
Chapter 4

Computer-assisted research:
programming and graphing

4.1 Programming

4.1.1 Development process

A program development cycle is the incremental process of building up your code, testing and
debugging. It involves four steps:

• Write and modify source code of your program in a text editor.

• Create an executable file from the program source file with a compiler.

• Run your program.

• Observe the effect and decide if further changes in the code are needed.

A computer cannot directly run a program source file, which is a human-readable text
file. The source file must be translated into an executable (binary) file, which the computer
understands. A compiler is a program that does this translation. For each programming
language there is its own compiler, sometimes more than one. See information about the
compilers available on local machines in Section ??.

Often during the development cycle you have to repeat certain commands over and over
again, for example,

gcc project2.c
a.out

To minimize typing, you can use a “history” keystroke: Esc-K or ↑ (see Sect. ??).

c© MMIX Department of Mathematics and Statistics, Memorial University of Newfoundland
September 4, 2009

Chapter 4. Programming and graphing 4.1. Programming

A more fundamental time-saving suggestion concerns testing and debugging. Do not
bother to create a friendly user interface or to add various features to your program until you
achieve basic functionality. Suppose your program is to compute the area of a polygon given
the coordinates of its vertices. Eventually you want the program to prompt the user to enter
the number of vertices, N , and their coordinates, one by one, like this:

Please enter the number of vertices: N= 3
Vertex #1: x= 1.1

y= 0.4
Vertex #2: x= 3.4

y= -4.56
Vertex #3: x= 3.12

y= -9.4

However, do not begin programming by creating the input interface. Instead, put a temporary
initialization block with fixed, hardcoded data at the beginning of the program; use simple
data to enable an easy check by hand calculation.

N=3
x[1]= 0
y[1]= 0
x[2]= 2
y[2]= 0
x[3]= 0
y[3]= 3

This set of data corresponds to a right triangle with two sides running along the coordinate
axes. Then, as the mathematical part of your program matures, you should change the data:
test the program on a triangle that is acute or obtuse; shift it; then test the program on a
quadrilateral, etc. As you will be catching mistakes in the program, you will have to run it
more than once on each sample data set, while modifying the data infrequently. Eventually
you will spend much less time on data input than you would spend via the input prompt.

Syntax errors that depend on a programming language and a compiler used cannot be
discussed here in any depth. We will just mention some common errors that appear frequently.

• Unmatched bracket in a mathematical expression (() or unmatched opening of a structure
in a program, like DO loop without closing “END DO” in FORTRAN. Most notably, when
you find such an error and try to fix it, there is a danger that you misplace the closing
bracket or the closing keyword and make the problem worse, more difficult to detect.

• All variables in the program must be assigned values before their values are used for the
first time. A randomly looking output is the most common consequence of the failure to
initialize. However, a compiler may initialize your variables to 0 by default — not to the
values that ought to be there; the results may look OK at first sight but still be wrong.

Page 81

Chapter 4. Programming and graphing 4.1. Programming

• Initializations should be placed outside loops that they are supposed to initialize. If
the variable SUM is an accumulator for a sum computed by a loop, you should put the
initialization SUM=0 outside the loop. This problem is especially common with nested
loops. You must carefully identify “fast” variables, which must change in the inner loop,
and “slow” variables, which change only once per the outer loop.

• “Off by one” error is common even with seasoned programmers. Differentiate between
strict and non-strict inequalities (i>0 vs. i>=0). Check whether it is possible that your
loop will skip immediately (say, the loop condition is while(i>j) and the initial value of
i is equal to the initial value of j). If this is possible in the program, was it meant?

• Quite often, special arrangements are to be made on the first and/or last pass of a loop.
For example, in a loop that produces n pairs of coordinates separated by commas, the
comma should be printed only n− 1 times, — see example on p. 86.

• Array indexing. In FORTRAN and Maple, if the array has N elements, the index runs
from 1 to N , while in C and Java it runs from 0 to (N − 1). Also, when you update the
array and the new values depend on the old values, watch the order of the update closely.
Consider, for example, the cyclic permutation x(1)→ x(2)→ . . . → x(n)→ x(1):

CORRECT

tmp=x(n)
FOR i=1, n-1

x(n-i+1)=x(n-i)
END DO
x(1)=tmp

WRONG

tmp=x(n)
FOR i=2, n

x(i)=x(i-1)
END DO
x(1)=tmp

In the wrong code, the old value of x(1) will propagate through the array, while the old
values of x(2), x(3), ..., x(n) will be lost.

• When you use output to files in C or FORTRAN, make sure to close the file; otherwise
a part of the output may be lost. Close the file outside the outermost loop: otherwise, a
multiple closure will cause the program to crash.

• A confusion between the assignment operator and the equality condition (’=’ vs. ’==’ in
C and Java, ’:=’ vs. ’=’ in Maple and Pascal). Make sure you understand the difference!
Other symbols to watch carefully are comma vs. semicolon, and various kinds of brackets.

Students often get lost when a program does not behave the way it is supposed to. How is
it possible to find errors that affect functionality and are not easy to catch? A regular approach
to find and fix a mistake is to insert temporary output operators and, using simple test
data (cf. p. ??), to trace the intermediate results comparing them with those calculated by
hand. If the program’s functioning disagrees with your mathematical algorithm (most often,
due to a typo), you will detect a discrepancy at some point. Debugging is more complicated
if the mathematical method is flawed in itself. Dissecting the problem (and the program) into
smaller steps is still a dependable approach.

Page 82

Chapter 4. Programming and graphing 4.1. Programming

4.1.2 Programming style

Your program code should be reasonably self-contained and documented. Put the following at
the top of a program:

• Author’s name

• Date

• Course and project number

• A brief description of the program (what it does)

• Additional information if several programs have been written for this project

Note that the readability of a program is improved and debugging is helped immensely
by the generous insertion of comments. Ask yourself: will you be able to understand your
program in a half a year period of time?

Use indentation to improve readability of loops, especially long ones, and if/else clauses.

GOOD

for (i=1; i<=n; i++)
{

if (a[i]>0)
sum=sum+a[i];

else
sum=sum-a[i];

}

BAD

for (i=1; i<=n; i++)
{
if (a[i]>0)
sum=sum+a[i];
else sum=sum-a[i];
}

Use meaningful names of variables and functions, but don’t make them too long. A
variable name like AreaOfTriangle is hardly better than just Area. If practical, use very short
names that match the notation you use in the description of the mathematical method. Strive
for consistency in your programming style, as in everything else.

Good programmers tend to use modular approach (subroutines in FORTRAN, functions
in C, classes in C++ and Java) to make the structure of a program more transparent and to
confine those few cumbersome mathematical lines of code. Modularity also makes debugging
easier. However, in programs with simple “linear” structure or in short programs modularity
can be a burden rather than a benefit.

Appropriate generalization is another feature of a solid style. Make your program flexible,
make it easy to play with parameters. An example of a coordinate-generating code on the next
page will help you to grasp the idea.

Page 83

Chapter 4. Programming and graphing 4.1. Programming

4.1.3 Generating graphics data with your own program

We will discuss two-dimensional graphs only. Essentially, every graph you generate is deter-
mined by points, each point being a pair of coordinates (x, y). Continuous mathematical curves,
consisting of infinitely many points, are most commonly approximated by polygonal lines con-
sisting of segments whose endpoints are to be computed by the program.

When writing a program, you have to make a decision as to what the bounds for x and
y should be (if the mathematical curve is infinite), and by how many points you want to
define the curve. To get a rough estimate of a reasonable number, let us take 5 in as a largest
dimension of a picture and note that human eye, even sharp, can hardly resolve distances less
than 1/200 of an inch. Thus 5 × 200 = 1000 data points across a sheet is perhaps enough in
most cases. The smoother a curve, the smaller number of points will suffice: often 50 or even
10.

A good idea is to have variables in your program for the x and y limits and for the number
of points, rather than to use specific numbers throughout the code. Compare the two fragments
of FORTRAN code:

GOOD

xmin=-5
xmax=5
numpoints=20
xstep=(xmax-xmin)/numpoints
DO i=0,numpoints

x=xmin+i*xstep
y=SIN(x)
PRINT *,"(",x,",",y,")"

END DO

BAD

DO i=0,20
x=-5+i*0.5

PRINT *,"(",x,",",SIN(x),")"
END DO

The “bad” code does not look bad at all: it is concise, easy to understand, and correct. But it
has two drawbacks:
(1) the code conceals the meaning of the numbers: what are those “20” and “−5”, and “0.5”?;
(2) if the values that are denoted xmin, xmax, numpoints in the “good” code occur somewhere
else in the program and you wish to change all or some of the values, it is easy to do: you just
need to change the values assigned to the symbolic names, in one place only.

In simple cases, like in the example above, the points are generated independently of each
other; as soon as a point has been computed, it can be printed immediately. In more complicated
cases, when dependency of some sort is present, you may have to create an array and to complete
computation of all the points before you can print them out.

Another suggestion: use scaling parameters and translation parameters. The “good”
code above is good, in particular, because it is easy to implement this suggestion. Modify the
output operator as follows:

PRINT *, "(",xscale*(x-xorigin),",",yscale*(y-yorigin),")"

Page 84

Chapter 4. Programming and graphing 4.1. Programming

This stretches (or shrinks) the distances by a factor xscale in the x-direction and by a factor
yscale in the y-direction. In addition, the point where (x,y)=(xorigin,yorigin) will be
printed as (0,0), that is, it will become the origin of the coordinate system on the plotting device.
The trivial default values can be initialized: xscale=1, yscale=1, xorigin=0, yorigin=0. If
you are not satisfied with size or position of your graph, it will be very easy to change.

Formatting coordinates

You must format the coordinates in accordance with the method you intend to use to render your
graph. Every pair of numbers must be “framed” with opening symbol or keyword preceding the
x value and closing symbol or keyword following the y value, and a separator must be inserted
between the x and y values. The list of coordinates as a whole has its own opening (before the
first point), closing (after the last point) and a separator (between the successive points). Some
of these can be void or blank space.

Graphing facility LaTeX picture Postscript Maple Gnuplot
Before x (none [none

Between x and y , space , space
After y) moveto or lineto] none

List opening \join newpath [none
Between points none line break , line break

List closing none stroke or fill] none

Table 4.1: Openings, closings, and separators for coordinates

A summary of the various coordinate formats mentioned in this Manual is given in Table 4.1.
Consider for example a line defined by three points (−1, 1), (0, 0) and (1, 1) (a very rough
approximation to a graph of y = x2). Below we show what the data file produced by your
program should look like in different cases. In LATEX and Postscript, a change of scale may be
necessary to actually see the picture.

• LATEX: you must include package 2130.sty or curvesb.sty to enable the join command.
Import the data file by the input command, see p. 120.

\join (-1,1)(0,0)(1,1)

• Postscript: you must add the heading %!PS-Adobe-2.0 by hand or have your program to
print it automatically.

newpath
-1 1 moveto
0 0 lineto
1 1 lineto

stroke

Page 85

Chapter 4. Programming and graphing 4.1. Programming

• Maple: you must cut and paste this array to Maple’s plot command.

[[-1,1],[0,0],[1,1]]

• Gnuplot: feed the file to Gnuplot’s plot command; use option with lines.

-1 1
0 0
1 1

Since the list opening and list closing are to be printed only once, this can be done outside
of the coordinate-generating loop. On the other hand, the separator between the pairs must be
printed after each pair save the last one. So it must be done within the loop; the last pass of
the loop must be a little different. We present short FORTRAN and C codes that produce the
data in Maple’s style. For simplicity of presentation, we sacrificed any flexibility, in violation
of a good programming style we promote.

FORTRAN

OPEN (UNIT=1, FILE ="line1.dat")
WRITE(1,*) "[" !List opening
DO i=0,2

x=i-1
y=x**2
WRITE(1,*),"[",x,",",y,"]"
IF (i<2) THEN

WRITE(1,*),"," !separator
END IF

END DO
WRITE(1,*) "]" !List closing
CLOSE(1)

C

FILE *f =fopen("line1.dat","w");
fprintf(f,"[");//List opening
for (int i=0; i<=2; i++)
{

x=i-1;
y=pow(x,2);
fprintf(f,"[%f,%f]",x,y);
if (i<2)

fprintf(f,","); //separator
}
fprintf(f,"]");//List closing
fclose(f);

If, instead of connecting the points by lines, you need to render them differently, your
program can be written accordingly. For example, the following line in a C program will print
a LATEX command that puts a small solid circle in a specified position.

printf("\put(%f,%f){\circle*{0.1}}",x,y);
An equivalent FORTRAN code is

PRINT *, "\put(", x, "," ,y, "){\circle*{0.1}}"

Page 86

Chapter 4. Programming and graphing 4.2. An introduction to Maple

4.2 An introduction to Maple

Maple is a computer algebra system (CAS) created around 1980 by a team of researchers based
at the University of Waterloo. Currently it is commercial software supported by Maplesoft, Inc.
and it is available to MUN students through the LabNET-wide licence. It may be necessary
for you to set up your account so that you can use Maple — see Section ??.

Maple’s most vigorous competitor is CAS Mathematica, a product of Wolfram Research, Inc.
(USA). Another software that has many similar capabilities but focuses on matrix computations
at the expense of sophisticated symbolic manipulations is Matlab. Users familiar with one of
these systems will have little difficulty with another as soon as they understand the basic syntax
and work out a few examples. In Math 2130, we focus on Maple.

Maple’s functionality and interface have evolved over about 30 years. As of now, there exist
three types of user interface in Maple. Two of them are graphical user interfaces: standard
(modern) and classic worksheet, and the third is non-graphical text-based interface, which can
be used in a command-line mode. Of the two graphical interfaces, the classic worksheet is the
one which is easier to transform to a printed document. Our presentation will be based on the
classic worksheet. The examples below were tested on Maple version 11 in November 2008.
Maple graphics is dealt with in Sect. 4.3.2.

Maple can, in principle, save a worksheet in LATEX format. However, this feature doesn’t
seem to be implemented carefully. We suggest that you paste fragments of your Maple code
into your reports by hand (cf. Sect. ??).

4.2.1 Basic Arithmetic and Algebra

To start Maple, open a terminal window and at the prompt, simply type
xmaple

Maple also has a classic worksheet option, which can be accessed by typing
xmaple -cw

at the prompt. Maple has a very useful help area, where you can find instructions on the many
operations it can perform. In the classic worksheet, the Help command is located in the top
right-hand corner. In the standard Maple, it is located under Tools. Also, in all interfaces of
Maple, help can be accessed by typing

?help

Maple can be used as a calulator. Hit Enter to execute the command. The keystroke Shift-Enter
makes carriage return without an immediate execution. Our first examples are:

> 4+3;
7

> 2*5;
6^2;

10

Page 87

Chapter 4. Programming and graphing 4.2. An introduction to Maple

36

Note the difference between exact and floating point operations:

> 2^64;
18446744073709551616

> 2.0^64;

1.844674407 · 1019

Let’s see how to do slightly more interesting operations. Symbolic names can be used:

> y1:=x^3/2-9/2*x^2-2*x+6;
y2:=(x^4-x^3-15*x^2+9*x+54)/(2*x^3-2*x^2-8*x+8);

y1 :=
1

2
x3 − 9

2
x2 − 2x + 6

y2 :=
x4 − x3 − 15x2 + 9x + 54

2x3 − 2x2 − 8x + 8

Expressions can be symbolically factored:

> y1f:=factor(y1);

y1f :=
(x− 1)(x2 − 8x− 12)

2
.

Or expanded:

> expand(y1f);

y1 :=
1

2
x3 − 9

2
x2 − 2x + 6

A remark on symbolic names. Some names in our examples (x, y1, y2, y1f) denote user-
defined variables — these names are arbitrary, you can change them any way you like. Other
names are keywords known to Maple (like factor, expand). These names are protected; an
attempt to assign a value to them will prompt an error message. Maple knows a few special
constants, which are also protected. The most famous one is PI (π = 3.14159 . . .); not so many
students are familiar with Euler’s constant gamma (γ = 0.57721 . . .). You may be surprised
that the symbols e and E are not protected; the natural logarithm base e = 2.71828 . . . can
be accessed in Maple as exp(1) (in symbolic calculations) or as exp(1.0) (numerically). The
availability of the symbol e is convenient for astronomers who use e to denote eccentricities
of planetary orbits. The fact that gamma is reserved is unfortunate for geometers who like to
denote the angles of a triangle as α, β, γ.

We continue a tour of basic Maple commands. The simplify command applies a bunch of
algorithms to transform expressions to a simpler form. For example, it will identify common
factors in the numerator and denominator and remove them. In our fraction y2 defined above,
Maple finds that the common factor (x + 2) can be canceled:

Page 88

Chapter 4. Programming and graphing 4.2. An introduction to Maple

> simplify(y2);

x3 − 3x2 − 9x + 27

2(x2 − 3x + 2)

The simplify command also knows trigonometric identities:

> simplify(sin(theta)^2+cos(theta)^2);
1

Maple’s simplification algorithms are powerful but not perfect. For example, Maple fails to
notice that (x + 1)2n − (x2 + 2x + 1)n = ((x + 1)2)n − (x2 + 2x + 1)n = 0:

> simplify((x+1)^(2*n)-(x^2+2*x+1)^n);

(x + 1)(2n) − (x2 + 2x + 1)n

For any particular n, Maple will simplify correctly, but it can take a long time.

> simplify((x+1)^(2*700)-(x^2+2*x+1)^700);
0

Another useful command is substitution, subs:

> subs(x=Pi/4, sin(x)): simplify(%);

1

2

√
2

The colon suppresses printout of a result (try to put a semicolon instead to see the effect). The
percent sign refers to the most recent result.

4.2.2 Equations

Maple has built-in commands to solve equations automatically.
> solve(x^2+x-12=0,x);

3, -4
> XX:=solve(x^2+6*x+3,x);

−3 +
√
6, −3−

√
6

The command evalf takes exact answers like those above and spits them out in decimal form:

> evalf(XX);
-.550510257, -5.449489743

Higher accuracy is available through an optional argument of the evalf command.

> evalf(XX,20);
-.5505102572168219018, -5.4494897427831780982

Page 89

Chapter 4. Programming and graphing 4.2. An introduction to Maple

Maple knows complex numbers, too. Note that symbol “I” in Maple is the imaginary number√−1, usually denoted as i.
> solve(x^2+x+1=0,x);

−1

2
+

1

2
I
√
3, −1

2
− 1

2
I
√
3

Maple’s exact answers to equations of degrees 3 and 4 can be impractical. For roots of
polynomials of degree 5 and higher no general formulas exist and, unless the equation can
be factored, Maple will return gibberish. In all such cases, evalf can be used to get an
approximation of the roots. The command fsolve returns approximations of real roots only.
> evalf(solve(x^3+x+1=0,x));

-.6823278040, 0.3411639019-1.161541400 I, 0.3411639019+1.161541400 I
> fsolve(x^3+x+1=0,x);

-.6823278038

Maple can solve not only algebraic equations but many others, too. Beware, however, of
its simplistic approach. Every math student knows that the equation cosx = 0 has infinitely
many solutions — but not Maple!
> solve(cos(x)=0);

−1

2
π

Nor can Maple find all approximate solutions in a given interval containing many roots:
> fsolve(cos(x)=0, x=-100..200);

48.69468613

4.2.3 Calculus

Maple can do calculus both symbolically and numerically. Recall the expression y1 from our
example on page 88; we can use Maple for differentiation, indefinite and definite integration:

> y1;

y1 :=
1

2
x3 − 9

2
x2 − 2x + 6

> diff(y1,x);
3

2
x2 − 9x− 2

> Iy1:=int(y1,x);

Iy1 :=
1

8
x4 − 3

2
x3 − x2 + 6x

> int(y1,x=-1..1);
9

Page 90

Chapter 4. Programming and graphing 4.2. An introduction to Maple

Maple has commands that find extreme values of functions.

> maximize(Iy1);

∞

> minimize(Iy1);

(4 + 2
√
7)64

8
− 3(4 + 2

√
7)3

2
− (4 + 2

√
7)2 + 24 + 12

√
7

The percent symbol can be used as a substitute for the result of the last executed command:

> evalf(%);
-302.1620735

The symbols %%, %%%, etc. refer to the results obtained so many steps back. By Maple’s design,
you can execute commands that are typed in your worksheet in any order (moving back and
forth across the worksheet) simply by hitting Enter on a command. This practice should be
avoided in worksheets that are to be saved and later read by you or another person, otherwise the
results can mislead the reader. In particular, instead of using the percent sign, it is preferable
to assign symbolic names to the results you want to re-use.

The maximize and minimize commands work only on certain functions — namely where
no critical points exist or the equation for critical points can be solved exactly. Not the case
here:

> maximize(x*cos(x), x=0..2);
RootOf(tan(_Z) _Z -1, 0.8603335890) cos(RootOf(tan(_Z) _Z - 1, 0.8603335890))

The command numapprox[infnorm] can find the maximum abslolute value of more general
functions. (The reader can rightly be curious about the command’s name; look it up!)

> numapprox[infnorm](x*cos(x), x=0..2);
0.8322936731

Here we encounter for the first time an example of a function from a Maple package. The whole
package whose name is numapprox can be uploaded by the command with (numapprox); and
then you can use the infnorm command without prefix numapprox.

Maple is quite knowledgeable in Calculus. It knows limits and Taylor series.

> limit(sin(2*x)/ln(1-x), x=0);
-2

> taylor(tan(t),t, 6);

t +
1

3
t3 +

2

15
t5 + O(t7)

We leave it to the reader to find out the meaning of the “big Oh” symbol O(..).

Page 91

Chapter 4. Programming and graphing 4.2. An introduction to Maple

4.2.4 Arrays

Data in Maple can be grouped to form an array. An array is bounded by square brackets and
elements are separated by commas. The elements of an array can be objects of like or different
nature; they can themselves be arrays. For example,
> A:=[1, 2, [red,blue], x^2-5*x+6, plot1];

The elements can be referenced using forward or backward indexing:
> A[1];

1
> A[3];

[red,blue]
> A[3][2];

blue
> A[-1];

plot1

The command nops returns the number of elements in an array:
> nops(A);

5

A sub-array can be selected:
> A[3..4];

[[red,blue], x^2-5*x+6]

It is straightforward to change the values of elements of an existing array by assignments like
A[1]:=..., but adding new elements is tricky. We need the command ’op’ whose effect is just
to remove the bounding brackets around the whole array:
> op(A);

1, 2, [red,blue], x^2-5*x+6, plot1

To add a new element, say, elem6, the following command can be used:
> A:=[op(A), elem6];

A:=[1, 2, [red,blue], x^2-5*x+6, plot1, elem6]

The command seq provides a convenient way to initialize an array with elements generated
according to a given rule:
> B:=[seq(i^2, i=3..9)];

B:=[9,16,25,36,49,64,81]

The command map performs the specified action on all elements of the array at once:
> map(sqrt, B);

[3,4,5,6,7,8,9]

In the commands seq and map it is possible to use your own function. For example, the following
will increment all elements of the array B by one:
> map(x->x+1, B);

[10,17,25,37,50,65,82]

Page 92

Chapter 4. Programming and graphing 4.2. An introduction to Maple

4.2.5 Linear Algebra

Linear algebra is available in Maple via either of two packages, linalg or LinearAlgebra. The
former is not being updated anymore and will be eventually phased out. We will work with the
latter package. First, load the library.

> with(LinearAlgebra):

Here are some basic operations: to create a matrix, to find the inverse, the determinant, the
transpose, the characteristic polynomial, the eigenvalues and eigenvectors.

> A:=Matrix([[2, 4],[6,8]]);

A :=
[

2 4
6 8

]

> A^(-1);


−1

1
2

3
4

−1
4




> Determinant(A);
-8

> Transpose(A);
[

2 6
4 8

]

> CharacteristicPolynomial(A,lambda);

λ2 − 10λ− 8

> Eigenvalues(A);

[
5 +

√
33

5−√33

]

> EValVec:=Eigenvectors(A);

EValVec :=
[

5 +
√

33
5−√33

] 


4
3 +

√
33

4
3 +

√
33

1 1




Note that the Eigenvectors command return the eigenvalues as well as the eigenvectors. We
can select the matrix comprised of the eigenvectors:

> EVec:=EValVec[2];

Page 93

Chapter 4. Programming and graphing 4.2. An introduction to Maple

EVec :=




4
3 +

√
33

4
3 +

√
33

1 1




Now, if we want to separate the eigenvectors from one another and to make an array of them,
the following command will do it:

> EVecArray:=[seq(Column(EVec,i), i=1..2)];

EVecArray :=







4
3 +

√
33

1


 ,




4
3 +

√
33

1







Matrix multiplication (and dot product of vectors) are denoted by a single dot (period).

> B:=Matrix([[2,0,-3],[1,2,1]]);

B :=
[

2 0 −3
1 2 1

]

> A.B;
[

8 8 −2
20 16 −10

]

An attempt to multiply matrices when dimensions don’t match leads to an error message.

> B.A;

Error, (in MatrixMatrixMultiply) first matrix column dimension (3) <> second
matrix row dimension (2)

4.2.6 Programming

Maple can be used for programming. It allows conditionals, loops, and user-defined functions.
Compared to languages such as FORTRAN or C, programming in Maple is more convenient:

there is no need to bother about input/output operations and data types, commands can
be executed immediately, and you have access to all of the built-in commands and available
packages. The price to pay is efficiency. Maple runs loops a lot slower than compiled programs;
also it runs out of memory on much smaller sizes of data. Yet, for many applications and many
Math-2130 projects these issues are not critical.

Our first example is a summation loop, which computes the arithmetic sum 11 + 32 + 53 +
74 + 95. Remember to use Shift-Enter to type multi-line commands into Maple (cf. page 87).

Page 94

Chapter 4. Programming and graphing 4.2. An introduction to Maple

> tot := 0;
for i from 11 by 21 while (i < 100) do

tot := tot + i
end do;

tot := 0
tot := 11
tot := 43
tot := 96
tot := 170
tot := 265

If you are not interested to see the intermediate results, simply replace the semicolons by colons
in the above program and add the line > tot; to print the final result.

There are usual conditional commands if-then-else. For example, the following command
finds the maximum of two numbers.

> a:=4: b:=2:
if (a > b) then a else b end if;

4
> a:=1: b:=7:
if (a > b) then a else b end if;

7

The closing commands end do and end if can be replaced by less traditional od and fi,
respectively.

Consider an example of a very simple user-defined function, or procedure. It just adds one
to a given number.

> increment:=proc(x) return (x+1): end proc:
> increment (2008);

2009

Procedures can be much more involved; they may have many input values, local variables,
and return values of any type. Procedures can contain loops, conditionals and calls to other
procedures or to Maple’s built-in functions.

There are also commands to test whether inputs are real, complex, matrices, or whatever.

> type(4,realcons); type(c,realcons);
true
false

These could be used in if-then statements. For example, the following procedure returns the
square root of the argument if the root is a real number, and prints an error message otherwise.

Page 95

Chapter 4. Programming and graphing 4.3. Drawing graphs

> SafeSqrt:=proc(x) local sqrtx:
sqrtx:=sqrt(x):
if type(sqrtx,realcons) then

return evalf(sqrtx)
else

print (Sqrt - Error)
end if:

end proc:

> SafeSqrt(3);
1.732050808

> SafeSqrt(-3);
Sqrt - Error

> SafeSqrt(x^2);
Sqrt - Error

4.3 Drawing graphs

Knowing how to generate graphs and incorporate them into a paper is a valuable skill for all
technical writers. In this chapter we review a number of ways to generate plots with software.

The most common method to import computer-generated graphs into a LATEX document
involves Encapsulated Postscript files. We begin this section with basic information about
Postscript, Encapulated Postscript, and LATEX imports.

We then explain how graphs can be generated in a Maple worksheet and include brief
descriptions of the Gnuplot and Xfig graphing packages.

LATEX has its own graphical facility, the picture environment. Its drawing functions are
very limited, but there are powerful enhancements, in particular, those included with 2130.sty
file. Besides, the picture environment can be used to create a desired layout of imported graphs
or to superimpose graphs and text.

We do not advocate exclusive usage of any one of these graphing utilities. Try to draw
pictures, and draw your conclusions. In all cases, you have to write a program which in part
generates graphics data and it is up to you to select the utility that will handle a current
graphics task best.

A practice not allowed in this course (except with an express permission of the instructor)
is to import graphics files that are not your own production (downloaded from the Internet).
Also, do not use bitmap graphics and image compression formats (gif, jpg, png), in particular,
scanned pictures and digital photos.

Page 96

Chapter 4. Programming and graphing 4.3. Drawing graphs

4.3.1 Postscript Files

Many graphics utilities, Maple and Gnuplot for example, generate Postscript files, which are
easily recognized by the .ps or .eps extension. Postscript is a popular graphical format in-
troduced by Adobe, Inc. It belongs to the category of vector graphics, as opposed to bitmap
graphics, a typical representative of which is the bmp format. Postscript is a parent (pretty
much alive!) of the Portable Document Format (PDF) also designed by Adobe, Inc.

EPS stands for Encapsulated Postscript, which is now the best-supported format for the inclu-
sion of graphics into LATEX documents. To include an .eps file into a .tex file is easy.

1. First, you must have the line \usepackage{graphicx} in the preamble of you document
(between the \documentclass and \begin{document}). Note the peculiar “x” at the end
of the package name.

2. At the spot where you want to drop the .eps file into your document, use the command
\includegraphics. For example, if the name of your graph is fig1.eps, the following
line will include it into the LATEX file:

\includegraphics{fig1}

The extension .eps in the file name should be omitted. Often the \includegraphics
command is used within the picture environment or figure environment. See p. ?? and
p. 114 for information about these environments.

3. Then proceed with your LATEX file in the usual way.

For most students, the above algorithm of integration of EPS with LATEX is all that is needed.
For all practical purposes, the only difference between .ps and .eps files is that the latter

have a BoundingBox line, which is usually the second line in the file (but sometimes it is found
at the very end). If your graphing program generates .ps file, but not an .eps, you need to
convert it — see instructions on p. ??. Unless you use raw Postscript programming or older
versions of Gnuplot, you will likely never need this.

Optional arguments of \includegraphics

Consider a more sophisticated version of the above example:

\includegraphics[height=8cm, angle=90]{fig1}

The expressions height=8cm and angle=90 are optional arguments to the \includegraphics
command and, as with all optional arguments in LATEX, they are included within square brack-
ets. Any valid TEX unit of length can be used. Counter-clockwise direction of rotation is
deemed positive and the angle is measured in degrees. Other possible optional arguments for
\includegraphics are totalheight, width, and origin. The difference between height and
totalheight is that the former specifies the elevation of the graphics above the baseline, while
the latter equals to height plus depth (the part below baseline). The argument origin specifies
what point to use for a rotation origin (origin=c rotates about the centre).

Page 97

Chapter 4. Programming and graphing 4.3. Drawing graphs

Postscript programming

Postscript (.ps, .eps) files are usually created by specialized graphing or more universal pro-
grams — like Gnuplot, XFig, or Maple. However, Postscript by itself is a human-readable
language, and one can write a “program” in Postscript describing a picture. Also, you can
generate a Postscript file automatically by your own FORTRAN or C program.

As an example, the following short program in raw Postscript (Fig. 4.1) describes two
Pythagorean triangles, shown on the right. Type the program in a text editor and save the file
as, say, triangles.ps. The unit length in Postscript is point, which is 1/72 of an inch.

%!PS-Adobe-2.0
% First triangle (contour)
newpath
200 125 moveto
300 125 lineto
200 200 lineto
200 125 lineto
stroke
% Second triangle (filled)
0.8 setgray
newpath
200 0 moveto
275 0 lineto
275 100 lineto
200 0 lineto
fill
showpage

Figure 4.1: A simple Postscript program and its effect

You can immediately open the file triangles.ps with Postscript viewer Ghostview:

gv triangles.ps

You can now insert the picture to a LATEX document. A conversion to .eps is required, but if
you want a quick try, just replace the first line %!PS-Adobe-2.0 in the file by two other lines:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 198 0 303 202

Save the file as triangles.eps. You can now type the line \includegraphics{triangles} in
a LATEX document and the picture will be inserted. To put the triangles beside the Postscript
program on Figure 4.1, we used a superimposition trick described in Section 4.4.4.

Page 98

Chapter 4. Programming and graphing 4.3. Drawing graphs

4.3.2 Maple graphics

Maple has versatile plotting capabilities. They are realized by means of two basic commands:
plot, plot3d, and more functions provided by the plots package. We will illustrate the
usefulness of these commands with very basic examples. To get a more elaborate description
of plots and their options, use Maple’s Help and other available sources.

We begin with a graph of the function y = sin x
x on a specified interval (−15, 15). The

formula does not make sense when x = 0, but the limit of y as x → 0 exists. Setting y = 1
when x = 0 makes our function continuous everywhere. Maple knows such tricks as extension
by continuity and it automatically determines the y-range necessary for the plot.

> plot(sin(x)/x,x=-15..15);

x
K15 K10 K5 0 5 10 15

K0.2

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Maple’s graph of smooth function: y =
sinx

x

Let’s try a graph with vertical asymptotes. Consider the function y2 on p. 89, which can be
factorized as (x + 3)(x− 3)2/(2(x− 1)(x− 2)).

> plot(y2,x=-10..10);

The graph, Figure 4.3, is not looking particularly illuminating. The vertical range can be
altered with this graph to enable a clearer picture (Figure 4.4, left):

> plot(y2,x=-10..10,y=-40..40);

Page 99

Chapter 4. Programming and graphing 4.3. Drawing graphs

x
K10 K5 0 5 10

K1,000

1,000

2,000

Figure 4.3: Maple’s plot of y =
(x + 3)(x− 3)2

2(x− 1)(x− 2)
. Default view.

x
K10 K5 0 5 10

y

K40

K30

K20

K10

10

20

30

40

x
K10 K5 0 5 10

y

K40

K30

K20

K10

10

20

30

40

Figure 4.4: Plot with restricted y-range: discontinuity exhibited (left) or hidden (right).

Page 100

Chapter 4. Programming and graphing 4.3. Drawing graphs

A discontinuity detector can be used to remove the unnecessary lines, as on Figure 4.4, right:

> plot(y2,x=-10..10,y=-40..40,discont=true);

Coordinates can be plotted using the following format, yielding Figure 4.5.

> X:=[[-2, 4],[-1,1],[-1/2,1/4],[0,0],[1/2,1/4],[1,1],[2,4]];

X :=
[
[−2, 4], [−1, 1],

[
−1

2
,
1

4

]
, [0, 0],

[
1

2
,
1

4

]
, [1, 1], [2, 4]

]

> plot(X);

3

-2

2

1

-1 210

4

0

Figure 4.5: Maple’s graphs defined by an array of coordinate pairs

Maple can plot parametric curves. In the following example we equalize the x and y scales
using the option scaling=constrained. Without this option the graph, which is an ellipse
(Fig. 4.6), would look like a circle.

> plot([5/2*cos(t), 5/3*sin(t), t=0..2*Pi],scaling=constrained);

Attention! A slight syntactic alteration of the command — moving the bracket ’]’ — com-
pletely changes the picture: instead of a parametric curve we obtain two curves on the same
graph (Fig. 4.7), with t being the independent variable (instead of being a parameter). The
option scaling=constrained is unimportant in this example and omitted.

> plot([5/2*cos(t), 5/3*sin(t)], t=0..2*Pi);

Page 101

Chapter 4. Programming and graphing 4.3. Drawing graphs

1.5

1

0.5

-1.5

0

-0.5

-1

210-1-2

Figure 4.6: An ellipse described parametrically: x =
5
2

cos t, y =
5
3

sin t.

2

0

1

-1

-2

t

3 6420 51

Figure 4.7: Curves y =
5
2

cos t and y =
5
3

sin t in the (t, y) axes.

Page 102

Chapter 4. Programming and graphing 4.3. Drawing graphs

Here is an example of a 3D graph. (Compare Maple’s graph with Gnuplot’s — Fig. 4.12(D).)

> F:=sin(x^2+y^2)/(x^2+y^2);

F :=
sin(x2 + y2)
x2 + y2

> plot3d(F,x=-3..3,y=-3..3);

Figure 4.8

The default is not to show the axes. However, they can be added:

> plot3d(F, x=-3..3, y=-3..3, axes=boxed);

Figure 4.9

-3

-2

-1 y
0

1

2

3

-3

-2

-1

0
x1

2

3-0.2

0.05

0.3

0.55

0.8

Page 103

Chapter 4. Programming and graphing 4.3. Drawing graphs

For more advanced tasks, we can load the plotting library, plots.

>with(plots);
[Interactive, animate, animate3d, animatecurve, arrow, changecoords,
complexplot, complexplot3d, conformal, conformal3d, contourplot,
contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display,
display3d, fieldplot, fieldplot3d, gradplot, gradplot3d, graphplot3d,
implicitplot, implicitplot3d, inequal, interactive, interactiveparams,
listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d,
loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare,
pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
polyhedra_supported, polyhedraplot, replot, rootlocus, semilogplot,
setoptions, setoptions3d, spacecurve, sparsematrixplot, sphereplot,
surfdata, textplot, textplot3d, tubeplot]

Plotting the graph of an implicit equation f(x, y) = 0 now becomes possible. Try

> f:=4*x^2+9*y^2-25;
> implicitplot(f, x=-4..4, y=-2..2, scaling=constrained);

The result is identical to Figure 4.6. It should not be surprising: the parametrized coordinates
x = 5

2 cos t and y = 5
3 sin t satisfy exactly our present equation 4x2 + 9y2 = 25. Note however

that plotting functions implicitly is more difficult for Maple than plotting parametric curves
with a command like that on p. 101. The quality of parametric plots will generally be better.
The library plots also makes available plotting multiple graphs on the same picture. Each
graph (plot) can be created separately; then all of them are submitted at once to the display
command. When creating the individual plots, use colon as a terminator; otherwise Maple will
spit out the long and nasty internal representation of a plot. Example: the following commands
produce the plot identical to Figure 4.7 save for a label on the horizontal axis.

> sinplot:=plot(5/3*sin(x), x=0..2*PI, color=green):
> cosplot:=plot(5/2*cos(x), x=0..2*PI, color=red):
> display([sinplot, cosplot]);

While in this case the two curves can be conveniently plotted together using just the regular
plot command as on p. 101, it is easily conceivable that individual plots can be too many or
too complicated, so that computing them separately and then using the display command can
be the only practical option. The following example, showing an equilateral triangle together
with its inscribed and circumscribed circles (Fig. 4.10) would be too cumbersome to describe
by a single plot command.

> triangle:=plot([[1,0],[-1/2, sqrt(3)/2],[-1/2,-sqrt(3)/2],[1,0]], color=red):
> circumcircle:=plot([cos(t),sin(t),t=0..2*Pi],color=blue):
> incircle:=plot([cos(t)/2,sin(t)/2,t=0..2*Pi],color=green):
> display([triangle,circumcircle,incircle],scaling=constrained, axes=none);

Page 104

Chapter 4. Programming and graphing 4.3. Drawing graphs

Figure 4.10: Equilateral triangle with inscribed and circumscribed circles

Our last example demonstrates a combination of Maple elements just described and those
described in Section 4.2. We construct three similar parametric curves, called cycloids, each
given by the parametric equations

x = C(0.3t− sin t), y = C · 0.6(1− cos t). (4.1)

The parameter C equals 0.5, 1, and 2 for the three curves, respectively. To make the x-span of
the curves approximately equal, we choose the t-range the bigger the smaller C is. Specifically,
we set t ∈ [−π, 9π] for C = 0.5, t ∈ [−π, 5π] for C = 1, and t ∈ [−π, 3π] for C = 2. The pattern
is: tmin = −π and tmax = (1 + 4/C)π.

Instead of creating plots of the three curves individually, we take advantage of the clear
pattern and create a procedure. The first argument is the value C in Eq. (4.1), and the second
argument is the color to strike the curve with.

> cycloidC:=proc(C,col) local t,tmax,fx,fy:
fx:=0.3*t-sin(t): fy:=0.6*(1-cos(t)): tmax:=(1+4/C)*Pi:
return plot([C*fx, C*fy, t=-Pi..tmax], color=col):

end proc:

We then assign the colors:

> cycloid_colors:=[red,blue,black]:

In the final plotting command, we use the array manipulation methods from Section 4.2.4.

> display([seq(cycloidC(2^(n-2), cycloid_colors[n]),n=1..3)]);

Page 105

Chapter 4. Programming and graphing 4.3. Drawing graphs

2

1

1.5

3

0.5

5420 1-2
0

-1

Figure 4.11: Cycloids given by Eq. 4.1 with C = 0.5 (red), C = 1 (blue), and C = 2 (black).

For comparison, here is an equivalent, more explicit Maple code for the same plot.

> a:=0.3: fx:=a*t-sin(t): fy:=a*(1-cos(t)):
> p0:=plot([0.5*fx, fy, t=-Pi..9*Pi], scaling=constrained, color=red):
> p1:=plot([fx, 2*fy, t=-Pi..5*Pi], scaling=constrained, color=blue):
> p2:=plot([2*fx, 4*fy, t=-Pi..3*Pi], scaling=constrained, color=black):
> plots[display]({p0,p1,p2});

How to insert a Maple graph in a LATEX document.

First, you have to save your graph as an Encapsulated Postscript file. The simplest method is
to right-click on the graph you want to import and to save image as EPS file. Alternatively,
especially if you have many pictures in your file, a convenient way to save all of them at once
is to click on menu File/ExportAs and choose file type LaTeX.

If, say, the name of the Maple worksheet is cycloids.mw, then the name of the Maple-
created LATEX file is cycloids.tex, and the first plot will be saved as cycloidsplot1.eps, the
second plot (if exists) — as cycloidsplot2.eps, and so on.

As advised on page 87, ignore the LATEX file that Maple creates, but pick the companion
eps files.

Once you have extracted an eps file or files from a Maple worksheet, import them in your
master LATEX file by means of the \includegraphics command.

As a final remark, we ask you not to include graphics modified via the pop-up menu that
appears when you right-click on a picture. While this menu provides convenient manipulations,
no record remains of the ultimate parameters. Hence the instructor may not be in position to
tell how exactly your graph was generated based on the Maple worksheet you would submit
electronically. Of course, if you fully document any manipulations, then these restriction will
not apply.

Page 106

Chapter 4. Programming and graphing 4.3. Drawing graphs

4.3.3 Gnuplot

Gnuplot used to be thought of as a UNIX command-line utility, and it still is, but now it is
also available for Windows, with a handy clickable menu. It is a freely distributed software.

Gnuplot can display graphs on a computer screen and save them as files of various graphics
types. The kind of output display device is described by the parameter terminal of Gnuplot’s
set command.

The program is controlled by user’s commands typed in the command line; several com-
mands can be put together into a file to form a re-usable script.

Gnuplot can handle two-dimensional and three-dimensional data and graphs. It automat-
ically changes line styles when several curves are plotted. It automatically produces a legend
for each curve and permits the user to include such things as arrows and mathematical text
anywhere on the graph.

Gnuplot is somewhat clumsy to use even with the simplest of data because of much typing
necessary. In exchange, it provides a lot of flexibility in regard to line styles, labeling, and such,
— perhaps, significantly more than Maple. It is also a very straightforward tool to plot graphs
given as pairs of coordinates. On the other hand, Maple’s versatility and symbolic manipulation
power is incomparably higher.

The best way to use Gnuplot is to interactively piece together (step-by-step), vary and
adjust all the essentials for the desired plot, all the while watching the plot displayed in its own
window at every stage. Once the desired plot is generated and fine-tuned, it is easy to redirect
the plot into a file.

To start a Gnuplot session, simply type gnuplot in the command line and the Gnuplot
prompt will appear. A Gnuplot session is ended by typing quit at the prompt.

The two main plotting commands are plot (for 2D data) and splot (for 3D data). Their
behaviour is controlled by a wide range of options. Most of the options are introduced by the
command set.

Gnuplot’s originally intended and still most popular use is to render plots based on externally
prepared data fed to it from a file. Yet modern Gnuplot knows many standard mathematical
functions and it is quite capable of plotting on its own, as sample graphs that follow demonstrate.
Here we are only able to help you get started with Gnuplot. An interested reader can find out
about numerous options and features in Gnuplot’s Help and in online tutorials, for example,
http://www.ibm.com/developerworks/library/l-gnuplot.

Plotting functions with Gnuplot

The figures on the next page demonstrate how Gnuplot can be used directly, without data
importing. The commands used to generate each plot are given, but we are not attempting
to explain the options involved. Look up a reference and play around with them to see, for
instance, what effect the absence of the command unset key will produce or what will a
different numerical value of spacing, samples, isosamples, etc. do.

Page 107

Chapter 4. Programming and graphing 4.3. Drawing graphs

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

sin(x)

cos(x)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(A) (B)

-1
-0.5

 0
 0.5

 1

-1 -0.5 0 0.5 1

-1
-0.5

 0
 0.5

 1
 1.5

(C) (D)

Figure 4.12: Graphs of functions produced by Gnuplot on its own

(A) (B)
set key spacing 2 unset key; set parametric;
plot [0:2*pi] sin(x),cos(x) set trange [1:7]; set samples 10000

plot log(t)*cos(100*t), log(t)*sin(100*t)

(C) (D)
unset key; set ztics -0.5,0.5,1.5 unset tics; unset border; unset key
set xrange [-1:1] set isosamples 50,20; set view 18,45,1,3
set yrange [-1:1] set xrange [-3:3]; set yrange [-3:3];
splot (x**2+y**2)*(x**2+y**2-1.5) splot (sin(x**2+y**2)/(x**2+y**2))

Notes: (B) represents a parametric curve — logarithmic spiral
[

x
y

]
= ln t

[
cos(100t)
sin(100t)

]
.

(D) displays the same function as Figure 4.8 on p. 103.

Page 108

Chapter 4. Programming and graphing 4.3. Drawing graphs

Two-dimensional data plots

We will now use Gnuplot to plot data from a file supplied by the user. For two-dimensional
plots, the contents of the file, by default, should be a collection of ordered pairs x, y separated
by white space, one pair per line.

Let’s say that you wish to plot two curves on the interval x ∈ [−2, 2]:

y = x3 − 3x and y =
1
4
x3.

• Choose the number of points to be used. Let’s say, 100 points. Since the length of our
interval is 4, the value of x will be incremented by 0.04 from one point to the next.

• Write a program to generate the data sets for both functions. For example, here is a
fragment of a C program that does it for the first function.
for (x=-2; x<=2; x=x+0.04){
printf("%f %f\n", x, pow(x,3)-3*x);}

(This code prints the data to the terminal, but you can re-direct the output to a file: type
a.out > plot1.dat — see Section ??).

• A data file named plot1.dat has been created with 100 data pairs. For example, the
first and the last lines in the file will be like these:
-2.000000 -2.000000

· · · · · ·
2.000000 2.000000

Modify the program and create the file plot2.dat for the second function similarly.

• Now the command
gnuplot> plot ’plot1.dat’ with lines, ’plot2.dat’ with lines

generates the plot displayed in Figure 4.13.

On your terminal, the curves will be drawn in like-style but with different colours. When a hard-
copy is generated, gnuplot knows that colour is not generally available and thus differentiates
between different curves on the basis of different line styles.

Displaying a surface in 3D space

Gnuplot accepts 3D data in the format similar to 2D: each line in the file represents the coor-
dinates x, y, z of a single point on the surface. There is an option to remove hidden lines, so
that foreground and background can be differentiated.

Figure 4.14 was produced from the file glass.dat (author: Gershon Elber, 1990), which is
a part of the repository of samples provided with Gnuplot distributions. It can be downloaded
separately from http://www.challenge.nm.org/ctg/graphics/glass.dat.

Page 109

Chapter 4. Programming and graphing 4.3. Drawing graphs

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

’file1.dat’
’file2.dat’

Figure 4.13: Graphs of y = x3 − 3x and y = 1
4x3 produced from data files.

The glass is a surface of revolution, which can be mathematically described by an equation
of the form r = f(z) in the cylindrical coordinates in R3, with r =

√
x2 + y2. The function

f(z) in this case is not given by a formula, but it is rather a result of an artwork.
Rendering three-dimensional surfaces is no simple business. If you venture to try, we recom-

mend that all slices (level curves) have the same number of points per slice or level curve. The
reason for this is that given a set of, say, x-slices, Gnuplot attempts to work out the missing
y-slice data in order to perform the hidden line removal. Gnuplot will not necessarily fail if this
advice is not followed, but its behaviour is then somewhat unpredictable.

The data file glass.dat contains 16×16 = 256 coordinate triples (x, y, z). There are 16 data
blocks, each describing the level curve z = zi of the glass (that is, the circle with radius f(zi)),
for 16 different (not equally spaced) values zi in the range from z1 = −0.911 to z16 = 1.101.
Each block, in its turn, consists of 16 points, equally distributed along the level circle, with
angular separation 360◦/16.
Here are the commands used to obtain figure 4.14, and a brief explanation.
unset key Do not show legend
set hidden Do not show hidden lines
set xtics -0.5 0.5 0.5 Set ticks on x axis starting from −0.5,
set ytics -0.5 0.5 0.5 with step 0.5, ending at 0.5
set xyplane 0 Adjust the position of the base xy plane
set border 4095 Draw a box around the plot
splot ’glass.dat’ using 2:1:3 with lines 2:1:3 means interchange x and y data

Page 110

Chapter 4. Programming and graphing 4.3. Drawing graphs

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

 1.5

Figure 4.14: Plot produced from file glass.dat, with hidden lines removed.

The order in which the columns in the data file are used was changed with the “using 2:1:3”
option in an effort to get a solid line to represent the forefront portion of the glass. (Otherwise
the dashed line appears on the front somehow.) This is a harmless move in this case thanks to
the rotational symmetry of the glass.

Generating Postscript with Gnuplot

Once, in the course of a Gnuplot session, you have a complete graph exactly as you want it,
then simply issue the commands

> set terminal postscript eps
> set output ’figure1.eps’
> replot

The first of these (abbreviations term and post can be used) tells Gnuplot you wish to produce
data in Encapsulated Postscript format, the second redirects the output into a file (in this case
named figure1.eps), and the last command just redraws the plot last displayed into the file.

The file figure1.eps has now been created in your working directory. You can view it with
Ghostview or insert it in your LATEX document as descrined in Section 4.3.1. A scaling option
(height or width in \includegraphics) may be helpful. (If you set term post without the
eps option, then also conversion ps to eps and rotation by 270◦ will be required.)

The size of the picture as it will appear in your paper will often be smaller than what you
see when previewing the generated file in Ghostview. Have mercy on your instructor’s eyes,
use larger font size in labels. This can be done as follows:

> set term post eps "Helvetica" 24

Page 111

Chapter 4. Programming and graphing 4.3. Drawing graphs

4.3.4 Using XFig to make diagrams

The program XFig is a handy tool that allows you to quickly draw diagrams consisting of
simple shapes, to drag and drop objects, and even to put labels and formulas on your figures
in a LATEX format. It is great for creating “hand-drawn” diagrams, but less suitable when
it comes to graphs where the positions of objects must be specified by coordinates. In XFig,
you build a diagram by mouse manipulations and immediately see the result. Thus, as we
see, the creation of XFig diagrams is not relied on a digital algorithm (although the resulting
file is a digital description of the figure). As such, XFig should not be used in the cases where
you must generate definite, unambiguously reproducible graphics. It can be used for auxiliary,
artwork-like illustrations or schemes.
To start XFig, just enter the command

xfig

The XFig window has several icons along the left, several menu options along the top, including
Help, rulers along the top and right, as well as a few setting boxes on the bottom. Playing with
the icons on the left and the bottom is perhaps the best way to discover what you can do. The
“scull and bones” button allows you to delete previously created objects. Once you get going,
a few of the setting boxes on the bottom are worth noting, such as the Point Posn, Depth, and
Fill Style.

Notice that the functionality of each of the 3 mouse buttons varies from option to option,
and is displayed in the upper right corner of the window.

For example, the following diagram contains 4 objects that were each drawn with a different
depth setting.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

Once you’ve got a diagram ready for inclusion in a LATEX document, first use the File menu
option and save the figure in a file with a .fig extension, such as diagram.fig. Then use the
Export menu option to export the figure using the Encapsulated Postscript language. Notice the
default here will be to create a file named diagram.eps, which you can subsequently include
in your document by following the instructions in Section 4.3.1.

You will likely want to label your diagrams on occasion, sometimes even using the math
mode of LATEX to display mathematical symbols. For this, you ought to start XFig with the
command:

xfig -P -specialtext -latexfonts

Page 112

Chapter 4. Programming and graphing 4.3. Drawing graphs

Using the text drawing tool in XFig, you can then label your figures as you please, even including
math mode text (which you can accomplish by using dollar signs). While XFig will not display
your math mode labels very nicely, they will come out just fine in your document, such as in
the following figure:

β

α

b

a

c =
p

a2 + b2 =
a

sin α
=

b

sin β

However, when using math mode, you need to select the export option of Combined PS/LaTeX
rather than Encapsulated Postscript. You also should use the magnification option of the XFig
Export window in order to fine-tune the size of your figure as it appears in your document. This
time, to include the diagram in your master LATEX file, use a different LATEX command:

\input diagram.pstex_t

In this import mechanism, only the intermediary file with extention pstex_t must be directly
referenced from your LATEX document; yet the actual figure is still an eps file (which in this case
has extension pstex). Thus your electronic submission must include both the .pstex_t and
.pstex files besides the main .tex file.

Page 113

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

4.4 The LATEX picture environment and enhancements

4.4.1 Introduction

The most straightforward way to draw diagrams in a LATEXed document is to use the picture
environment:
\begin{picture}(xlen,ylen)(leftcornerx,leftcornery)
...
\end{picture}

Here xlen and ylen are the ranges (from zero) of the x and y coordinates. The optional
parameters, leftcornerx and leftcornery change the bottom left hand corner from the origin
to the new coordinates. They may be omitted if the bottom left hand corner is the origin.
The picture environment essentially allows you to do only one thing — to \put:

\put(xcoor,ycoor){object}

An object can be a LATEX’s graphics element (\line,\circle), or a text, formula, paragraph
(\parbox), table, etc. It can also be the \includegraphics command referring to an .eps file
to be imported.
The dimensions of the picture (in the environment’s header) and the coordinates in \put com-
mands are given just as numbers, without specyfying the unit of length. The default unitlength
is 1 point (= 1/72 in = 0.35 mm). It is rather too small for practical purposes and for conve-
nience it can be reset by a command like
\setlength{\unitlength}{1cm}

printed just before the beginning of the picture environment.
LATEX has very limited and poor graphical faclities of its own. Its \line command cannot

even create arbitrary lines. However, with enhancements provided by additional packages,
LATEX’s picture environment becomes competitive in its ability to generate interesting quality
graphics. From now till the last part of this chapter, Section 4.4.4, we will stay entirely within
a LATEX document. No other graphics formats or imports will be involved.

We will describe in some detail the enhancements offered by the math2130.sty package.
In particular, a necessity to decide which unit length to set for the given picture can be avoided
by use of an enhanced picture environment called scaledpicture. It is used thus:
\begin{scaledpicture}{percent}(xlen,ylen)[(leftcornerx,leftcornery)]
...
\end{scaledpicture}

Here, percent is a number less than or equal to 100, where 100 gives a diagram that almost
fills the entire text width, and any smaller number gives a diagram that spans a percentage of
the corresponding 100% diagram.

In most respects, scaledpicture behaves like the standard LATEX picture environment, but
it has additional features to make it easier to produce diagrams quickly and easily.

Page 114

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

4.4.2 Lines

A major restriction in the LATEX picture environment lies with the available slopes of lines that
can be drawn. These slopes are restricted to rationals of the form p/q, where p, q are coprime
and less than or equal, in size, to 6. The slopes are written as ordered pairs, (p, q) to allow for
vertical lines, given by (0, 1) or (0,−1), depending on the direction.

Another complication in the syntax of a line segment, which is given by:

\line(p,q){len}

is that len refers, not to the length on the line, but to its projection in the x–direction (unless,
of course, it is vertical, when len means the vertical length).

Even worse, each line segment must be put somewhere with a \put command of the form:

\put(a,b){\line(p,q){len}}.

You can see that the simple process of drawing a straight line is quite complicated.

4.4.3 Enhanced Pictures

However, help is at hand with enhanced picture styles. Since you will have started almost every
document for this course with
\documentclass{article}
\usepackage{2130}

it makes sense to learn a few new commands available in the picture environment.

The \join command

The most useful command is:

\join(x1,y1)(x2,y2)

This draws a straight line from (x1,y1) to (x2,y2). Already you can see an advantage over
the standard \line command. The restrictions on slope no longer apply. Even better, by using

\join(x1,y1)(x2,y2)(x3,y3)

we get a straight line from (x1,y1) to (x2,y2) followed by a straight line from (x2,y2) to
(x3,y3). By doing this successively, with the points sufficiently close together, we can draw
curves. So, you must first calculate the appropriate data set for the curve (see Sect. 4.1.3). The
computed data set can be either pasted into the .tex file or, alternatively, it can be kept in its
own file, say, curve.tex and the command
\input{curve}

can be used to import the data into your master LATEX file.

Page 115

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

Dotted lines

\dottedline[dotchar]{dotgap}(x1,y1)(x2,y2)...(xn,yn)

This draws a dotted line joining (x1,y1) to (x2,y2) and so on, to (xn,yn). The dotgap is
given in the units equal to the \unitlength defined and needs not be an integer. The optional
dotchar may be omitted to give the default of a small dot, but any character may be used.

You can use this, with the appropriate dotgap, as a method for putting markers on curves.

Dashed lines

\dashline[stretch{dashlen}[dotgap for dash](x1,y1)(x2,y2)...(xn,yn)

This draws a dashed line joining (x1,y1) to (x2,y2) and so on, to (xn,yn). The dashlen is
the length of the dash. Each dash is in fact a dotted line, and the optional dotgap for dash is
the gap between each dot that is used to construct the dash. Both are in current unitlengths.
The optional stretch is an integer between −100 and +∞. You should experiment with these
to find the appropriate relationship among the parameters to suit your purpose.

Here are some examples created by:

\begin{center}\setlength{\unitlength}{1em}
\begin{picture}(20,7)

\dottedline{.7}(0,6)(20,6)
\dottedline[\bullet]{.7}(0,5)(20,5)\join(0,4)(20,4)
\dashline{.8}[0.2](0,3)(20,3)
\dashline{.8}(0,2)(20,2)
\thicklines\dashline[-30]{.8}(0,1)(20,1)

\end{picture}\end{center}

• •
...

Grids

Grids can be created in many ways using:
\grid(xlen,ylen)(∆xlen,∆ylen)[init-x,init-y]

This creates a grid measuring xlen×ylen with each xlen interval being ∆xlen, and each ylen
interval being ∆ylen. The inputs of init-x and init-y give the coordinates of the bottom
left hand corner of the grid.

Page 116

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

The next diagram is generated within picture environment by the command
\grid(12,6)(4,3)[5,2]

(Picture dimensions are (12,6) and unitlength is set equal to 1em).

5 9 13 17

5 9 13 17

2

5

8

2

5

8

Circles

The standard LATEX picture environment allows you to draw circles using the command:

\put(x,y){\circle{diam}}

The parameter diam is the diameter of the circle (measured in unitlength), centered on (x,y),
and is an integer in the range 0 ≤ diam ≤ 5. However, there is also a restriction on the maximum
diameter of circle that can be drawn in absolute units: it cannot exceed 15 points (about 0.5 cm).
In the enhanced picture enviroment, these restrictions no longer apply, although large circles
will turn out to be rectangles with rounded corners.

There is a variation, \circle*{diam}, which gives a solid disk instead of a hollow circle. If you
try to make a solid circle that is too large, LATEX will not fill it in!

\setlength{\unitlength}{1em}
\begin{center}
\begin{picture}(24,5)
\put(2,3){\circle{0}} \put(3,3){\circle{1}} \put(5,3){\circle{2}}
\put(8,3){\circle{3}} \put(12,3){\circle{4}} \put(17,3){\circle{5}}
\end{picture}
\end{center}

Page 117

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

\setlength{\unitlength}{0.1em}
\begin{center}
\begin{picture}(140,50)
\put(0,30){\circle{0}} \put(10,30){\circle{1}}
\put(20,30){\circle{2}} \put(30,30){\circle{3}}
\put(40,30){\circle{4}} \put(50,30){\circle{5}}
\put(60,30){\circle{6}} \put(70,30){\circle{7}}
\put(80,30){\circle{8}} \put(90,30){\circle{9}}
\put(110,30){\circle{10}} \put(135,30){\circle{12}}
\end{picture}
\end{center}

In the scaledpicture environment, drawing circles is made easy, and consistently correct, with
the command \arc. This command has three parameters, and is used thus:
\put(a,b){\arc(p,q){deg}}

Here, the centre of the arc is at (a,b); the point where the arc begins is (p,q), with this being
taken relative to the centre of the arc; and the arc is drawn deg degrees in the positive
(counter-clockwise) sense from the starting point. For example, \put(0,1){\arc(2,0){360}}
will draw a circle of radius 2, centered at (0,1).

Labels

Labels can be placed on a diagram using the command \put(x,y){label}. A label is usually
a letter or a number typed in math mode, like A, to produce a slanted A on the picture
(for numbers, the math mode ensures that the negative sign will have an appropriate length).
While easy in its syntax, this command requires some experience and judgement as to where
one should “put” the label if, say, the label is referring to the point at the top right corner of
a square. Try it for yourself. Try to label a simple square ABCD and you will need to adjust
the values of x and y several times before the labels finally look nice.

In the scaledpicture environment, this is made easy. There is one general command, and
several short forms. The great advantage is that they refer to the point that is being labelled,
say (a,b).

The general command

\angleput{deg}[scale](a,b){label} — the default scale number is 1.

Page 118

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

Short forms

1. \cput(a,b){label} — deg=0, scale=0 — centred on the point.

In the next eight commands, scale=1.

2. \eput(a,b){label} — deg=0 — east of the point

3. \nput(a,b){label} — deg=90 — north of the point

4. \wput(a,b){label} — deg=180 — west of the point

5. \sput(a,b){label} — deg=-90 — south of the point

6. \neput(a,b){label} — deg=45 — northeast of the point

7. \nwput(a,b){label} — deg=135 — northwest of the point

8. \swput(a,b){label} — deg=-135 — southwest of the point

9. \seput(a,b){label} — deg=-45 — southeast of the point

In the scaledpicture environment, the font size is chosen accordingly to the percent param-
eter. You may override this by the usual font sizing commands. Compare:

\begin{Scaledpicture}{36}(12,6) \begin{Scaledpicture}{36}(12,6)
\grid(12,6)(4,3)[5,2] {\large \grid(12,6)(4,3)[5,2]}
\end{scaledpicture} \end{scaledpicture}

5 9 13 17

5 9 13 17

2

5

8

2

5

8

5 9 13 17

5 9 13 17

2

5

8

2

5

8

A scaledpicture is always centered. In fact, the environment used here was Scaledpicture,
which produces an uncentred scaledpicture. This is useful for putting several diagrams on
one line.

Page 119

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

To further demostrate the use of labeling commands provided by scaledpicture, here is a set
of commands for a cubic graph:

\begin{scaledpicture}{70}(8,6)(-4,-3)
\xaxis \yaxis \xnums{1} \ynums{1}
\ticks{1}[-0.1] \thicklines
\input{cubic_graph}
\put(-2.07936,0){\circle*{0.1}} \put(0.46295,0){\circle*{0.1}}
\put(3.1164,0){\circle*{0.1}} \put(2,-2.33333){\circle*{0.1}}
\put(-1,2.16667){\circle*{0.1}} \put(0,1){\circle*{0.1}}
\put(-4,-3.7){\large The graph of $f(x)=\frac13 x^3-\frac12 x^2-2x+1$}
\end{scaledpicture}

-

6

-4 -3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..............
.............
.............
.............
.............
.............
.............
.............
.............
..............
.............
.............
.............
...............
..............
..............
...............
...............
...............
..............
................
................
...................
....................
..

...................
................
.................
...............
...............
..............
.............
..............
..............
..............
..............
..............
............
..............
.............
..............
.............
.............
..............
............
.............
.............
..............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

Figure 4.15: The graph of f(x) = 1
3x3 − 1

2x2 − 2x + 1

The \input{cubic_graph} command imports the contents of the file cubic_graph.tex
whose first few lines are

\join(-2.50,-2.333)(-2.48,-2.200)(-2.46,-2.068)(-2.44,-1.939)(-2.42,-1.812)
(-2.400,-1.688)(-2.380,-1.566)(-2.360,-1.446)(-2.340,-1.329)(-2.320,-1.214)
(-2.300,-1.101)(-2.280,-0.990)(-2.260,-0.882)(-2.240,-0.775)(-2.220,-0.671)
(-2.200,-0.569)(-2.180,-0.470)(-2.160,-0.372)(-2.140,-0.277)(-2.120,-0.183)
(-2.100,-0.092)(-2.080,-0.003)(-2.060,0.084)(-2.040,0.169)(-2.020,0.252)

This is a typical example of a file that you can generate by your own program as described in
Section 4.1.3.

Page 120

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

Finally, here is the set of commands for the diagram that follows:

\begin{scaledpicture}{50}(13,12)(0,-1)
\join(0,0)(12.5,0)(5,10)(0,0) \join(12.5,0)(2.5,5) \join(4,8)(8,0)
\swput(0,0){B} \seput(12.5,0){E} \sput(8,0){C} \nput(5,10){G}
\angleput{153}[1](2.5,5){D} \angleput{153}[1](4,8){A}
\angleput{55}[1](6.5,3){F} \put(2.5,5){\rtangle{243}{.5}}
\put(10.25,0){\join(.05,-.25)(.05,.25)\join(-.05,-.25)(-.05,.25)}
\put(3.25,6.5){\rotate{63}{\join(.05,-.25)(.05,.25)
\join(-.05,-.25)(-.05,.25)}}
\put(6.5,3){\arc(.5,-.5){15}\arc(.5,-.5){-18} \arc(-.5,.5){15}
\arc(-.5,.5){-18}} \put(0,0){\arc(.6,0){64}\arc(.75,0){64}}
\put(8,0){\arc(-.6,0){-64}\arc(-.75,0){-64}} \put(5,10){\arc(0,-.6){34}
\arc(0,-.6){-27}\arc(0,-.75){34} \arc(0,-.75){-27}}
\end{scaledpicture}

..
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
..

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..............

...

B EC

G

D

A

F

..
............

..........
....

.........

.........

.....
.........
.........
.....

....................
...

....................
...

...................

.............
......

.........
..........
.........

.........

..........
.............

.....

.........
..........
.........

.........

..........
.............
.....

............................

Two commands here, \rotate and \rtangle, are defined in the 2130.sty file using a bit of
Postscript programming and by means of a command special. When the special command
is used, the result may not always be dispalyed correctly. In this case, the .dvi picture may
have some unrotated elements, but when a .dvi file is converted to .pdf, the correct rotation
is put in place.

Some other picture commands in 2130.sty

\closecurve(a,b,c,d,e,f) produces a triangle on the vertices (a, b), (c, d), and (e, f).
\curve(a,b,c,d,e,f) produces two segments joining (a, b) to (c, d) to (e, f).
\rotate{deg}{object} rotates the object through “deg” degrees. This needs Postscript.
\rtangle{deg}{size} is used in diagrams to produce a right angle marker. Needs Postscript.

Page 121

Chapter 4. Programming and graphing 4.4. The LATEX picture environment

4.4.4 Superimposition

The picture environment can be used to manipulate position of graphics and text by hand if
needed. While this should not be considered as a good practice in general (Do not fight LATEX!
It knows better!), sometimes knowing how to fine-tune your document may help.

As an example, consider the layout of Figure 4.1 on page 98. On the left, we have the text
of a program made within the verbatim environment, and on the right there is an eps picture
of the two triangles inserted by means of the incudegraphics command. The question is how
it is possible to make LATEX to put the graphics in such a non-standard place. The key trick is
the picture environment with a tiny height, which however enables precise positioning of any
objects (graphics or text) via the coordinates in the \put command.

\begin{figure}[H]
\begin{verbatim}

Text of the Postscript program
\end{verbatim}

\begin{picture}(400,1)
\put(300,30){\includegraphics{triangles}}
\end{picture}

\caption{A simple Postscript program and its effect}
\end{figure}

The main difficulty in such cases is determining the coordinates where to \put an object. It
is, essentially, a trial and error business; the “convergence rate” of the process and precision with
which you can drop the thing where you want it to be greatly improves as you gain experience.

Using superimposition within the master LATEX document, it is possible to insert labels, on
graphs created by various software tools. The advantage of this approach is that your labels
will always be in the same font style as the rest of your document and their size will not depend
on the scaling you apply to the imported graphics.

The pattern is simple:
\begin{picture}(...)
\put(0,0){\includegraphics{ your .eps file}}
\put(...){$ label$ or text}
\end{picture}

For the dimensions of the picture (in points), you can take the dimensions of the EPS graph,
which can be calculated based on BoundingBox information. (The %%BoundingBox line can be
found in most EPS files near the top of the file.) Suppose, for example, that the BoundingBox
numbers are 50 60 410 302. Then the horizontal size of the graph is 410− 50 = 360 and the
vertical size is 302 − 60 = 242. Thus you can use \begin{picture}(360,242). Setting the
picture dimensions precisely is not necessary and you can always make adjustments if you don’t
like the way the compiled LATEX document looks.

Page 122

