Reply to Referee #2
September 20, 2019

We thank the referee for their careful reading and for taking time to communicate
many detailed comments, suggestions and questions. This is much appreciated and in the
revision, we have taken the referee’s points into account.

In the following, we insert our comments (marked by e) into the referee’s text which
15 1n italics.

1.1 Recommendation explained:

On the one hand, I found the paper convincing of the results presented there. I felt
confident that the author performed a careful and thorough proof. On the other hand, I
found that the explanation of some very important points is inadequate or completely miss-
ing: it relies on familiarity with the author’s previous work “M. Konenberg, M. Merkli:
Completely positive dynamical semigroups and quantum resonance theory” [1] and does
not stand on its own. I came away with too many questions to be able to recommend
this paper for publication as it stands. Therefore, I recommend that a major revision is
warranted. I explain my concerns in more detail below. I ask that the authors specifically
address each of my major comments and overview suggestions in their response.

e The current manuscript has grown out of several years of research and previous
papers on the topic, in line with the dynamical resonance theory. Those papers analyze
the dynamics of open systems, but it was not realized that the method actually proves
the master equation approxiation until the recent paper [1] (Kénenberg-Merkli, 2017),
which is closest to the present work. We believe that [1] has the disadvantages that (i) it
is formulated in a rather technical, curt way, and (ii) it contains a mistake. In the present
paper, we give a detailed explanation of the dynamical resonance theory (on which [1]
builds) and we de-emphasize some technical aspects. For instance, we limit as much as
possible the use of the heavy definitions and notations of the C* and von Neumann algebra
theory in which the method was originally phrased. We have been encouraged to write
the present text after presenting the results recently at several conferences. And several
researchers in theoretical physics have mentioned to us that they did not know about our
results, which they qualified as important in the field. The reason, so we have been told,
is partly that [1] is hard to understand for the general theoretical physicist. An important
goal of the present paper is to make the methods and results known and accessible to a
wider audience. We also present a correction to the mistake in [1] mentioned above.

So yes, the current paper is supposed to stand on its own. This does not mean that we
have the space to derive all details. For instance, the result about the spectral analysis of
the deformed Liouvillian is a technical theorem which we simply use without derivation
(see the text after the figure). Other facts which we find clear, but maybe the uninitiated



reader does not, might not have been explained, and we are grateful to the referee to have
made the effort to point those out to us.

1.2 Structure of the review:

Major comments that motivated my decision can be found in Sec. 2.1. Overview of
the result and further suggestions for revision can be found in Sec. 2.2. Minor comments
are in Sec. 2.3, followed by references.

2.1. Major comments

The main concern I have about the paper is that multiple facts are stated without proof
or reference. Some of these facts might be known to the reader of [1], as the explanations
in that work are clearer. Still, even though [1] does illuminate the meaning of some state-
ments of this manuscript, the statements there were never phrased as Lemmas, therefore I
feel that referring them here as common knowledge is inappropriate. Below is the (possibly
incomplete) list of statements that suffer from this problem:

a. Page 3: “the reservoir is spatially asymptotically close to equilibrium” - what is the
definition of this spatial distance of equilibrium and/or where can it be found?

e We have added definitions explaining the notion of “spatially asymptotically close
to equilibrium” in the text after (2.7). We have also included two new references in this
regard, the books by O. Bratteli and D.W. Robinson and the book by R. Haag.

b. Page 6: the shorthand notation e™“'q is not explained, if it implies elementwise
multiplication e“®)tg(k). Variable v is never defined. Variable ¥ is meant to represent
angles in polar coordinates, but it is also stated in an ambiguous way. When X appears
later on Page 14 it is also not clear whether u or X are angles. The footnote on Page 15
finally clarifies it, but it shouldn’t be that hard to find! Normally that would be a minor
comment but note how this creates a feeling that this manuscript is a second part of some
work where this notation was defined in the first part.

e Right, the variable r should have been |k|. We have fixed this and defined the
meaning of e“'g as well as the polar coordinates.

c. Page 10: "Liouwville operator for the resonance located at the origin.” Resonance
theory has not been defined at this point, so this phrase is confusing. Even after reading
the rest of the paper and [1] this phrase is still confusing.

e The phrase in question describes content of papers [16,4] (not what the referee calls
[1] in their report (which is [18] in our original manuscript)). Nevertheless, we have
rephrased this now.

Also on this page there’s a few lines discussing the relationship of this work with [1].
Please say whether this work can be read independently, or the knowledge of the proofs in
[1] is necessary to understand the math here. Ideally, please include a list of results that
you do nmot prove but use, and where can they be found. Here under a-g I tried to collect
such a list, but I may miss something in the later part of the paper.



e We believe this is now done in the text, thanks to all the modifications inspired by
the referee.

d. Page 12: the statement “any vector ... can be approrimated arbitrarily well” is
giwen without proof or reference. Thanks for explaining it with an example! Still, I'd like
to see one of the following: (1) a proof (2) a reference to a proof (3) state that this is a
conjecture that you (and other people in the field) believe to be true but do not include the
proof for brevity (4) state that it is a conjecture and the proof is postponed for future work
(5) state that it is an obvious/textbook fact and every educated reader should be able to
see it for themselves. You see that either of the five possibilities carries a different weight,
while the text as written leaves the reader wondering which one of the five is implied. Only
on page 23 this fact is explained in more detail, and the reference to [1] is given.

e The statement is a general fact from algebraic quantum theory. We have added a
reference now. In the finite dimensional case, the properties in question, cyclicity and
separability, are fairly easy to derive, and this is done in the text.

e. Page 13: just a few lines after you say that we’re not gonna use the definition of
J, and by extension, Ly, the properties of these objects are immediately used: you state
that Ly annihilates the steady state. This leaves the reader with a sense of unease: which
properties of this undefined object are we gonna use later in the paper? I agree that the
steady state property may be obvious to some readers, since Ly is just the total evolution
operator. Still, as above in d, you do not state whether this is a trivial fact or it needs a
proof.

e This is not a trivial fact (even though it is quite well known). It needs a short
proof which is now provided. The proof relies on a couple of properties of the modular
conjugation J which we are discussing now as well.

f. Page 14: the self-adjoint property of an undefined operator Ly is used without a
proof or reference.

e We have added the explicit action of J and hence L, is defined now. We have
introduced a new reference (Frohlich-Merkli) where it was shown that L, is self-adjoint
for all A (Theorem 3.1 in that reference).

Also the way the text about spectral deformation is phrased, it is not the only condition
when the following analysis holds. Similarly (A) is not the only assumption under which
spectral deformation holds. This foreshadowing however doesn’t lead to anything later in
the paper. In the results section as well, nothing about the assumption (A) is mentioned.
Please state clearly what assumptions have been used to prove your results, and maybe
comment on the possibility of a more general proof in the conclusions or introduction
(which are both absent from the paper right now).

e We have moved the condition (A) to the front of the paper now and we explain
alternative techniques. The upshot is that under (A) we obtain the strongest results but
need the biggest regularity of the form factor g, as we explain.



I would also appreciate a comment on how to check for condition (A) for a realistic
g(k), see the Overview section. The footnote on Page 15 mentions exponential decay of
the correlation function as a physical interpretation of (A), but is it sufficient or only
necessary?

e Condition (A) is technical to state and we now give another condition (H) which
implies (A), and which is more user friendly (Hardy functions). We give a family of
physically relevant form factors which satisfy (A) in the remarks on page 7, and we show
how to check that they do satisfy (A). Exponential decay of the correlation function is
not necessary for the theory, even though it is assumed in the present paper. Polynomial
decay will suffice, but the error estimates in the main results become only polynomially
decaying in time as well, as opposed to exponentially decaying. We explain this in the text
now and mention, that the detailed analysis for these results are only partially completed
so far.

g. Page 18: v(\) appears without definition. Is it yrgr defined on Page 7?7 Why is it
< (3/4)00? It is again stated without proof or reference.

e v(\) was defined in (1.20) (numbering of the first submission). We now recall this
definition on and we explain why () < 36y/4. (The answer is that (0) = 0 and so the
inequality holds for small \.)

I’ll be happy to provide comments on the remaining pages of the paper, after the re-
quested revisions are implemented.
e We thank the referee for their dedication which we appreciate!

2.2 Overview

Bounding the error of open system evolution approximations is an open problem. The
approach taken by the author allows to obtain a powerful theoretical result about those er-
rors. Two approximations to the true open system dynamics are considered: the dynamics
driven by the Davies generator, and a renormalized version of it. Davies generator is used
widely in the field, while the renormalization is also doable in principle for applications,
but has yet to see a use either in theory or numerical experiment. The strengths of the
error bounds of this work are as follows:

1. Arbitrarily long time is allowed. Taking advantage of the approach to steady state
of the dynamics, the author shows the error becomes bounded by a small number in a
long-time limit. This is an intuitive result, but the proof illuminates the relevant system
properties affecting it.

2. Arbitrary initial state is allowed. While it is hard in practice to know the initial
state of the system and the reservoir, the existence of approximate semigroup dynamics
independent of the initial correlations is a surprising result, as many works in the field
anticipated non-Markovian description in that case. Note that the evolution of entangled
initial states of system and environment is given by Eq. (2.40), that is not presented in
the results section, but only referred to. The results section is all about disentangled initial
states of the system and environment.



e Yes, the result section is about disentangled initial states — there is not enough space
to properly discuss the ramifications and relation to markovianity for disentangled ones.
We are planning on analyzing this issue, based on the expansion (3.45), in a separate
work.

3. The correct steady state dressed by the interaction with the environment is organi-
cally part of the formalism. Few works on open system take that into consideration.

4. Arbitrary spectral density of the bath compared to free space boson spectral density
considered in [1]. This is a straightforward generalization.

The weaknesses of the results, where other work or future work would be complemen-
tary, are:

1. Generally speaking, the work is aimed at mathematical physicists and not at any
practical application for numerical simulation of open systems. And not at theoretical
results that seek to give any form of guarantees about practical applications. Specifically,
big-O notation used in the presentation of the bounds contains constants C', Ay that may
depend unfavorably on system parameters. For instance they may contain a power of the
system Hilbert space dimension and render the result inapplicable for many-body systems
(e.g. for n qubit system the coupling Ao would need to be exponentially small with n). A
suggestion to the author would be to at least explicitly list which parameters of system and
environment do constants C, Ny depend on.

e The referee is right in that the error bounds, so far, may depend on system param-
eters in an unfavourable manner. In particular, it is not known so far how to extend the
analysis to a small system with infinitely many levels; this does not seem to be an easy
problem. We have added a remark discussing this at the end of Section 2, including a
suggestion of how to implement a numerical check.

2. The uniform in time bound on the error is only given for the evolution of the
diagonal matriz elements of the density matriz, thus leaving the accuracy of the description
of coherences an open question.

e This is not correct. In the results of Sections 2.7 and 2.8, both populations and
coherences are controlled. In particular, the Markovian approximation is shown to be
valid for all times and for populations and coherences. It is only in the approximation by
an asymptotically exact CPT semigroup (Section 2.9) that coherences are not controlled,
and this only for a window of intermediate times \*t ~ 1.

3. The approach is only valid for time-independent Hamiltonians. Any drive of the
system, e.qg. control pulses, cannot be described by the resonance theory used in the con-
struction.

e This is not true. The resonance theory is applicable also for time-dependent Hamil-
tonians. We have added relevant references: [Merkli-Starr] and [Abou Salem-Frohlich],
[Bach et al].

4. The bath is required to be free bosonic, coupled linearly to the system and thermal,
thus Gaussian for the results presented in the results Section. For the more general result



(2.40), the bath is still free bosonic and coupled linearly to the system, but any initial state
18 allowed. There are two caveats: in the partial transpose doubled Hilbert space there
should be an approximation of the initial state as a rotation of partial transpose of the
thermal state. The error of that approximation carries over to the error of the semigroup.
Since this error is a norm difference on the combined (and partially transposed doubled)
Hilbert space, which is infinite dimensional, one needs to be careful with what it actually
means for system observables. Please add a comment about that to a revised text (at the
moment it is only briefly discussed deep in the proof, on page 23).

e The initial states we consider are of the form (2.18) (this refers to the numbering of
the first submitted manuscript the referee bases his report on). Yes, ¥y is obtained from
Qsr g by application of the operator B’, and this operator acts on an infinite dimensional
Hilbert space. But B’ is a bounded operator. After the ‘rotation’, B’ shows up only in
the vector [(B')*WUylg, as e.g. in (3.45). Error terms involve the norm of this vector, so
those errors depend on ¢ and ¥, (which also determines B’), but they do not involve the
system observable (X in (3.45)).

In the analysis of the asymptotically exact CPT approximation, on p.32, an additional
operator D' is introduced in (4.27). This is indeed an unbounded operator, which connects
the renormalized vector with the coupled equilibrium (NZO = D'Qgr g\ ezactly (as explained
after (4.27)). Now the remainder estimates involve an upper bound on the norm of
[(D'B')*Wy|g, see e.g. (4.30). But again, this estimate is entirely decoupled from the
observable X and so it does not restrict the choice of X. That [(D'B’)*¥y]; has finite
norm is shown in Lemma 3.4 of [18], which is referred to in footnote 18 of the present
manuscript.

We would like to keep the text as it is here — the referee is right that one has to be
careful, technically, but it is not the aim of the current paper to present the details of this
particular point. It involves the control of a Dyson series which is not very difficult, but
somewhat tedious. This has been done in [18] and is referred to here.

Second caveat is that whatever the initial state is, the majority of the infinite number
of bath degrees of freedom should still be thermal at a given temperature. The author
comments on that briefly on Page 3, saying about the requirement to be “spatially asymp-
totically close to equilibrium”, but that requirement is never stated explicitly. I would
suggest to elaborate on this in the revision.

e This is the same observation as point a the referee makes above. We have modified
the text to explain in more detail what this condition means, please see the new text in
Section 2.2.

5. The interaction g(k) (more carefully, a deformation of it) has to possess an analytic
continuation into a strip of finite width in the complex upper half-plane. This condition
has a physical interpretation, that is alluded to on Page 6. But it is not completely clear
from the text of the paper what physically reasonable functions obey it. For example, does
g(k) = const obey it? And would it lead to any divergences elsewhere? Please address
these questions, or give other examples you consider relevant.



e We have addressed this in the Referee’s question f above. ¢(k) = const is not
admissible — we believe this is now easily understandable with the new text. (g(k) = const
would also not be admissible for other reasons than condition (A), as this function must
be square integrable.)

6. Possibly related to 5, all the relaxation and decoherence rates in the system have to
be of the same order in the coupling as the Fermi Golden rule rate. This is true except
for very contrived systems or a strong coupling limit.

e A clarification: For the basic result of the resonance theory, Result 1 (Section 1.7,
estimate (2.18)), the relaxation and decoherence rates do not have to be of the same order
in the coupling. This is actually explained in the text after (2.22). To show our Result
2, (2.27) we do assume that the rates are all of second order in A. This is natural, since
this result says the dynamics is approximated by the Davies generator, which is exactly
of second order in \.

Feel free to use the points of this section as the Introduction. In the current version, I
see no reason why the introduction section is missing. I think the paper will benefit greatly
from its inclusion.

e Thank you. Yes, we made an introduction and used the points you raise.

2.2. Minor comments:

Page 2: “to describe irreversible effects it is necessary to pass to a limit...” depending
on one’s definition of irreversibility and its description, a reader may disagree with this
statement. FE.g. chaotic classical systems may be reversible formally, but irreversible
i practice as the numerical precision needed to revert their dynamics is required to be
exponentially more precise with time.

e Right. We do not want to enter into the details of a precise definition of irreversibility.
We simply mean that the small system is driven to some final state showing, for instance,
thermalization and decoherence. We have slightly changed this sentence now.

Also a note on grammar: single quotation marks like ‘continuous set’ are used in many
places in the paper, and I feel they can be dropped in many of those places.
e Ok, done.

The equation 1.6 for the Fock space is using conventions that I am unfamiliar with. The
definition of the Fock space in [1] was much more reader-friendly for physics community.
e Ok, we have adopted that notation now.

Page 4: it might be common knowledge, but maybe mentioning how do we know that
eigenvalues and eigenvectors of L exist (as opposed to the general Jordan form) would be
nice.

e This property is assumed here, as stated in the text. It is commonly satisfied (we have
added footnote 4) but there are natural situations where the property is not satisfied. This



has dynamical consequences which are under investigation (deviation from exponential
decay). We do not feel we should discuss this in more detail, as results are pending.

Page 6: Repeating what was said in the overview, please say more clearly if the current
status of the proof necessitates the exponential decay of correlations, and the proof may be
extended to power law decay in the future.

e The current status is that we assume condition (A) (or (H)), which implies expo-
nential decay of correlations. We are working on extending the theory to include the case
of power law decay of correlations. This is stated in the points after condition (H) now.

A factor of i appeared in 1.16 compared to 1.11, which implies a different definition of
€; was used for those two formulas.
e Right. We have introduced an i in (2.11) now to make the notation homogeneous.

Page 9: It was confusing to me that you follow the diagonal of the density matrix in
the eigenbasis of Hg, while the steady state is diagonal in the eigenbasis of Hg. I even
thought it is a misprint, but then looking at the proof I see that this is indeed what’s
proven. Please comment why the unperturbed Hamiltonian eigenstate populations can be
known with better accuracy than other matriz elements. Will the bound 1.32 persist for
eigenstate populations of Hg?

e The phases due to the free system dynamics are not compatible with the those
of the approximate dynamics. This is the reason why populations better approximated
than coherences (in the populations, those free system dynamics phases do not appear).
We have added formula (1.32) explaining this in a precise way. We do not believe that
(1.32) (as in the referee’s question) will hold for eigenstate populations of the renormalized

Hamiltonian, again, since different phases are generated by Hg and Hs.

Page 10: Sentence “An approzimate system dynamics valid for all times was...” maybe
needs a new paragraph. I didn’t realize you’re talking about a different result after in-depth
discussion of [1].

e Ok, done.

Title: the motivation for stating that your method ‘overcomes the weak coupling limit’
1s found in the abstract. You say “time must not exceed an upper bound depending on the
system- environment interaction strength (weak coupling regime). Here, we show that the
Markov approximation is valid for fived coupling strength and for all times.” It implies
the definition of WCL as a property of the evolution. I feel a more intuitive definition of
WCL is that the coupling strength is smaller than all other energy scales in the system,
including 1/evolution time. If you phrase it that way, I feel like less people will have an
1ssue with the title. I personally am fine with the title and abstract as they are.

e Point taken. We have modified the title and abstract. A change in title is not usually
advisable, we believe (for instance, the paper is already on the arXiv and now it will have
two titles...) However, one of our goals is to reach a wider readership within the physics



community (not only mathematical physicists) and so we are happy to follow and value
this input from the referee. We would be open for a further change here, if the referee
gave their opinion.

References: while there are no strict requirements on reference formatting at submais-
siton, I would suggest putting references in the order of appearance in the text, as opposed
to current alphabetical order.

e We will go through this exercise if the manuscript gets accepted for publication in
the AOP.



