam 1, while we need to wait an

amount of time (K − 2)τ before beam 1 comes back after beam 2). More generically, the further

beam j arrives after beam k the smaller |Ljk| should be.
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Exercise 6.20. Calculate the kinetic coefficients in the deterministic non-equilibrium situation

of the toy model of Example 2.3 (the fluxes φj are given in Exercise 6.16). What do we observe?

This is why random situation is relevant: to restore symmetry and have a hope to prove Green-

Kubo formula and Onsager relations.

Exercise 6.21. Calculate the kinetic coefficients in the random non-equilibrium situation of the

toy model of Example 2.3 (the fluxes φj are given in (6.21)). What do we observe?

Open problem 7. Study the linear response theory of repeated interaction systems. Do the

Green-Kubo formula and the Onsager reciprocity relations hold? In which form? What is the

fluctuation theory for such systems (large deviations for entropy production, Evans-Searles and/or

Gallavotti-Cohen symmetry)?

Open problem 8. Analyse the non-equilibrium situation (several beams) of concrete models like

the One-atom maser model of Sec. V A: existence of a NESS, linear response theory, fluctuation

relations, etc.

VII. THE LIOUVILLIAN DESCRIPTION AND APPLICATION TO LEAKY RI SYSTEMS

A. C∗-dynamical systems and the Liouvillian approach

In this section, we give an alternative description of RI systems using the language of algebraic

quantum statistical mechanics, and starting from the C∗-dynamical system formalism. The main

reason is to include an extra-reservoir R with which S will interact (leaky RIS) and get a unified

description of the full model. Besides adding an extra reservoir, this also allows for more general

systems, e.g., take the subsystems En to be thermal reservoirs described by infinitely extended Fermi

gas, and even if it is not our main concern, show how to construct the full system, including the

infinite tensor product.

We first briefly recall some basic concepts of algebraic quantum statistical mechanics that we

need here. We refer to, e.g., Ref. 17 and 75 for a more complete introduction to the subject. A

C∗-dynamical system is a pair (A, αt ) where A is a C∗-algebra (describing the observables of the

physical system under consideration) and t 7→ αt is a strongly continuous group of ∗-automorphisms

of A (describing the evolution of the observables). A state of the system is described by a positive

linear functional ̺ on A satisfying ̺(1) = 1. Following Ref. 53, a triple (A, αt , ̺), where ̺ is an

invariant state (i.e., ̺◦αt ≡ ̺), is called a quantum dynamical system.

Example 7.1 (Finite systems). Consider a quantum system described by the Hilbert space

h = Cn , the Hamiltonian h and the invariant state ρ = ∑
ρ j|ψ j〉〈ψ j| where {ψ j} is an orthonormal

basis of eigenvectors of h. The corresponding quantum dynamical system is described by the algebra

of observables A = Mn(C), the dynamics αt(A) = eithA e− ith and state ̺(A) = Tr(ρA).

Example 7.2 (Free Fermi gas). Let h be a Hilbert space, later referred to as the one-particle

space, and h a self-adjoint operator on h. The pair (h, h) describes one fermion. The Hilbert space

describing a gas of non-interacting fermions is the Fermionic Fock space Ŵ−(h) = ⊕
n≥0 ∧n h. The

algebra of observables is the C∗-algebra of operators A generated by {a#( f ) | f ∈ h} where a/a∗

denote the usual annihilation/creation operators on Ŵ−(h). The dynamics is the Bogoliubov dynamics

generated by the one-particle Hamiltonian h, i.e., given by αt (a#( f )) = a#(eith f ). It is well known

(see, e.g., Ref. 17) that for any β > 0 there is a unique (αt, β) − KMS state ρβ on A, determined

by the two point function ρβ(a∗( f )a( f )) = 〈 f, (1 + eβRhR)−1 f 〉. The triple (A, αt , ρβ) is a quantum

dynamical system describing a free Fermi gas in thermal equilibrium at inverse temperature β.

Each component # = S, En of the RI system will be described by a quantum dynamical system

(A#, α
t
#, ̺#). The “reference” states ̺# determine the macroscopic properties of the systems, e.g.,

they are KMS states at some inverse temperature β#. We also assume that they are faithful states,

i.e., for any A ∈ A#, ̺#(A∗ A) = 0 ⇒ A = 0 (this would correspond to ρ > 0).
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To analyze the large time behaviour of the system, we will use a spectral approach. For that

purpose, it is convenient to have a “Hilbert space description” of the system. Such a description

is easy to obtain via the GNS-representations (we recall that the GNS (Gelfand-Naimark-Segal)

representation of a C∗-algebra A associated to a state ̺ is a triple (H, π,9) where H is a Hilbert

space, π a ∗-algebra morphism from A to B(H), and 9 a unit vector in H such that {π (A)9, A ∈ A}
is dense inH and ̺(A) = 〈9, π (A)9〉 for any A ∈ A) (H#, π#, 9#) of the algebras A# associated with

the states ̺#. Since the ̺# are faithful, the π# are injections and we can identify A# and π#(A#) (we

will therefore simply write A for π (A)). We set M# = π#(A#)′′ ⊂ B(H#), where ′′ denotes the double

commutant. The M# form the von Neumann algebras of observables. Finally, by construction, the

representative vectors 9# are cyclic for M#, and we assume that they are also separating vectors for

M#, i.e., A9# = 0 ⇒ A = 0 for any A ∈ M# (note that since ̺# is faithful, this is automatic when

A ∈ π#(A#)). Typically, the 9# describe the equilibrium states at some fixed temperature T# > 0.

The free dynamics αt
# of each constituent is implemented in the GNS-representation by a self-

adjoint operator L# called Liouvillian, i.e., the Heisenberg evolution of an observable A ∈ M# at

time t is given by eit L# Ae−it L# . In other words we have π#(αt
#(A)) = eit L#π#(A)e−it L# . Since the ̺#

were invariant states, one can also chose the Liouville operators L# so that L#9# = 0 (actually such

an L# is unique).

Example 7.3 (Finite systems, continuation of Example 7.1). In the GNS representation, the

Hilbert space, the observable algebra, and the Liouville operator are given by

H = h ⊗ h, M = B(h) ⊗ 1, L = h ⊗ 1 − 1 ⊗ h, (7.1)

and the representative vector 9 by 9 = ∑√
ρ j ψ j ⊗ ψ j . (The morphism π is defined as π (A) =

A ⊗ 1.)

Example 7.4 (Free Fermi gas, continuation of Example 7.2). The GNS representation of a Free

Fermi gas is given by the so-called Araki-Wyss representation.4 Namely, if Ä denotes the Fock

vacuum and N the number operator on Ŵ−(h), the Hilbert space, the observable algebra and the

Liouville operator are given by

H = Ŵ−(h) ⊗ Ŵ−(h), M = πβ (A)′′ , L = dŴ(h) ⊗ 1 − 1 ⊗ dŴ(h),

where

πβ(a( f )) = a
(

eβh/2√
1+eβh

f
)

⊗ 1 + (−1)N ⊗ a∗
(

1√
1+eβh

f̄
)

=: aβ( f ),

πβ(a∗( f )) = a∗
(

eβh/2√
1+eβh

f
)

⊗ 1 + (−1)N ⊗ a
(

1√
1+eβh

f̄
)

=: a∗
β( f ),

(7.2)

and the representative vector is 9 = Ä ⊗ Ä.

Each component of the RI system is thus now described by a von Neumann algebra (of observ-

ables) M# acting on the Hilbert space H#, a self-adjoint operator L# on H# which implements the

dynamics and a unit vector 9# ∈ H# which represents some reference invariant state. The Hilbert

space Henv for the environment is then the infinite tensor product of factors HEn
, taken with respect

to the stabilizing sequence (9En
)n . The vector 9env = ⊗n≥19En

is the reference vector for the en-

vironment, and the algebra of observables Menv of the environment is the von Neumann algebra

Menv = ⊗n≥1MEn
acting on Henv, which is obtained by taking the weak closure of finite linear com-

binations of operators ⊗ n ≥ 1An, where An ∈ MEn
and An = 1HEn

except for finitely many indices.

To summarize, the non-interacting system is described by a von Neumann algebra M = MS ⊗
Menv, acting on the Hilbert space H = HS ⊗ Henv, and its dynamics is generated by the (free)

Liouvillian

L0 = LS +
∑

n≥1

LEn
.

The operators governing the couplings between S and En are given by operators

Vn ∈ MS ⊗ MEn
.
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(If the system is initially given in the Hamiltonian formalism then Vn = πS ⊗ πEn
(vn).) The evolution

of the interacting system is thus generated by the Liouvillian

L(t) = L0 +
∑

n≥1

χn(t)Vn.

In the same way as for the Hamiltonian description we will denote

Ln := LS + LEn
+ Vn, and L̃n = Ln +

∑

k 6=n

LEk
, (7.3)

so that L(t) ≡ L̃n when t ∈ [tn − 1, tn). We will also denote by U(t, 0) the associated propagator, i.e.,

for t ∈ [tn, tn + 1), one has

U (t, 0) = e−i(t−tn )L̃n+1 e−iτn L̃n · · · e−iτ1 L̃1 . (7.4)

Finally, we denote by

αt
RI(A) := U (t, 0)∗ AU (t, 0)

the evolution of an observable A ∈ M at time t.

As in the Hamiltonian description, we now explain how to reduce the analysis of expectation

values of observables on S to the product of “Reduced Dynamics Operators” acting on HS only.

In order not to muddle the essence of the argument, let us assume that the initial state of the entire

system is given by the vector 90 = 9S ⊗ 9env (see Refs. 20 and 22 for more details). If AS ∈ MS

we thus want to calculate

〈AS〉(n) := 〈90, α
tn
RI(AS ⊗ 1env)90〉 (7.5)

= 〈90, eiτn L̃n · · · eiτ1 L̃1 AS ⊗ 1env e−iτ1 L̃1 · · · e−iτn L̃n 90〉.
The first step consists in the following decomposition which serves to isolate the dynamics of

the elements E which do not interact at a given time, and which is the equivalent of (2.4),

e−iτn L̃n · · · e−iτ1 L̃1 = U−
n e−iτ Ln · · · e−iτ L1U+

n ,

where

U−
n = exp

(
−i

n−1∑

k=1

(tn − tk)LEk

)
, U+

n = exp

(
−i

n∑

k=2

tk−1LEk
− itn

∑

k>n

LEk

)
.

One easily sees that U+
n 90 = 90 and that U−

n commutes with AS ⊗ 1env, so that (7.5) can be written

as

〈AS〉(n) = 〈90, eiτ1 L1 · · · eiτn Ln AS ⊗ 1env e−iτn Ln · · · e−iτ1 L190〉. (7.6)

The second step is to replace, for all n, the Liouvillean Ln by another (non-self-adjoint) generator

Kn of the interacting dynamics, called a C-Liouville operator, which satisfies the following additional

property:

Kn 9S ⊗ 9En
= 0, (7.7)

that is, it “kills” the reference vector. The C-Liouville operator has been introduced in Ref. 53 to

study non-equilibrium steady states (NESS).

Remark. For the existence of such a generator, we refer to, e.g., Ref. 53. One can also get

an explicit expression for it in terms of the Liouvillean and the modular data of the pair (MS ⊗
MEn

, 9S ⊗ 9En
).17, 53, 72

Since the operators Kn are also generators of the dynamics, and using (7.7), (7.6) becomes

〈AS〉(n) = 〈90, eiτ1 K1 · · · eiτn Kn (AS ⊗ 1env)90〉. (7.8)
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The last step is to use the independence of the various elements of the environment and to

rewrite (7.8) in terms of a product of “reduced dynamics operators” Mn. Let

P := 1HS
⊗ |9env〉〈9env| (7.9)

denote the orthogonal projection onto HS ⊗ C9env
∼= HS . If B is an operator acting on H, then we

identify PBP as an operator acting on HS . Note that P90 = 90, hence

〈AS〉(n) = 〈90, Peiτ1 K1 · · · eiτn Kn P(AS ⊗ 1env)90〉.

The structure of RI systems gives

Peiτ1 K1 · · · eiτn Kn P = (Peiτ1 K1 P) × (Peiτ2 K2 P) × · · · × (Peiτn Kn P),

(this is nothing but the Markov property). Hence, introducing M j := Peiτ j K j P (considered as an

operator acting on HS ), we finally get

〈AS〉(n) = 〈9S , M1 · · · Mn AS9S〉. (7.10)

We have thus reduced the analysis to the one of the product of the operators M1· · · Mn.

At first sight, and despite the fact that the operators Mn give the desired reduction procedure,

their definition may look quite obscure. Actually they are nothing but the GNS version of the dual L∗
n

of the RDM’s Ln as we shall now explain, see (7.11). We suppose that the RI system is given in the

Hamiltonian formalism. Let A, B ∈ AS = B(hS ). We consider the quantity 〈πS (B)9S , MπS (A)9S〉
(we drop the index n to simplify notation). One can then write

〈πS (B)9S , MπS (A)9S〉 = 〈πS (B) ⊗ 1 9S ⊗ 9env, eiτ K πS (A) ⊗ 1 9S ⊗ 9env〉
= 〈π (B ⊗ 1)9S ⊗ 9env, eiτ Lπ (A ⊗ 1)e−iτ L9S ⊗ 9env〉
= 〈9S ⊗ 9env, π (B∗ ⊗ 1)π (eiτh A ⊗ 1 e−iτh)9S ⊗ 9env〉
= Tr

(
ρS ⊗ ρenv × B∗ ⊗ 1 × eiτh A ⊗ 1 e−iτh

)

= Tr
(
ρS B∗ ⊗ ρenv × eiτh A ⊗ 1 e−iτh

)

= Tr
(
ρS B∗L∗(A)

)

= 〈9S , πS (B∗L∗(A))9S〉
= 〈πS (B)9S , πS (L∗(A))9S〉.

Since 9S is a cyclic vector this proves that, for any A ∈ AS ,

M : πS (A)9S 7→ πS (L∗(A))9S . (7.11)

Of course, the properties of a RDM L immediately translate into properties of M.

Proposition 7.5. The operator M is a contraction on the Banach space C = {A9S | A ∈
AS} endowed with the norm |||φ||| = |||A9S ||| := ‖A‖. Moreover, 1 is an eigenvalue for M with

corresponding eigenvector 9S .

These two properties correspond, respectively, to the contracting and trace preserving properties

of L. Note also that when the small system has finite dimension the Banach space C is simply HS .

B. Leaky RI systems

In this section, we consider the situation where, besides the repeated interactions with the

subsystems Ek , the system S also interacts with another reservoir R in a continuous way. Since the

reservoir will consist in an infinitely extended free Fermi gas, it is more appropriate in this section

to use the Liouvillian description of RI systems.
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The Liouvillian of the full system is thus now of the form

L = LS +
∑

n≥1

LEn
+

∑

n≥1

χn(t)VSEn
+ LR + VSR, (7.12)

where LR is the generator of the free dynamics of the reservoir and VSR describes the interaction

between the system S and the reservoir R. Note that R is not directly coupled to the subsystems En .

We will also stick to the situation where the repeated interactions are identical.

The motivation to study such systems is twofold. First, it describes for example a “One-Atom

Maser” in which one also takes into account some losses in the cavity, the latter being not completely

isolated from the exterior world, e.g., from the laboratory.40 The assumption “R is not directly

coupled to the subsystems En” is physically reasonable. Indeed, again for the “one-atom maser”

experiment, the idea is that the atoms are ejected from an oven one by one just before they interact

with the cavity and moreover the atom-field interaction time τ is typically much smaller than the

damping time due to the presence of the heat reservoir. Therefore, the atoms do not have enough

time to feel the effects of the reservoir before and during their interaction with the field.

A second motivation is the study of non-equilibrium quantum systems. Suppose S is brought

into contact with several reservoirs Ri , each of them being in a thermal equilibrium state but with

different intensive thermodynamic parameters. The interaction between S and the various reservoirs

is most often “continuous,” i.e., S and the Ri interact for all time (said differently the generator of

the interacting dynamics is time-independent). We have also considered in Sec. VI C the case where

the various reservoirs are all of the repeated interaction type (chosing, e.g., reference states which are

randomly distributed with uniform distribution over a fixed set ρ1, . . . , ρK). In the system considered

in this section, we have a situation with two reservoirs of different nature: one is described by a

RI system and the other one interacts with S in a continuous way, and we want to understand the

relative effects of these two reservoirs.

In a sense, one can consider this entire system as a RI system but where S has been replaced

by S + R, i.e., the “small” system becomes large as well. The general approach to RI systems, as

described in Sec. VII A, can therefore be used. However, the reduced dynamics operator M now

acts on the space HS ⊗ HR and, as we shall see, its spectral properties are of course much more

complicated. The results presented in this section come from Ref. 23.

1. The additional reservoir

The reservoir R is a thermal reservoir of free Fermi particles at temperature TR > 0, in the

thermodynamic limit. Its description was originally given in the work by Araki and Wyss4 (see also

Refs. 23 and 52).

The Hilbert space is the anti-symmetric Fock space B(HR) = Ŵ−(h) where G is an “auxiliary

space” (typically an angular part like L2(S2)). In this representation, the one-particle Hamiltonian h

is the operator of multiplication by the radial variable (extended to negative values ) s ∈ R of h. The

Liouville operator is the second quantization of h,

LR = dŴ(h) :=
⊕

n≥0

n∑

j=1

h( j),

where h(j) is understood to act as h on the jth factor of ∧n h and trivially on the other ones. The

von Neumann algebra MR is the subalgebra of B(HR) generated by the thermal fermionic field

operators (at inverse temperature βR), represented on HR by

ϕ(gβR
) = 1√

2

[
a∗(gβR

) + a(gβR
)
]
.

Here, for g ∈ L2(R+,G), we define gβ ∈ h by

gβR
(s) =

√
1

e−βRs + 1

{
g(s) if s ≥ 0

g(−s) if s < 0.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.153.204.232 On: Fri, 08 Aug 2014 15:57:09



075204-48 Bruneau, Joye, and Merkli J. Math. Phys. 55, 075204 (2014)

Finally, we choose the reference state to be the thermal equilibrium state, represented by the vacuum

vector of HR,

9R = Ä.

Example 7.6. Consider a bath of non-interacting and non-relativistic fermions at inverse tem-

perature βR. The one particle space is hR = L2(R3, d3k) and the one-particle energy operator hR

is the multiplication operator by |k|2. The Araki-Wyss representation of this free Fermi gas is then,

see Example 7.4, H̃R = Ŵ−(L2(R3, d3k)) ⊗ Ŵ−(L2(R3, d3k)), M̃R = πβR
(A)′′ where πβ is defined

in (7.2), 9̃R = Ä ⊗ Ä and the Liouvillean is L̃R = dŴ(hR) ⊗ 1 − 1 ⊗ dŴ(hR).

We now show how to get a description of the Fermi gas of the above form using the Jakšić-Pillet

gluing method.51 We consider the isomorphism between L2(R3, d3k) and L2(R+ × S2,
√

r

2
drdσ ) ≃

L2(R+,
√

r

2
dr ; G), where G = L2(S2, dσ ), so that the operator hR becomes multiplication by r ∈

R+. The Hilbert space H̃R is thus isomorphic to

Ŵ−

(
L2(R+,

√
r

2
dr ; G)

)
⊗ Ŵ−

(
L2(R+,

√
r

2
dr ; G)

)
. (7.13)

Next, we make use of the maps a#( f ) ⊗ 1 7→ a#( f ⊕ 0) and (−1)N ⊗ a#( f ) 7→ a#(0 ⊕ f ) to define

an isometric isomorphism between (7.13) and

Ŵ−

(
L2(R+,

√
r

2
dr ; G) ⊕ L2(R+,

√
r

2
dr ; G)

)
.

A last isometric isomorphism between the above Hilbert space and HR := Ŵ−
(
L2(R, ds; G)

)

is induced by the following isomorphism between the one-particle spaces L2(R+,
√

r

2
dr ; G) ⊕

L2(R+,
√

r

2
dr ; G) and L2(R, ds; G) =: h,

f ⊕ g 7→ h, where h(s) = |s|1/4

√
2

{
f (s) if s ≥ 0,

g(−s) ifs < 0.

Using these isomorphisms, one indeed gets the desired description of the Fermi gas.

2. Translation analyticity

As already mentioned, the reduced dynamics operator M is now defined as an operator on the

larger space HS ⊗ HR and will have more complicated spectral properties. To understand why, let

us switch off the interactions. Then clearly M = eiτ LS ⊗ eiτ LR which, besides some eigenvalues, has

continuous spectrum equal to the whole circle S1. When turning on the interaction this continuous

spectrum survives. In order to separate it from the eigenvalues, we use analytic spectral deformation

methods, see, e.g., Refs. 11, 53, 64, and 79, and will resort to perturbation theory. For that purpose,

we therefore add coupling constants in the interaction, i.e., (7.12) becomes

L = LS + LR +
∑

n≥1

LEn
+ λSRVSR + λSE

∑

n≥1

χn(t)VSEn
,

and the perturbation will be in term of the coupling constant λ := (λSR, λSE ) ∈ R2. We will also

write V (λ) = λSRVSR + λSEVSE and denote by M(λ) the corresponding reduced dynamics operator.

The reduction process described in Sec. VII A makes use of another generator of the interacting

dynamics than the Liouvillian, the so-called C-Liouville operator. Its explicit form involves the

modular data (J, 1) of the pair (MS ⊗ MR ⊗ ME , 9S ⊗ 9R ⊗ 9E ), see, e.g., Refs. 17 and 72.

More precisely, it can be written as

K = LS + LR + LE + V (λ) − J11/2V (λ)1−1/2 J. (7.14)

In order to make it simple, we shall assume that

(H’) 11/2V (λ)1−1/2 ∈ MS ⊗ MR ⊗ ME .
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This ensures that K generates a strongly continuous group eitK of bounded operators on

HS ⊗ HR ⊗ HE (this assumption can certainly be relaxed, see Ref. 53).

Moreover, since we will be using analytic spectral deformation methods on the factor HR of

H, we need to make a regularity assumption on the interaction. Let R ∋ θ 7→ T (θ ) ∈ B(HR) be the

unitary group defined by

T (θ ) = Ŵ(e−θ∂s ) on Ŵ−(L2(R,G)),

where for any f ∈ L2(R,G),

(e−θ∂s f )(s) = f (s − θ ),

that is, we use the generator of translation. In the following, we will abuse notation and (for

simplicity) also write T(θ ) for 1S ⊗ T (θ ) ⊗ 1E and 1S ⊗ T (θ ) ⊗ 1env. Note that T(θ ) commutes with

all observables acting trivially on HR, in particular with PSR = 1S ⊗ 1R ⊗ |9env〉〈9env|. Also, we

have T (θ )9R = 9R for all θ . The spectral deformation technique relies on making the parameter θ

complex.

(A) The coupling operator WSR := VSR − J11/2VSR1−1/2 J is translation analytic in a strip

κθ0
= {z : 0 < Imz < θ0} and strongly continuous on the real axis. More precisely, there is a

θ0 > 0 such that the map

R ∋ θ 7→ T −1(θ )WSRT (θ ) = WSR(θ ) ∈ MS ⊗ MR,

admits an analytic continuation into θ ∈ κθ0
which is strongly continuous as Imθ ↓ 0, and

which satisfies

sup
0≤Imθ<θ0

‖WSR(θ )‖ < ∞.

The reduced dynamics operator will also be deformed as

Mθ (λ) := T (θ )−1 M(λ)T (θ ).

The ergodicity assumption (E) will now be written for this deformed operator Mθ (λ). More precisely,

we will assume that the following Fermi Golden Rule condition holds.

(FGR) There is a θ1 ∈ κθ0
and a λ0 > 0 (depending on θ1 in general) such that, for all λ with 0

< |λ| < λ0, Mθ1
(λ) satisfies (E).

Of course, an important issue in the analysis of concrete models is the verification of this Fermi

Golden Rule assumption (FGR). Let us denote the eigenvalues of hS by E1, · · · , Ed. When θ ∈ κθ0

and λSR = λSE = 0. Then

Mθ (0) = eiτ (LS+LR+θ N ) = eiτ LS ⊗ eiτ LReiτθ N ,

where N denotes the number operator on Ŵ−(hR), and hence

sp(Mθ (0)) = {eiτ (E j −Ek )} j,k∈{1,··· ,d} ∪ {eile−τ jImθ , l ∈ R} j∈N∗ .

The effect of the analytic translation is to push the continuous spectrum of Mθ (0) onto circles with

radii e− τ jImθ , j = 1, 2, . . . , centered at the origin. Hence the discrete spectrum of Mθ (0), lying

on the unit circle, is separated from the continuous spectrum by a distance 1 − e− τ Imθ . Analytic

perturbation theory in the parameters λSR, λSE guarantees that the discrete and continuous spectra

stay separated for small coupling. As a consequence a verification of (FGR) for concrete models,

like the one of Example 7.9, is done via (perturbative) analysis only of the discrete eigenvalues of

Mθ (λ).

3. Asymptotic state

Definition 7.7. An observable O is called analytic if the map θ → T(θ )− 1O90, where 90 =
9S ⊗ 9R ⊗ 9env, has an analytic extension to θ ∈ κθ0

which is continuous on the real axis.
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Note that for an obervable O = OS ⊗ OR ⊗ Oenv, since T acts on HR only, this is equivalent to

T (θ )−1 OR90 having such an extension. In particular, any observable on the small system is analytic.

Theorem 7.8. Assume that assumptions (H’), (A), and (FGR) are satisfied. Then there is a λ0

> 0 s.t. if 0 < |λ| < λ0, the following holds. There exists a state ρ + ,λ on MS ⊗ MR such that for

any normal initial state ̺ on M, and any analytic observable OSR ∈ MS ⊗ MR,

lim
n→∞

̺
(
αnτ

RI

(
OSR

))
= ρ+,λ

(
OSR

)
:= 〈ψ∗

θ1
(λ)|T (θ1)−1 ASR9S ⊗ 9R〉,

where ψ∗
θ1

(λ) is the unique invariant vector of the adjoint operator [Mθ1
(λ)]∗, normalized as

〈ψ∗
θ1

(λ)|9S ⊗ 9R〉 = 1.

Example 7.9. We consider the leaky version of the system described in Example 2.3, i.e., the

subsystems S and Ek’s are 2-level systems and the reservoir is chosen as in Example 7.6. The

interaction VSR between the system S and the reservoir is given by

VSR = λ1(σx ⊗ 1C2 ) ⊗ ϕ( fβR
) ∈ MS ⊗ MR,

where σ x is the first Pauli matrix, f ∈ L2(R3, d3k) is a form factor, and fβR
∈ h =

L2(R, ds; L2(S2, dσ )) is related to f ∈ L2(R3, d3k) as follows:

(
fβR

(s)
)

(σ ) = 1√
2

|s|1/4

√
1 + e−βRs

{
f (

√
s σ ) if s ≥ 0,

f̄ (
√−s σ ) if s < 0.

(7.15)

We will denote by λ2 instead of λ the coupling constant in the interaction term between S and E , see

Example 2.3.

In order to satisfy the analyticity assumption (A) we need some assumption on the form

factor f.

(A’) Let f0 be defined by (7.15), with βR = 0. There is a δ > 0 s.t. e−βRs/2 f0(s) ∈ H 2(δ), the

Hardy class of analytic functions h : {z ∈ C, |Im(z)| < δ} → G which satisfy

‖h‖H 2(δ) := sup
|θ |<δ

∫

R

‖h(s + iθ )‖2
Gds < ∞.

If f satisfies (A’), ‖ f (
√

E)‖2
G :=

∫
S2 | f (

√
E σ )|2dσ 6= 0 and τ (E0 − E) /∈ 2πZ∗, then

Theorem 7.8 holds and the asymptotic state ρ + , λ is given by

ρ+,λ =
(
γρβR,S + (1 − γ )ρβ∗

E ,S

)
⊗ ρβR,R + O(λ),

where ρβ,# is the Gibbs state of #, # = S,R, at inverse temperature β, β∗
E = E0

E
βE , and where γ is

given by

γ = λ2
1γth

λ2
1γth + λ2

2γri

, γth = π

2

√
E‖ f (

√
E)‖2

G, γri = τ

8
sinc2

(
τ (E0 − E)

2

)
. (7.16)

Open problem 9. Consider the leaky version of the One-atom maser model of Sec. V A. Besides

the atomic beam, the cavity is coupled to an extra reservoir which traduces the fact that the cavity is

not perfectly isolated. This is particularly important if the atoms have a higher probability to be in

their excited state that in their ground state. Can one prove convergence to some stationary state?

One particularly relevant question is what is the statistics of the photon number in that stationary

state.

Open problem 10. A similar model of a cavity interacting with an atomic beam with or without

leaks has recently been investigated in Ref. 67 but with an atom-field interaction of the form

λ(a + a∗) ⊗ b∗b. This interaction has the advantage that it leaves the atom state invariant and

makes the mathematical analysis more tractable. Moreover, the leak is described in the Kossakowski-

Lindblad extension of the Hamiltonian dynamics, i.e., by adding a dissipative part to the field

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.153.204.232 On: Fri, 08 Aug 2014 15:57:09



075204-51 Bruneau, Joye, and Merkli J. Math. Phys. 55, 075204 (2014)

Hamiltonian, see, e.g., Ref. 72. Can one analyze a purely Hamiltonian version of this model adding

an extra reservoir to describe the leak.

Open problem 11. In the physics literature on the one-atom maser, it is argued that once the

leaks are taken into account the qualitative aspects of the photon number statistics is the same if one

considers that the interaction times of the various atoms with the cavity is constant or random.40

Study the leaky version of the One-atom maser + random interaction time and compare the photon

statistics to the one obtained with fixed interaction time.

Open problem 12. As a first step towards the understanding of the leaky cavity with random

interaction times, analyze RI systems with leaks and randomness for finite dimensional small systems

(under appropriate general assumptions).

4. Thermodynamics

External work

When we consider leaky RI systems, we need to turn to the Liouvillian description. It is then

natural to define the work observable as

W (n) := π (w(n)) = U (tn, 0)∗ (Vn+1 − Vn) U (tn, 0) = α
tn
RI(Vn+1 − Vn). (7.17)

If ̺ is the initial state of the (entire) system, the power delivered to the system is therefore (if it

exists)

1W = lim
n→∞

1

tn

n∑

k=1

̺(W (n)). (7.18)

Entropy production

We first need to generalize (6.9) to the case where the system is not described via the Hamiltonian

formalism.

If ̺ and ̺0 are two normal states (a state ̺ on a von Neumann algebra M is normal if it is

σ -weakly continuous) on M, the relative entropy of Araki of the state ̺ with respect to ̺0 is denoted

by Ent(̺|̺0) (for finite systems, and if ̺ and ̺0 are given by density matrices ρ and ρ0, respectively,

then Ent(̺|̺0) = − Tr(ρlog ρ − ρlog ρ0).) We here adopt the same convention as in Refs. 17 and

53, so that Ent(̺|̺0) ≤ 0. The reference state ̺0 will naturally be the vector state on M determined

by the vector 90 = 9S ⊗ 9env.

The analysis of the entropy production relies on the so-called entropy production formula54 (see

(7.19)) which we recall here for the sake of completeness. Consider a quantum dynamical system

(A, αt , ω). We moreover assume that ω is a (−1, σ t
ω)–KMS state for some C∗- dynamics σ t

ω with

generator δω. Let V ∈ Dom(δω) and consider the perturbed dynamics αt
V defined in the natural way

αt
V (A) := αt (A) +

∑

n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn[αtn (V ), [· · · [αt1 (V ), A] · · · ],

(if δα is the generator of αt, the one of αt
V is δα + i[V, ·]). Then for any state η,

Ent(η ◦ αt
V |ω) − Ent(η|ω) = −

∫ t

0

η ◦ αs
V (δω(V ))ds. (7.19)

In the particular case of a composite system (A = ⊗k Ak and αt = ⊗k αt
k) where the reference state

ω is of the form ω = ⊗ k ωk and where the ωk are (βk, α
t
k)-KMS states, one can take σ t = ⊗k α

−βk t

k .

In the GNS-representation, if the αt
k are implemented by Liouvillians Lk, then σ t is generated by

L = −
∑

k

βk Lk , so that δω(V ) becomes −i
∑

k

βk[Lk, V ].
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In the RI setting (7.19) translates into the following formula which is the exact generalization

of (6.10) with ρS = e−βShS

Tr(e−βShS )
:

Ent(̺ ◦ α
tn
RI|̺0) − Ent(̺|̺0)

=
n∑

k=1

[
βEk

̺
(
α

tk
RI(Vk) − α

tk−1

RI (Vk)
)
+ (βEk

− βS )̺
(
α

tk
RI(LS ) − α

tk−1

RI (LS )
)]

.

The latter can also be written as

Ent(̺ ◦ α
tn
RI|̺0) − Ent(̺|̺0) (7.20)

= −
n∑

k=1

βEk
̺ (W (k)) +

n∑

k=1

βEk
̺

(
α

tk
RI(Vk+1) − α

tk−1

RI (Vk)
)

+
n∑

k=1

(βEk
− βS )̺

(
α

tk
RI(LS ) − α

tk−1

RI (LS )
)
.

Note that LS is a priori not an observable (LS /∈ M) and neither is αt
RI(LS ). However, the

differences α
tk
RI(LS ) − α

tk−1

RI (LS ) are observables. This follows from the fact that eiτk Lk LS e−iτk Lk

− LS ∈ MS ⊗ MEk
, which in turn is proven by noting that

eiτk Lk LS e−iτk Lk − LS =
∫ τk

0

eit Lk [iLk, LS ]e−it Lk dt =
∫ τk

0

eit Lk [iVk, LS ]e−it Lk dt,

where [iVk, LS ] = − d
dt

eit LS Vke−it LS |t=0 ∈ MS ⊗ MEk
.

Fluxes

Besides the external work and the entropy production, the presence of two environ-

ments/reservoirs induces other quantities of interest, namely, the heat fluxes. If the system were

described in the Hamiltonian formalism, one would define the variation of energy in the environ-

ment env = E1 + E2 + · · · and the reservoir R between time nτ and (n + 1)τ as

δeR(n) := u((n + 1)τ, 0)∗hRu((n + 1)τ, 0) − u(nτ, 0)∗hRu(nτ ),

δeenv(n) := u((n + 1)τ, 0)∗hEn+1
u((n + 1)τ, 0) − u(nτ, 0)∗hEn

u(nτ ).

For the energy variation in the environment, recall that between time nτ and (n + 1)τ only the

(n + 1)-th subsystem interacts with S and can thus exchange energy. In the Liouvillian description,

one thus defines δE#(n) = π (δe#(n)) for # = R, env. As a consequence of Theorem 7.8, we have

the following.

Proposition 7.10. If (H’), (A) and (FGR) are satisfied and if the commutators [VSR, LS ] and

[VSR, LR] define analytic observables, then for any normal initial state ̺,

1E# := lim
n→∞

1

nτ

n∑

k=1

̺(1E#(n)) = 1

τ
ρ+,λ(PSR j# PSR), # = R, env,

where

j env = i

∫ τ

0

αt
RI([λSEVSE , LE ]) dt, jR = i

∫ τ

0

αt
RI([λSRVSR, LR]) dt.

The external work is

1W = 1

τ
ρ+,λ

(
PSRV (λ)PSR − PSRατ

RI(V (λ))PSR

)
,

and we have

1W = 1ER + 1Eenv.
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If moreover, the reference states are KMS-states at inverse temperatures βS , βR, and βE , the entropy

production 1S exists and satisfies

1S = βE1Eenv + βR1ER.

As expected, the energy gain in the system (due to the external work) is shared between the

reservoir R and the environment. However, contrary to the ideal case, the external work may be

positive or negative (one can pump energy from the reservoir R).

Example 7.11. Consider the system described in Example 7.9. Under the same assumptions, i.e.,

if f satisfies (A’), ‖ f (
√

E)‖2
G :=

∫
S2 | f (

√
E σ )|2dσ 6= 0 and τ (E0 − E) /∈ 2πZ∗, then Proposition

7.10 holds. Moreover,

1Eenv = κ E0

(
e−βR − e−β∗

E E
)
+ O(λ3),

1ER = κ E
(
e−β∗

E E − e−βRE
)
+ O(λ3),

1W = κ(E0 − E)
(
e−βRE − e−β∗

E E
)
+ O(λ3),

1S = κ(β∗
E E − βRE)

(
e−βRE − e−β∗

E E
)
+ O(λ3),

where κ = 1

1 + e−βRE
× 1

1 + e−β∗
E E

× λ2
1γth × λ2

2γri

λ2
1γth + λ2

2γri

.

Remark 7.12.

1. The constant κ is positive and of order λ2. Moreover, it is zero if at least one of the two coupling

constants vanishes (we are then in an equilibrium situation and there is no energy flux neither

entropy production).

2. The energy flux 1Eenv is positive (energy flows into the environment) if and only if the reservoir

temperature TR = β−1
R is greater than the renormalized temperature T ∗

E = (β∗
E )−1 of the

environment, i.e., if the reservoir is “hotter.” A similar statement holds for the energy flux

1ER. Note that, as for the ideal case, it is not the temperature of the environment which plays

a role but its renormalized value.

3. When both the reservoir and the environment are coupled to the system S, i.e., λ1λ2 6= 0, the

entropy production vanishes (at the leading order) if and only if the two temperatures TR and

T ∗
E are equal, i.e., if and only if we are in an equilibrium situation. Once again, it is not the

initial temperature of the chain which plays a role but the renormalized one.

4. As mentioned above, the external work can be either positive or negative depending on the

parameters of the model.

VIII. RI SYSTEMS AND THE QUANTUM MEASUREMENT PROCESS

A. Introduction and main results

Many experiments in physics are based on scattering mechanisms. A system of interest (the

scatterer) is subject to a beam of scattering probes, interacting one by one with the scatterer. Before

the interaction, the probes are prepared in a desired state and after the interaction they carry some

information of the scatterer. A concrete physical setup is given by atoms (probes) shot through a

cavity containing an electromagnetic field, the modes which interact with the atoms forming the

scatterer, see also Sec. V A. We can describe this situation with a repeated interaction model: the

interaction of each probe with the system is governed by a fixed interaction time τ > 0 and a fixed

interaction operator V . To obtain a “readout” of the probes, we perform a quantum measurement on

the outcoming probes. The result of the measurement of the nth probe is a random variable, denoted

Xn, and the stochastic process {Xn}n ≥ 1 is the measurement history. We consider the incident probes

to be independent (unentangled) and in a stationary state with respect to their own dynamics.

However, due to the entanglement of the probes with the scatterer during their interaction, the Xn are

not independent random variables. We study systems with only finitely many degrees of freedom

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.153.204.232 On: Fri, 08 Aug 2014 15:57:09



075204-54 Bruneau, Joye, and Merkli J. Math. Phys. 55, 075204 (2014)

involved in the scattering process. This means that the Hilbert spaces of pure states both of the

system and each probe are finite-dimensional. The measurement of a probe is a von Neumann, or

projective, measurement associated with a self-adjoint probe observable M. The eigenvalues m of

M are the possible measurement outcomes. The random variables Xn have finite range (spec(M)).

Similar repeated measurement processes can be addressed in the continuous limit as well. They

give rise to quantum systems undergoing continuous measurement processes described by certain

stochastic quantum evolution equations. See for example the review,12 and Refs. 73 and 74 for more

recent results.

In this section, we analyze the asymptotic properties of the measurement process. We show that

it is generically not convergent and we analyze the fluctuations of the measurement history, provoked

by the scattering process, by analyzing the measurement frequencies. The results presented in this

section are found in Ref. 65.

It is assumed that the interaction allows for energy exchanges between the probes and the

scatterer. More precisely, we suppose that condition (E) of Sec. III A is satisfied.

Note that, according to Theorem 3.2, the approach to the final state is exponentially quick. An

important consequence of assumption (E) is that the scatterer loses its memory. Suppose that we

make a measurement at time l and a second one at time m > l. During the time span between the

two measurements the scatterer follows the process of relaxation to its asymptotic state. It therefore

erases correlations between the two measurements, and this more and more as m − l increases.

It is thus plausible that the outcomes Xl and Xm are becoming “more and more independent” with

growing time-distance m − l. Let P be the probability measure associated with the process {Xn}n≥1.

A measure for the independence of Xl and Xm is

|P(Xl ∈ A, Xm ∈ B) − P(Xl ∈ A)P(Xm ∈ B)|,
for subsets A, B ⊂ spec(M). The smaller this number is, the “more independent” the random

variables Xl, Xm are.

We make these ideas precise in the next result. Let σ (Xr, . . . , Xs) be the sigma-algebra generated

by the random variables Xr, . . . , Xs, 1 ≤ r ≤ s ≤ ∞.

Theorem 8.1 (Decay of correlations). Suppose that Condition (E) holds. Then there are

constants c, γ > 0, such that for 1 ≤ k ≤ l < m ≤ n < ∞, A ∈ σ (Xk, . . . Xl) and B ∈ σ (Xm, . . . , Xn),

we have

|P(A ∩ B) − P(A)P(B)| ≤ cP(A) e−γ (m−l). (8.1)

As expected from the above discussion, the rate γ in (8.1) is linked to the convergence rate of

the dynamics without measurement (Theorem 3.2).

The tail sigma-algebra is defined by T = ∩n≥1σ (Xn, Xn+1, . . .). Decaying correlations imply

the Kolmogorov zero-one law: Assume the decay of correlations (8.1). Then any tail event A ∈ T
satisfies P(A) = 0 or P(A) = 1. In textbooks, the Kolmogorov zero-one law is usually presented for

independent random variables.16 However, an adaptation of the proof yields the result for random

variables with decaying correlations. It is not necessary that the correlations decay exponentially

quickly for this result to hold, all that is needed is that the left side of (8.1) tends to zero as m − l

tends to infinity, see Ref. 2. The tail sigma-algebra captures convergence properties. For instance,

given any possible outcome m ∈ spec(M), the set {limnXn = m} is a tail event. According to the

zero-one law, it has probability either zero or one. Generically, the probability of convergence is

zero. This is due to the transmission of statistical uncertainty of the incoming probes to the outgoing

ones. One can explain this mechanism as follows.

Let ωin be the state of the incoming probes. Denote by ES the spectral projection of the

measurement operator M associated with S ⊂ spec(M) and write Em = E{m} for m ∈ spec(M). In

absence of interaction (when V = 0 or τ = 0), the Xj are independent random variables. We show

in Proposition 8.5 that the dependence generated by the interaction with the scatterer is small for

small interactions, uniformly in time n ≥ 0, which means that

P(Xn = m) = ωin(Em) + O(‖V ‖)
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and that

P(Xn+1 = m, Xn = m) = P(Xn+1 = m)P(Xn = m) + O(‖V ‖).

It follows that we have

P(Xn+1 = Xn) =
∑

m∈spec(M)

P(Xn+1 = m, Xn = m)

=
∑

m∈spec(M)

ω2
in(Em) + O(‖V ‖).

The numbers ωin(Em) are probabilities. Therefore,
∑

m ω2
in(Em) = 1 if and only if ωin(Em0

) = 1 for

a single m0, while for all other m, ωin(Em) = 0. This means that P(Xn + 1 = Xn) < 1 for small V ,

whenever there are several m with ωin(Em) > 0. Together with the zero-one law, this implies that

P(Xn converges) = 0 whenever the incoming state is not localized in a single subspace of M (and V

is small enough). Note that if m is a simple eigenvalue of M with associated eigenvector ψm, then

ωin(Em) = 1 is equivalent to ωin( · ) = 〈ψm, · ψm〉. Statistical fluctuations in the incoming probes

(mixture of states localized with respect to measurement values) thus get transferred to outcoming

probes, even in the limit of large times. The following is a more general statement of this fact.

Theorem 8.2. Assume Condition (E) holds. There is a constant C s.t., for any S ⊂ spec(M)

with ωin(ES) 6= 1, if ‖V ‖ ≤ C(1 − ωin(ES)), then

P(Xn ∈ S eventually) = 0.

The result on non-convergence of Xn explained before Theorem 8.2 is a special case of Theorem

8.2 when S = {m}, m ∈ spec(M). We mention that our analysis also gives a condition under which

P(Xn ∈ S eventually) = 1, see Ref. 65.

The process Xn carries information about the scattering process, encoded in the relative occur-

rence of a particular measurement outcome. We define the frequency of m ∈ spec(M) by

fm = lim
n→∞

1

n

{
number of k ∈ {1, . . . , n} s.t. Xk = m

}
.

fm is a random variable and the limit is in the almost everywhere sense. The following result analyzes

the influence of the scattering process on the frequencies.

Theorem 8.3 (Frequencies). Assume that condition (E) holds and denote the resulting asymp-

totic state of the scatterer without measurements by ω+ . Then fm exists as an almost everywhere

limit and is deterministic (not random), given by

fm = ω+ ⊗ ωin(eiτ H Eme−iτ H ).

Here, H is the Hamiltonian of the interacting scatterer-probe system.

Remark. One can show the following more general result: For any m ≥ 1, S1, . . . , Sm ⊂
spec(M),

lim
n→∞

1

n

{
number of j ≤ n + m s.t. X j ∈ S1, . . . , X j+m ∈ Sm

}

= ω+ ⊗ ωin · · · ⊗ ωin

(
eiτ H1 · · · eiτ Hm ES1

· · · ESm
e−iτ Hm · · · e−iτ H1

)
,

where Hj is the free Hamiltonian of S and m probes E plus the interaction of S with the jth probe.

The next result examines the average of the measurement process. Let

Xn = 1

n
(X1 + · · · + Xn) (8.2)

be the empirical average of the process {Xn}.
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Theorem 8.4 (Mean). Assume that Condition (E) holds and denote the resulting asymptotic

state of the scatterer without measurements by ω+ . Then we have a law of large numbers,

lim
n→∞

Xn = µ∞ := ω+ ⊗ ωin(eiτ HMe−iτ H ),

where the limit is in the almost everywhere sense. Note that µ∞ = ∑
mmfm.

Relation to other work. Our approach is based on the repeated interaction setup developed in

Refs. 20–23. While we show mixing of the measurement process, ergodicity has been analyzed in

Ref. 61. In Refs. 13 and 14, a measurement process is considered as well. The analysis in the latter

references is based on the theory of classical stochastic processes (law of large numbers, martingale

convergence, large deviation principle). The two mathematical approaches are completely different.

The main difference in the models is that we consider energy exchange scattering processes (our

assumption (E)), in contrast to the non-demolition models treated in Refs. 13 and 14. The non-

demolition assumption assumes that there is a preferred basis of system states, called pointer states,

which is preserved by the interacting system-probe dynamics. The pointer states remain unchanged

under the successive measurements and evolution. As a consequence of this assumption, the system-

probe interaction operator commutes with the system Hamiltonian, so there is no energy transfer

between the system and the probes. Assuming this manifold of invariant states, it is shown in Ref. 13

that any initial state of the system converges, under the repeated measurement evolution, to one of

the pointer states. The measurement outcome determines which pointer state is chosen. The results

are derived for a homogeneous model (same setting for each interaction cycle) and under a “non-

degeneracy condition.” They are generalized in Ref. 14 to non-homogeneous settings and without

the non-degeneracy condition. Our assumption (E) is in some sense exactly the “opposite” of a

non-demolition assumption. Namely, it forces the dynamics (without measurement) to have a single

stationary state (as opposed to an entire basis of stationary states). Both assumptions are reasonable,

but they describe different physical situations. As pointed out in Refs. 13 and 14, the non-demolition

setting is realized in some experiments in quantum optics. Our setting describes scattering processes

where energy is exchanged. A typical example is that of a “one atom maser,” where atoms (probes)

interact with modes of the electromagnetic field in a cavity (system) by exciting the field modes,

leading to subsequent photon emission.66 These processes necessitate energy exchange. A famous

model describing this situation is the Jaynes-Cummings model, in which energy is not conserved.

We discuss in some detail a truncated Jaynes-Cummings, or “spin-spin” model, in Sec. VIII C. We

mention that in Ref. 13 the incoming states are taken to be pure (they may be selected randomly

from a set of pure states in Ref. 14), while in our work, incoming states may be mixed. As we

have explained in the Introduction above, the statistical uncertainty in the mixed incoming states

contributes to the fluctuation of the measurement process.

B. RI system setup

1. Multitime measurement process

We use the Liouvillian formalism introduced in Sec. VII. In the present setup, both the Hilbert

space of the system, HS = hS ⊗ hS , and that of a single probe, HE = hE ⊗ hE (called “element” in

the above-mentioned section), is a finite-dimensional GNS Hilbert space. The doubling of the space

is explained in Sec. VII A, see (7.1). We consider an initial system-probes state of the form

90 = 9S ⊗n≥1 B9E , (8.3)

where 9S and 9E are reference states which are cyclic and separating for

MS = B(hS ) ⊗ 1S and ME = B(hE ) ⊗ 1E ,

respectively. In (8.3), B belongs to the commutant algebra M′
E . It is not necessary to consider an

infinite tensor product as in (8.3), as at any finite time, only finitely many probes have to be described,

see also the remarks before and after (2.3). The Hilbert space containing the vector 90 is built using

the stabilizing sequence ⊗n≥1 B9E , and it is not the same as the one obtained from ⊗n≥19E . However,
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none of our results depend on this distinction. The repeated interaction Schrödinger dynamics is

given by

9n = Un · · · U2U190, (8.4)

with unitaries Uk = e−iτ L̃k , see also (7.3) and (7.4). So far, the measurements have not been in-

troduced. For general information about quantum measurements, we refer to Refs. 25 and 70. Let

M ∈ B(hE ) be a self-adjoint “measurement” operator with spectrum

spec(M) = {m1, . . . , mµ},
where 1 ≤ µ ≤ dim hE (distinct eigenvalues). Let S be any subset of spec(M) and denote by ES the

spectral projection of M associated with S. We will simply write ES for ES ⊗ 1E , i.e., ES ∈ ME .

The entire system is in the state 90 initially and the following experiment is performed: the

system evolves according to U1 and then a measurement of the observable M is made on the

outcoming probe, yielding a value in S1 ⊂ spec(M). Then the system evolves according to U2

and after this evolution a measurement of M is made on the outcoming probe and yields a result

lying in S2 ⊂ spec(M). This procedure is repeated n times. According to the principles of quantum

mechanics, the probability for obtaining the multitime measurement result lying in S1, . . . , Sn is

given by

P(S1, . . . , Sn) =
∥∥ESn

Un · · · ES2
U2 ES1

U190

∥∥2
. (8.5)

Furthermore, if this probability is nonzero (so that the outcome of the specific experiment is actually

realizable), then the state of the system immediately after the nth measurement is given by the

normalized vector

9n = ESn
Un · · · ES2

U2 ES1
U190√

P(S1, . . . , Sn)
. (8.6)

We have Espec(M) = 1, which corresponds to the situation where at the given time step no mea-

surement is performed. The stochastic process associated with the measurements is constructed as

follows. Let

Ä = 6N = {ω = (ω1, ω2, . . .) : ω j ∈ spec(M)}
and let F be the σ -algebra of subsets of Ä generated by all cylinder sets of the form

{ω ∈ Ä : ω1 ∈ S1, . . . , ωn ∈ Sn, n ∈ N, S j ⊂ spec(M)}.
On (Ä,F) we define the random variables Xn : Ä → spec(M) by Xn(ω) = ωn, for n = 1, 2, . . . The

random variable Xn represents the outcome of the measurement at time-step n. The finite-dimensional

distribution of the process {Xn}n ≥ 1 is given by

P(X1 ∈ S1, . . . , Xn ∈ Sn) = P(S1, . . . , Sn), (8.7)

for any n ∈ N, any subsets S1, . . . , Sn of spec(M), and where the right-hand side is defined in (8.5).

P extends uniquely to a probability measure on (Ä,F) by the Kolmogorov extension theorem.

2. Representation of joint probabilities

Let

9̃n = ESn
Un · · · ES1

U190.

Taking into account that the initial probe state is invariant under the dynamics generated by LE , and

proceeding as in (7.5)–(7.10), one shows that

‖9̃n‖2 =
〈
9ref, [P1 B∗ Beiτ K1 ES1

P1] · · · [Pn B∗ Beiτ Kn ESn
Pn]9ref

〉
, (8.8)

where Pj is the projection acting trivially on all factors of

H = HS ⊗ HE ⊗ HE ⊗ · · ·
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except on the jth HE , on which it acts as the rank-one orthogonal projection onto 9E . The reference

vector is given by

9ref = 9S ⊗n
j=1 9E .

The operator K is given as in (7.7) and (7.14). We leave the details of the derivation of (8.8) as an

exercise. This yields the following representation for the measurement probabilities (8.5):

P(S1, . . . , Sn) =
〈
9S , MS1

· · · MSn
9S

〉
, (8.9)

where

MS = P B∗ Beiτ K ES P (8.10)

for S ⊆ spec(M). Compare also with (7.10). Here, we view MS as an operator acting on HS only

and we write P = |9E 〉〈9E | (see also (7.9)). We will write simply

M = P B∗ Beiτ K P

for Mspec(M). Formulas (8.9) and (8.10) are the basis for the further analysis of the measurement

probabilities.

The following is an easy perturbative result.

Proposition 8.5. Let Aj ∈ σ (Xj), j ≥ 1. For any k ≥ 1, there is a constant Ck such that

sup
n≥1

|P(An, . . . , An+k) − P(An) · · · P(An+k)| ≤ Ck‖V ‖.

Exercise 8.6. Prove the above proposition.

3. Analysis of joint probabilities

In analogy with Proposition 7.5, we have the following result.

Lemma 8.7. The spectrum of MS, (8.10), lies in the closed unit disk centered at the origin of the

complex plane. For S = spec(M), i.e., ES = 1, we have in addition M9S = 9S .

We consider the probability P(Xn ∈ S eventually), for S ⊂ spec(M). This quantity can be

expressed using the Riesz spectral projections 5 and 5S of the operators M and MS associated with

the eigenvalue 1. They are defined by

5S = 1

2π i

∮
(z − MS)−1dz, 5 = 5spec(M), (8.11)

where the integral is over a simple closed contour in the complex plane encircling no spectrum of MS

except the point 1. If 1 is not an eigenvalue, then 5S = 0. For the next result, we recall the following

definition:

{Xn ∈ S eventually } = {ω : there exists a k s.t. Xn(ω) ∈ S for all n ≥ k}.
Lemma 8.8. We have P(Xn ∈ S eventually) = 〈9S ,55S 9S〉.

Outline of proof. {Xn ∈ S eventually} is the increasing union (in k) of {Xn ∈ S ∀n ≥ k}, so

P(Xn ∈ S eventually) = lim
k→∞

P(Xn ∈ S ∀n ≥ k).

Next, {Xn ∈ S ∀n ≥ k} is the intersection of the decreasing sequence (in l) {Xn ∈ S, n = k, . . . , k +
l}, so

P(Xn ∈ S eventually) = lim
k→∞

lim
l→∞

P(Xn ∈ S, n = k, . . . , k + l).

By using the representation (8.9) and the fact that Mk, Mk
S converge to their Riesz projections

associated with the eigenvalue one, as k → ∞, one reaches the expression given in Lemma 8.8.
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Given a measurement path X1 = m1, . . . , Xn = mn, the system state is

ωn(A) = 〈9S , M1 · · · Mn A9S〉
〈9S , M1 · · · Mn9S〉 , (8.12)

where A is any system observable and M j = M{m j }. The randomness of the measurement paths

makes the system state ωn a random variable.

Lemma 8.9 (Evolution of averaged system state). The expectation of the system state, E[ωn],

equals the state obtained by evolving the initial condition according to the dynamics without

measurement.

Proof of Lemma 8.9. Since P(X1 = m1, . . . , Xn = mn) = 〈9S , M1 · · · Mn9S〉 we have

E[ωn(A)] =
∑

m1,...,mn

P(X1 = m1, . . . , Xn = mn)
〈9S , M1 · · · Mn A9S〉
〈9S , M1 · · · Mn9S〉

=
∑

m1,...,mn

〈9S , M1 · · · Mn A9S〉

=
〈
9S , Mn A9S

〉
. (8.13)

In the last step, we have used that
∑

m

M{m} =
∑

m

P B∗ Beiτ K E{m} P = P B∗ Beiτ K P = M.

The right-hand side of (8.13) is the single-step dynamics operator of the system without probe

measurements. 2

4. Outline of proof of Theorem 8.1

We shall only prove

|P(A ∩ B) − P(A)P(B)| ≤ c e−γ (m−l), (8.14)

and refer to Ref. 65 to explain the extra factor P(A) on the right-hand side of (8.1).

We consider the simplified situation where A = {ω: Xl ∈ Sl} ∈ σ (Xl) and B = {ω: Xm ∈ Sm} ∈
σ (Xm), for Sl, Sm ⊂ spec(M). Then

P(A ∩ B) = 〈9S , M l−1 MSl
Mm−l−1 MSm

9S〉. (8.15)

We now approximate Mm − l − 1 by its value for large m − l. Using Assumption (E) and since

M9S = 9S , one can write, see also Theorem 3.2,

‖Mk − |9S〉〈9∗
S | ‖ ≤ Ce−γ k . (8.16)

for some γ > 0 and where 9∗
S is the unique vector such that M∗9∗

S = 9∗
S and

〈
9∗

S , 9S

〉
= 1

(|9S〉〈9∗
S | is the Riesz spectral projection associated with the eigenvalue 1 of M). Inserting (8.16)

in (8.15), we obtain

P(A ∩ B) =
〈
9S , M l−1 MSl

9S

〉 〈
9∗

S , MSm
9S

〉
+ O(e−γ (m−l)). (8.17)

From (8.9) we get
〈
9S , M l−1 MSl

9S

〉
= P(A), (8.18)

and, since 9S is normalized, we have
〈
9∗

S , MSm
9S

〉
=

〈
9S , (|9S〉〈9∗

S |)MSm
9S

〉
=

〈
9S , Mm−1 MSm

9S

〉
+ O(e−γ m)

= P(B) + O(e−γ m),

where we have used again (8.16) in the second step. Combining this with (8.18) and (8.17) shows

that (8.1) holds for this simplified case.
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5. Outline of proof of Theorems 8.3 and 8.4

We have

E[ fm] = lim
n→∞

1

n

∑

m1,...,mn

n∑

j=1

χ (m j )P(X1 = m1, . . . , Xn = mn),

where χ (mj) is the characteristic function, taking the value one if mj = m and zero other-

wise. The double sum equals
∑n

j=1

∑
mk ,k 6= j P(X1 = m1, . . . , X j = m, . . . Xn = mn), which is∑n

j=1

〈
9S , M j−1 Mm9S

〉
. As 1

n

∑n
j=0 M j → 5 = |9S〉〈9∗

S | as n → ∞, where 9∗
S is the invari-

ant vector of M∗, (see also (8.16)) we obtain E[ fm] =
〈
9∗

S , Mm9S

〉
. Using that Mm = PB∗BeiτKEmP,

see (8.10), we arrive at

E[ fm] =
〈
9∗

S ⊗ 9E , B∗ Beiτ K Em9S ⊗ 9E

〉

=
〈
9∗

S ⊗ 9E , B∗ Beiτ L Eme−iτ L9S ⊗ 9E

〉

= ω+ ⊗ ωin(eiτ H Eme−iτ H ).

(Here, L = LS + LE + VSE is the Liouvillian, see also (8.3)). This shows convergence of fm in

the mean. To upgrade this to almost-everywhere convergence, one can use a probabilistic “fourth

moment method” (see Ref. 65).

To prove Theorem 8.4, we note that

E[Xn] = 1

n

∑

m1,...,mn

(m1 + · · · + mn)P(X1 = m1, . . . , Xn = mn)

= 1

n

n∑

j=1

〈
9S , M j−1 P B∗ Beiτ KMP9S

〉
.

Proceeding as above in this proof, one sees that the limit n → ∞ of the right side is ω+ ⊗
ωin(eiτ HMe−iτ H ).

C. The spin-spin model

In this model both the scatterer and the probes have only two degrees of freedom participating

in the scattering process. The pure state space of S and E is C2, and the Hamiltonians are given by

the Pauli σ z operator,

HS = HE =
(

1 0

0 −1

)
. (8.19)

These Hamiltonians are the same as those introduced before (2.9) (modulo an additive constant, and

where E0 = E = 2). The interaction between S and E is determined by the operator

λV = λ
(
a∗
S ⊗ aE + aS ⊗ a∗

E

)
, (8.20)

with coupling constant λ ∈ R, and where

aS,E =
(

0 0

1 0

)
, a∗

S,E =
(

0 1

0 0

)
(8.21)

are the annihilation and creation operators. The interaction is the same as the one taken after (2.9).

In the true Jaynes-Cummings model, the system S has infinitely many levels (harmonic oscillator),

see Sec. V A and also, e.g., Ref. 70. The total Hamiltonian H = HS + HE + λV describes exchange

of energy between S and E , while the total number of excitations, N = a∗
SaS + a∗

EaE , is conserved

(commutes with H). This allows for a treatment of the system separately in the invariant sectors N

= 0, 1, 2.
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For an arbitrary probe observable X ∈ B(C2), we write Xij = 〈ϕi, Xϕj〉, where ϕ1, ϕ2 are the

orthonormal eigenvectors of HE (with HEϕ1 = ϕ1). Incoming states are invariant, determined by p

∈ [0, 1] via

ωin(X ) = pX11 + (1 − p)X22, (8.22)

where X ∈ B(C2) is an arbitrary probe observable.

We will use the notation and definitions of Sec. VIII B in what follows. In particular, the single

time step operator MS is defined in (8.10). For the following explicit formula, we take the reference

state 9S to be the trace state:

9S = 1√
2

(
ϕ1 ⊗ ϕ1 + ϕ2 ⊗ ϕ2

)
.

Theorem 8.10 (Explicit reduced dynamics operator). Set ϕij = ϕi ⊗ ϕj and let X ∈ B(hE ) so

that X ⊗ 1E ∈ ME . In the ordered basis {ϕ11, ϕ12, ϕ21, ϕ22} we have

P B∗ Beiτ K X ⊗ 1E P = ωin(X ) eiτ LS + (8.23)



(1 − p)X22a (1 − p)X21b

−pX12e2iτ i sin(λτ ) e2iτ (cos(λτ ) − 1)ωin(X )

pX21e−2iτ i sin(λτ ) 0

−pX22a −pX21b

−(1 − p)X12b −(1 − p)X11a

0 (1 − p)X12e2iτ i sin(λτ )

e−2iτ (cos(λτ ) − 1)ωin(X ) −(1 − p)X21e−2iτ i sin(λτ )

pX12b pX11a




,

where a = − sin 2(λτ ), b = − isin (λτ )cos (λτ ). (On the right-hand side, we have a matrix with

four columns.)

The proof of Theorem 8.10 is a direct calculation. The quantity (8.23) is the single-step dynamics

operator as a function of the incoming probe state (determined by B, or, p), and a general operator X

on the outgoing probe. If X is the spectral projection associated with a measurement operator, then

one obtains the single-step dynamics for the measurement process.

For X = 1, one obtains the single-step dynamics operator without measurements. In this case,

Xij = 0 for i 6= j, and the matrix reduces to a simpler form. One easily verifies that the Riesz projection

of M = PB∗BeiτKP associated with the eigenvalue one is 5 = |9S〉〈9∗
S |, where 9S is the trace state

given before Theorem 8.10 and

9∗
S =

√
2
(

p ϕ1 ⊗ ϕ1 + (1 − p) ϕ2 ⊗ ϕ2

)
.

(Note that 9∗
S is an eigenvector of the adjoint of (8.23) with eigenvalue ωin(X), for general X.) The

asymptotic state of S, in absence of measurements, is given by

ω+(A) =
〈
9∗

S , (A ⊗ 1S )9S

〉
.

This follows easily by taking the limit n → ∞ in (8.12) with Mj = M. By using the explicit form of

9∗
S above, this gives ω+ = ωin (see (8.22)). Therefore,the incoming probe state is copied onto the

scatterer after many interactions. This result is non-perturbative and holds for all λ ∈ R. Intuitively,

the result is explained as follows. Consider for instance the incoming state of probes to be spin up.

The effect of the interaction (8.20) is to de-excite them into the ground (or spin down) state, while

the scatterer does the opposite, passing from the ground to the excited state. After some scattering

interactions, the scatterer thus tends to be in the state up.
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In view of Theorems 8.3 and 8.4, the frequencies and asymptotic mean are determined by ω+
⊗ ωin = ωin ⊗ ωin. In the present model, it turns out that this state is invariant under the coupled

dynamics, namely,

ωin ⊗ ωin

(
eit H Ae−it H

)
= ωin ⊗ ωin(A), (8.24)

for all t ∈ R and all system-probe observables A. To see (8.24), we note that the density matrix

representing the state ωin ⊗ ωin has the expression

ρin ⊗ ρin = 2(p − 1/2)2 N 2 − (p − 1/2)(3 − 4p)N + (1 − p)2,

where N is the total number operator (see before (8.22)).

Exercise 8.11. Show that the density matrix of ωin ⊗ ωin is ρ in ⊗ ρ in.

Since the Hamiltonian H commutes with N, the propagator eitH commutes with ρ in ⊗ ρ in and

(8.24) follows. Therefore, by Theorems 8.3 and 8.4, we obtain, for any measurement,

fm = ωin(Em), µ∞ = ωin(M).

In a sense, the scatterer becomes “transparent” after many interactions with the probes.

Resonant and non-resonant system. If λτ is a multiple of π , then (8.23) reduces to PB∗BeiτKXP

= ωin(X) diag(1, ± 1, ± 1, 1) with plus and minus signs if the multiple is even and odd, respectively.

Then, by using the expression for P(X1 ∈ S1, . . . , Xn ∈ Sn) given in (8.9), it is readily seen that

the random variables Xj are independent, and P(Xj ∈ S) = ωin(ES). When λτ ∈ πZ, the system is

called the resonant, otherwise it is called non-resonant. This is the same terminology as used in

Sec. V A, Definition 5.1, and also Ref. 24. One can understand the resonant regime as fol-

lows: consider the dynamics on S and a single probe E , generated by the Hamiltonian H =
HS + HE + λV . The probability of transition from the initial state ϕS

2 ⊗ ϕE
1 , where the S is in

the ground state and E in the excited state, to the opposite state ϕS
1 ⊗ ϕE

2 , at time t, is given by

Pt =
∣∣〈ϕS

1 ⊗ ϕE
2 , e−it H ϕS

2 ⊗ ϕE
1

〉∣∣2 = sin2(λt). For λt ∈ πZ this probability vanishes. If the inter-

action time τ in the repeated interaction system is a multiple of π /λ, then interaction effects are

suppressed. It is not hard to see that in this case, the system does not feel the interaction with the

probes in the sense that ωn(A) = ω0(αS
n (A)) for all n ≥ 1, where αS

n (A) is the reduced dynamics of

S alone. We focus now on the non-resonant situation.

Asymptotics of the measurement process. Suppose the probe’s incoming state is spin up, ωin =
|ϕE

1 〉〈ϕE
1 | (which means p = 1). Let M be a measurement operator, S ⊂ spec(M) and let ES be the

projection onto the corresponding spectral subspace. The operator (8.23), with X = ES, has spectrum

spec(MS) = (ES)11 {1, e2iτ cos(λτ ), e−2iτ cos(λτ ), cos2(λτ )}. (8.25)

We have 0 ≤ (ES)11 =
〈
ϕE

1 , ESϕ
E
1

〉
≤ 1.

• The equality (ES)11 = 1 holds if and only if ESϕ
E
1 = ϕE

1 , which is equivalent to: either ES = 1

or ES = |ϕE
1 〉〈ϕE

1 |. We discard the case ES = 1 since this corresponds to not making any

measurement. Thus if (ES)11 = 1 and we make a measurement, then ES = |ϕE
1 〉〈ϕE

1 |. This

forces the measurement operator M to be diagonal in the basis {ϕE
1 , ϕE

2 }, M = diag(m1, m2).

Conversely, if M is diagonal and ES = |ϕE
1 〉〈ϕE

1 |, then (ES)11 = 1. This shows that MS has an

eigenvalue 1 if and only if M = m1|ϕE
1 〉〈ϕE

1 | + m2|ϕE
2 〉〈ϕE

2 | is diagonal and ES = |ϕE
1 〉〈ϕE

1 |. In

this case, the associated Riesz spectral projection is 5 =
√

2|9S〉〈ϕE
1 ⊗ ϕE

1 | and we have P(Xn

= m1 eventually) = 1.

• If the measurement operator M is not diagonal in the basis {ϕE
1 , ϕE

2 }, then (ES)11 < 1 for any

S with |S| = 1 (if |S| = 2, then ES = 1, which corresponds to not making any measurement).

Then 1 is not an eigenvalue of MS and so P(Xn ∈ S eventually) = 0.
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Therefore, the measurement process converges if and only if the incoming state is pure and

localized with respect to measurement operator (i.e., if and only if it is given by an eigenvector of

M and we measure the corresponding eigenvalue).

Large deviations for the mean. The logarithmic moment generating function34 is defined by

3(α) = lim
n→∞

1

n
log E[enαXn ], (8.26)

for all α ∈ R s.t. the limit exists as an extended real number. The existence of the logarithmic

generating functional can be analyzed for general repeated measurement systems.65 We give here

only a discussion for the spin-spin example at hand.

Using Theorem 8.10 (with p = 1) we find that

3(α) = log ωin(eαM),

for α ∈ R. The Legendre transformation of 3(α),

3∗(x) = sup
α∈R

αx − 3(α), (8.27)

for x ∈ R, is called the rate function. Its usefulness in the present context is due to the Gärtner-Ellis

theorem,34 which asserts that for any closed set F ⊂ R and any open set G ⊂ R, we have

lim sup
n→∞

1

n
log P

(
Xn ∈ F

)
≤ − inf

x∈F
3∗(x)

lim inf
n→∞

1

n
log P

(
Xn ∈ G

)
≥ − inf

x∈G∩F
3∗(x). (8.28)

Here, F denotes the set of “exposed points of 3∗” (see Ref. 34 for the definition). We now evaluate

the Legendre transform locally. Note that 3 is twice differentiable, and the second derivative with

respect to α of the argument of the supremum in (8.27) is less than or equal to zero. Therefore, for

fixed x, the supremum is taken at α ∈ R satisfying

x = 3′(α) = ωin(MeαM)

ωin(eαM)
. (8.29)

For α = 0 we have x = ωin(M). If 3′′(0) = Var(M) := ωin(M2) − ωin(M)2 6= 0, then Eq. (8.29)

has an implicit solution α = α(x), locally around x = ωin(M). Since 3′(α) is holomorphic at α =
0, the implicit solution is holomorphic at x = ωin(M). The Taylor expansion of (8.29) is

x = ωin(M) + αVar(M) + cα2 + O(α3), (8.30)

where

c = 1
2
{ωin(M3) − 3ωin(M2)ωin(M) + 2ωin(M)3}.

We solve Eq. (8.30) implicitly for α = α(x), which is the point where the supremum in (8.27) is

taken, i.e.,

3∗(x) = (x − ωin(M))2

2Var(M)
+ O

(
(x − ωin(M))4

)
. (8.31)

As an application we consider a measurement of the outgoing spin angle. Since ωin is the

state “spin up,” we have ωin(M) = M11 and Var(M) = |M12|2. Imagine an experiment where

we measure the angle of the spins as they exit the scattering process. Let θ ∈ [0, π ) be the angle

measuring the altitude (θ = 0 is spin up). The measurement operator “spin in direction θ” is given

by

M =
[

cos θ sin θ

sin θ − cos θ

]
,
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see, e.g., Ref. 27 Chapitre IV, (A-19). The eigenvectors of M associated with the eigenvalues ± 1

of M are

χ+ = cos(θ/2)ϕ1 + sin(θ/2)ϕ2

χ− = − sin(θ/2)ϕ1 + cos(θ/2)ϕ2.

The eigenprojection E+ measures the spin in the positive direction θ . By using Lemma 8.8 is easy

to see that

P (Xn is in direction θ eventually) =
{

1 if θ = 0

0 if θ 6= 0.

This is another manifestation of the asymptotic transparency of the cavity.

We obtain from Theorem 8.4 (with µ∞ = cos θ ) that for any ǫ > 0,

lim
n→∞

P(|Xn − cos θ | ≥ ǫ) = 0.

The speed of convergence can be estimated using (8.28) and (8.31). It is easy to see that the

logarithmic generating function and the rate function associated with the shifted random variable

Xn − cos θ are given by 3shift(α) =3(α) − αcos θ and 3∗
shift(x) = 3∗(x + cos θ ), respectively. Next,

we note that all points in the vicinity of zero belong toFshift, the set of exposed points of 3∗
shift. Indeed,

if x = 3′
shift(α) for some α ∈ R, then x ∈ Fshift (Ref. 34, Lemma 2.3.9). But x = 0 = 3′

shift(0), and

3′
shift is invertible around zero (as 3′′

shift(0) 6= 0). This shows that Fshift contains a neighbourhood of

the origin.

Take 0 < ǫ < ǫ′ < <1, set G = ( − ǫ′, − ǫ)∪(ǫ, ǫ′), and let F be the closure of G. Then (use

(8.31)),

inf
x∈F

3∗
shift(x) = inf

x∈G∩Fshift

3∗
shift(x) = ǫ2

2Var(M)
+ O((ǫ′)4).

Combining this with the two bounds (8.28) (for the shifted random variable), we obtain

P
(
ǫ ≤ |Xn − cos θ | ≤ ǫ′) ∼ exp

[
−n

{ ǫ2

2 sin2 θ
+ O((ǫ′)4)

}]
, n → ∞,

which is a large deviation statement for the average Xn .
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Ann. Inst. Henri Poincaré Probab. Stat. 46(2), 442–464 (2010).
22 Bruneau, L., Joye, A., and Merkli, M., “Random repeated interaction quantum systems,” Commun. Math. Phys. 284,

553–581 (2008).
23 Bruneau, L., Joye, A., and Merkli, M., “Repeated and continuous interactions in open quantum systems,” Ann. Henri
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