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Abstract 
 
We suggest that the dark matter halo in some of the spiral galaxies can be described as the ground 
state of the Bose-Einstein condensate of ultralight self-gravitating axions.  We have also developed 
an effective “dissipative” algorithm for solution of non-linear integro-differential Schrödinger 
equation describing self-gravitating Bose-Einstein condensate. The mass of an ultra-light axion is 
estimated.  
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I. Introduction  
 
The content and properties of the dark matter (DM) is one of the most pressing problems in 
contemporary physics. According to the Planck 2018 data the mass of the DM is more than five 
times greater than the mass of the baryonic matter in the visible Universe [1]. In particular, DM is 
expected to form a huge halo around the spiral galaxies (see, for example, [2, 3]). There are various 
theoretical models describing the DM. We restrict ourselves with models suggesting that the DM is 
a Bose-Einstein condensate (BEC) of the ultralight axions (see, for example, [4,5]). In particular, we 
do not consider a core-envelope model where part of the ultralight axions forms a dense BEC core, 
while the other part forms a low density quasi-classical envelope (see, for example, [6]). In our 
work, we suggest that the DM in some spiral galaxies can be described as the ground state of the 
ultralight self-gravitating axions, and estimate the mass of the axion.  
 
The non-linear integro-differential equation, considered in our work, is equivalent to the 
Schrödinger-Newton equations studied in many publications (e.g. [7-9]). The standard methods of 
numerical computations allow one to compute the stable ground state and the unstable excited states 
of these equations [9]. We have developed an independent numerical method (the “dissipation 
algorithm”) which we have used for verification of the solution of the Schrödinger-Newton 
equations. Our method can also be used for studying the two- and many-component BECs. This 
work is now in progress. 
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II. Non-Linear Integro-Differential Schrödinger Equation and its Ground State  
 
  N-particle   Schrödinger equation. We start with the non-relativistic Schrödinger equation, 

   1 1,..., ; ,..., ;N N Ni r r t t H r r t   
    ,  for N gravitationally interacting axions,  described by the 

Hamiltonian,    2 2

1 1

2 1
i

N N

N r i j
i i j

H m Gm r r
  

     
  , where ,  ,  im r G


 are the axion mass, 

coordinate, and the gravitational constant, correspondingly. Introduce the dimensionless variables: 

 2
0 0,  .i ix r r mr t 

     Then, the dimensionless Schrödinger equation becomes: 

   1 1,..., ; ,..., ;N N Ni x x x x       
   

, where the dimensionless Hamiltonian takes the form, 

     2 2
0

1 1

1
1 2 1 ,

i

N N

N N x i j
i i j

mr H x x
N  

       
   and we have chosen: 

  2 2
0 ,  .r Gm M M mN   

   Mean-field approach. The dimensionless Hamiltonian, N , coincides with the dimensionless 

Hamiltonian, N  in [10], where it was shown that the mean-field (MF) approach can be used when 

.N   For N  interacting axions, we can consider N  very large and M mN  fixed (as the axion 
mass is tiny). In the MF approach, one considers the initially disentangled state of N    identical 
particles, with      1 1,..., ;0 ,0 ,0 .N Nx x x x   

   
 It is shown in [10], that for any fixed    

and N  , the wave function is:       1 1,..., ; , , .N Nx x x x      
   

 The equation for a 

single-particle wave function,  ,r t 
, back in the dimensional variables, becomes the nonlinear 

integro-differential equation: 
 

  
   

2 2 3, | ( ', ) |
, .

2 | |r

r t r t d r
i GmM r t

t m r r

  
  

      


       

 
The corresponding eigenvalue problem, in the MF approximation, can be formulated as follows. We 
assume that all axions are in the same spherically symmetrical ground state which is described by 
the real wave function,  ( )r . The wave function satisfies the non-linear stationary Schrödinger 
equation, 
 

2

( )
2

r mV r E
m

 
 
    
 




,                                                                                                                (1) 

 
where m  is the axion mass, and  V r


 is the gravitational potential produced by all the axions of the 

galaxy,  
 

 
 




 
2 3| ( ')|

( )
| |

r d r
V r GM

r r
.                                                                                                                  (2) 

 
Here M  is the total mass of the axions. (We assume that the mass of the baryonic matter is much 
smaller than M , and it can be ignored in the first approximation.) 



3 
 

   Similar to above, we introduce the following natural parameters, 
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Now, we obtain the dimensionless equation, 
 

     
 

        


 
2 '1

'
2 '

x

x
dx x x

x x
.                                                                                                 (3) 

 
Integrating over polar and azimuthal angles and taking into account that,  
 

2 2
0

2 ,  x>x',sin

2 ',  x<x',2 'cos '

x
d

xx xx x

 



  

  
                                                                                           (4)               

 
we obtain the integro-differential equation of the Hartree-Fock type,  
 

          
2

2 2 2

2

0

1 4
4 ( ).

2

x

x

x x x s s ds x s s ds x
x x x

     
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   
                                                (5)   

 
Also, we add two standard conditions, 
 
 

 



 


  

 2 2

0

0,

4 1.

x

x x dx
                                                                                                                             (6)               

 
Using a substitution, 
 

      4 ,x x x                                                                                                                          (7) 

 
we obtain the following equations,  
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x

x dx

                                                                                     (8) 

  
III. Numerical solution 
 
We have developed an effective computer algorithm which can be used for solving equation (8), and 
other similar problems. The solution has been found on the basis of  a discrete iterative procedure 
which is a proper “dissipative protocol”  (DP)  of the effective dynamical Schrödinger equation,  
 

          
  


 

      

2

2

, ,1
, .

2

x x
i U x x

x
                                                                                 (9)                

 
   The numerical solution of  Eq. (9) is defined  in some finite region,  0 x R , such that: 

         0, , 0.x x R  It is important to note that, for a given initial condition,     , 0x , 

we are looking not for an “exact” numerical solution based, for example, on the well-known Crank–
Nicolson finite difference method [11], which is a second-order method in time and space. (In this 

case, the errors of the finite difference scheme of the left part is  2 , and for the right part is 

  2
x , where   and x  are the discretization steps in time and space, correspondingly.) We 

apply the implicit finite-difference method of the first order in time,  
 

 
       



   
   

      

1 1 1 1
11 1

2

1 2
,

2

j j j j j
ji i i i i

i ii U x
x

                                                                     (10)                

where     ,j
i i jx .  As it is shown below, the scheme (10) generally does not conserve the 

probability,    2

0

, .
R

x dx  However, it is a valuable advantage, as compared to the conservative 

Crank–Nicolson method because, on the basis the difference scheme (10), an iterative algorithm can 
be built to reach the steady state for Eq. (9),      , / 0x , or, in other words, to obtain the 

solution of  the eigenvalue problem (8).  
   The point is that for given potential,  U x ,  and energy,  ,  the procedure (10) exhibits the “filter” 

properties in the dynamics of an arbitrary initial condition,    , 0 .x  Indeed, decomposing  the 

initial condition into eigenfunctions,  k x ,  of the operator,   
  



2

2

1ˆ
2

H U x
x

, we obtain, 
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   , 0 .k k
k

x c x                                                                                                                       (11)               

 
   Then, the exact solution of Eq. (9) is, 
 
       , exp( ) ,k k k

k

x c i x                                                                                                          (12)               

where       k k k  and k  is the eigenvalue of ˆ.H  However, following the difference scheme 
(10),  
 

 

   
    

     





 
, ,

k k

k

i i
i

k i k k i

e e
i e ,                                                                                         (13) 

 
we obtain another relation for determining the frequency, :k                                                                             
 

  
 

 
  

2

.
2
k

k k i                                                                                                                      (14)               

 
That is, instead of the non-dissipative time-dependent solution, we get the “filter”, 
 

                  2

k, ,   2k ki
k k k

k

x c e e x ,                                                                             (15)               

 
that extracts from the entire set  of the eigenfunction,   k x ,  the modes with the  lowest values of 

 .k  Thus, if at a given potential,   ,U x  the eigenvalue of energy, m , is known, then the scheme 

(10), which only imitates the solution of Eq. (9), transforms over time  an arbitrary initial function, 
   , 0x , into a stationary state wave function, 

 
     ,

0,   , ,ix
x f x e  

 



 


                                                                                                      (16)               

 
where the  phase,  , does not depend on x , and either the function    Re[ , ]x  or   Im[ , ]x  can 

be identified with the eigenfunction,   m x , as if it is initially unknown. 

 
The filtration properties (see Eq. (15)) of the scheme (10) can be used as basis for algorithms of 
different purposes. For instance, the problem (8) is solved using the following simple iterative 
procedure.  Determine from the physical considerations the initial/trial “eigenfunction”,    , 0x , 

energy,  (0) , and evaluate the corresponding potential  (0)U x  by using the relations (8). In 

accordance with scheme (10), calculate n  time steps so that     ( ) 1n  (see Eq. (15)).  Then 

recalculate the iteration values,   (1)U x  and  (1) , using in (8) the current normalized function 

  (1)[ , ]abs x n  as if it is the genuine eigenfunction, and run the next series of n  time steps.  By 

running N such successive cycles, we obtain converging sequence not only for the energy,  ( )N , but 
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Fig. 1: The probability density,  2 x . 

for the function    ( ) ,N x N n , too. As an example, for the trial wave function, 

    
2

, 0 xx xe ,  0 40x ,  (0) 0 ,   0.5 ,  500n , the reliable stationary ground state, 

      ( )[ ]/( 4 )Nx abs x x ,  is achieved in  20N  large cycles:   0 0.1628 . 

 
 The attenuation of the expansion terms in Eq. (15) occurs with the decrement,  k . For the effective 

convergence of iterations, the quantity, kt , should be large,  1 ,kt t n    which for small 

k  requires the fulfillment of the condition   1.n     However, too large values of  n   lead 

to a strong attenuation of the wave function and a loss of accuracy of calculations, since the number 
of bits, representing numbers in the computer memory, is limited. Our solution is the same as that 
obtained in ref. [7], where the authors solved the coupled system of Schrödinger and Poisson 
equations. Thus, our computation confirms the result obtained in ref. [7]. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

In Fig. 1, we present the probability density,  2 x . One can see that the “diameter of the function”, 

 2 x ,  is about 16 .  Thus, according to our assumption the diameter, D , of a galactic halo is, 

 016 .D r  Taking the typical diameter, D , and the mass, M , of a spherical halo from Ref. [2],  

300 kpcD  and 121.8 10 ,M M    we obtain  an estimation for the axion  mass, m , 

  
25

0

1.6 10 eV.m x
r GM


                                                                                                                (17) 

 
   This estimation correlates with the current proposals (e.g. [4,12,13]) suggesting that the DM 
particles are the ultra-light axions. Our value of the axion mass is greater than the value, 

2610 eVm  , estimated in [12], but smaller than 2210 eVm   estimated in [4,13].  We should note 
here that recent observations restrict the values of the mass of the DM axions (see, for example, [14-
19]). In particular, the data obtained in [14-18], rule out  axions with mass of the order of 2510 eV  
as candidates for the universal DM.  However, we believe that DM does not have to be a unique 
single-component substance across the Universe. The content of DM can be different in the galaxies 
of different type or even in the galaxies of the same type. Thus, we should not exclude the 
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possibility that some of the spiral galaxies have the DM halo consisting of the axions of the mass 
estimated in our work. 
 
Conclusion 
 
We suggest that the DM halo of some of the spiral galaxies may consist of ultra-light self-
gravitating axions in the ground BEC state. We have developed an effective “dissipative” numerical 
algorithm for computation of the ground state for non-linear integro-differential Schrödinger 
equation. We have estimated the mass of an ultra-light axion as,  251.6 10 eVm x , which is 
comparable with many other proposals. 
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