
Appendix A: Quick UNIX reference

UNIX is a common name for a family of operating systems, most popular of which in this epoch
is Linux. This document is by no means a UNIX tutorial. Sophisticated UNIX users may find
some of the material here grossly simplified. Only a small subset of the shell commands available
is given and very few options are mentioned.

A.1 Files

A file is a collection of data with a unique name. Names are case-sensitive (lowercase and
uppercase letter are considered distinct). All permanent storage on UNIX consists of files.
In this course you will encounter several different types of files that are recognized by their
extensions. The extension is the ending of the file name following the (last) dot. Some extensions
are expected or enforced by certain programs, while others are merely conventions.

Some file types, most relevant to this course, are:

• Text files. They are human-readable and can be edited by means of a text editor. There
are many different kinds of text files:

Program source files

These files are source code written by programmers in a high-level language like
FORTRAN or C. The compilers for these languages require the source file names to
end in .f or .c respectively.

Data files

Input data files contain data that will be fed into a program. Output data files
contain output produced by a program that you want to keep in a file.

LATEX files

These files are “source” files for documents such as the one you are reading. LATEX
software requires that the file name end in .tex.

Webpages

are files with extensions htm, html. They stand for Hypertext Markup Language.

c© MMIX Department of Mathematics and Statistics, Memorial University of Newfoundland
September 4, 2009



Appendix A: Quick UNIX reference A.2. Directories

• Executable files

These files are programs that can be run directly; that is you can type their names into
the shell like the UNIX commands. UNIX shell commands, compilers, text editors,
Internet browsers belong to this category. Also this type of file is produced by a compiler
from a source file written in FORTRAN, C, or another language. The FORTRAN and C
compilers name this file a.out by default.

• dvi files

These files are created by LATEX to be printed on various devices, such as the screen or a
laser printer. These files’ names will end in .dvi. This stands for device independent.

• pdf files

The extension pdf stands for Portable Data Format, developed by Adobe, Inc. Files in
this format are produced by many word and data processors, including LATEX. Acrobat
Reader is the most popular viewer for these files.

• ps and eps files

The extension ps denotes Postscript, another page description format developed by
Adobe, Inc. In fact, Postscript is pretty much a programming language. Postscript
graphics files can even be created by hand, but usually their creation is helped by a soft-
ware. Encapsulated postscript (eps) format is almost identical. The only difference is
that an eps file must contain the Bounding Box information (see Sect. ??). This tiny dif-
ference is important when you have to incorporate a Postscript graphics into your LATEX
document.

• mw and mws

These are the extensions assigned to Maple worksheets.

Depending on context, the term file name can refer either to the full name or to the part
preceding the dot after which the extension follows. So, we would often say “the LATEX file
project3”; here the full file name project3.tex is implicit.

Each file must have a unique name which distinguishes it from all other files. If a file
is named sensibly, the name will give a clue as to the contents. One important point is to
distinguish between various input and output data files, as these can become quite numerous.

A.2 Directories

A group of files is stored in a directory. A directory can in turn contain other directories. The
UNIX file system contains all files on the computer, and as such is made up of a hierarchy of
directories. It can be thought of as an upside-down “tree” of directories (Fig. ??).

Page 131



Appendix A: Quick UNIX reference A.2. Directories

/

bin

cp ls

users

math

staff study

lisa bob

cs1510 m2130

lab1 lab2 lab3

lib

Figure A.1: Sample directory tree

Page 132



Appendix A: Quick UNIX reference A.4. Shell

The purpose of directories is to help users organize their files. Each user can create any
number of subdirectories within their home directory, to any depth in the tree. If you look
at the depicted directory structure, you can see that the directory bob contains two first-level
subdirectories named cs1510 and m2130 and the latter contains three second-level subdirectories
named lab1, lab2 and lab3.

A.3 Pathnames

There can be files with the same name in different directories. For example, there are likely
dozens of files by the name lab1.tex on the system, created by different students. Yet there
is a method to identify any file in the file system unambiguously. The way do this is to use
a pathname. This name specifies the path you must travel through the tree to reach the file.
The full name of a file, as understood by the system, is the pathname from the root directory.
A full name begins with an initial slash (/), with further slashes separating each directory name.
The actual name of the file, by which it is known to its owner, is the part of the pathname after
the final slash. For example, the full pathname of the directory bob in the above example is
/users/math/study/bob.

Note that UNIX is different from Microsoft Windows, where the backslash (\) is the sepa-
rator for pathnames and the top-level directory is the drive name (for example, C:\).

Along with absolute pathnames just described, there are relative pathnames. They
describe how you reach the required file or directory from the current directory. Sometimes
you may have to go up the reversed tree (towards the root). The directory one level higher
the current directory is denoted ../ (double dot). Thus, the relative pathname from Bob’s
directory lab1 to his directory cs1510 is ../../cs1510. In the same situation, the pathname
../lab1 points at the directory we are in. The standard way to refer to a directory from itself is
by the relative pathname ./ (the “dot directory”, means — stay here). Obviously, in practice,
if a file is in the current directory, you just call it by its name.

A.4 Shell

While a graphical user interface is available for most modern programs, it doesn’t hurt to be
familiar with an old-fashioned but always reliable command-line mode.

To enter the command-line mode, you need to open a terminal shell window (click on the
icon that looks like a display). Now, what you type is interpreted by a special program called
the shell. It launches and runs other programs for you. The shell tells you it is waiting for
input by displaying a prompt (like lumsden $) at the beginning of a line.

Two combinations of keys deserve a special mention:

• Almost any program started from the command line can be stopped by typing Ctrl C.

Page 133



Appendix A: Quick UNIX reference A.5. Basic UNIX commands

• The combination Esc K returns the most recent command entered in the shell. Pressing
Esc K twice will quickly bring back the second most recent command, etc. Knowing this
is especially convenient for those who run compilers in the command line. In another type
of shell, the single key ↑ scrolls up the commands history.

A command followed by the ampersand character (&) launches a program in a mode de-
tached from shell’s interactive session, so that you can enter other commands in the same
window while the program is running. For example, you can open a text editor and modify
your program in it, while the command line will be available for compilation of the program:

lumsden $ kile myprog.f &

A.5 Basic UNIX commands

A UNIX command consists of one or more words separated by spaces. The first word is the
name of the program you want to run, either a standard system program or one you created
yourself. The rest of the words are arguments to the program, which usually are either the
names of files, or options, which tell the program to modify its usual behaviour. Options
usually begin with a dash (-), for instance -l.

Notation used. This typeface is anything you type in literally. Anything in italics is not
typed in literally. For example, file means that you should not type the word “file”, but that
you should type a file name instead. Anything followed by the ellipses (. . . ) can be repeated.
For example, file . . . means you can type in several file names. In the next section examples,
this typeface will denote what the computer displays, as opposed to what the user types.

Commands

ls

list the names of all files in the current directory.

cp original-name new-name
create a copy of the original file with a different name.

mv original-name new-name
rename the file with a different name, or move the file to another place.

rm file-name . . .
remove the file(s).

cat file-name . . .
display the contents of the file(s).

p file-name . . . or more file-name . . .

Page 134



Appendix A: Quick UNIX reference A.6. Working with directories and files

display the contents of the file(s), one screen at a time.

cd directory-name . . .
changes to the directory named.

mkdir directory-name
create a new directory.

rmdir directory-name
remove a directory.

pwd

display the current directory.

man subject
display the UNIX manual for the subject, can be used to find out details about a

command’s syntax.

lpq and lprm request-ID
lpq can be used to obtain a listing of the jobs in the printer queue waiting to be

executed. If by misfortune you have asked to print a document and suddenly wish to cancel
the print job, use lpq to obtain the request-ID number associated with your printing job and
remove it from the printer queue with the command lprm request-ID.

A.6 Working with directories and files

You change your current directory with the cd command. cd takes one argument, the pathname
of the directory you want to change to. For example, the command

lumsden $ cd /users/math/study

makes /users/math/study the current directory. In this case, an absolute pathname was used,
which isn’t a common practice for ordinary users.

Much more practically useful are relative pathnames. You must, of course, know what your
current directory is. If not sure, use the pwd command. For instance, if the current directory
is /users/math/study/bob/m2130/lab1, then typing pwd you get system’s response:

Current directory is /users/math/study/bob/m2130/lab1

Now, typing cd .. will make /users/math/study/bob/m2130 the current directory. Note that
if the user Bob types cd /users/math/study/lisa, the system will reject this command as Bob
is not authorized to access Lisa’s home directory.

The special variant

Page 135



Appendix A: Quick UNIX reference A.6. Working with directories and files

cd Ã~

makes the user’s home directory the current directory. Thus, if Lisa types cd ~, the current
directory becomes /users/math/study/lisa, no matter what it was before.

The command ls will list the names of all the files in the current directory. If you give it a
directory name, it will list the names of all the files in that directory. If you give it a file name,
it will list that name, which can be useful if you just want to check if such a file exists.

For our sample directory tree, if the current directory was /users/math/study and you ran
ls, it would display

lumsden $ ls

bob lisa

The command ls Ã -l Ã name will give you a detailed information about a file or files.
The command ls Ã -a displays, unlike the bare ls, those files and directories whose names

begin with a dot, like the name .www, which often denotes the directory in user’s account
accessible from the Internet.

Wildcards can be used to specify a pattern that we want a file name or a directory name
to match. The most useful wildcard character is the asterisk *, which matches any, even empty,
combination of characters. The command

ls Ã ∗tex

will display all files with names ending in tex. The command

ls Ã ∗tex∗

will, in addition, display all files with names containing tex at the beginning or in the middle,
like text1.doc, latexnotes, etc.

The command

cd Ã ../∗2

issued from Bob’s directory m2130/lab1 will change directory to Bob’s math2130/lab2, because
only one directory name matches the pattern ../∗2.

The cp command creates a new copy of a file. For example, if the current directory contains
one file, lab1.tex, and you ran cp lab1.tex newlab.tex, then ls would display

lumsden $ cp Ã lab1.tex Ã newlab.tex

lumsden $ ls

lab1.tex newlab.tex

Page 136



Appendix A: Quick UNIX reference A.7. Redirection of output

and the contents of newlab.tex would be identical to lab1.tex. If a file named newlab.tex
had already existed, that file would have been overwritten.

The command cp with wildcards in its arguments is very convenient when you copy your
files from the working directory to the submission directory (see Sect. 5.1). The command
cp Ã * Ã m2130-a1/ will copy all files from the current directory to its subdirectory named
m2130-a1. This may not be exactly the desired outcome: for instance, .log, .aux, .dvi, and
a.out files need not be included. So a better command is

ls Ã *tex Ã *eps Ã *.f

which will copy all (possibly, single) LATEX source file(s), any encapsulated Postscript figures,
and any Fortran programs.

The mv command is similar to the copy command. However the original name of the file
will be lost after the command is finished. You can also use mv to move a file from one directory
to another. The mv command has similar behaviour to cp if its last argument is a directory.
One difference between mv and cp is that cp will not copy a directory, whereas mv can rename
it or move it into another directory.

The command to remove a file is rm. The arguments to rm are the files you want to remove.
Be careful with this command. Once you remove a file, it is difficult to get it back. All the files
on the system are saved every night, so if you do accidentally remove a very important file, the
system administrator may be able to help you. Be especially careful with rmÃ∗ command!

The command to create a directory is mkdir. It takes one argument, the pathname of the
directory you wish to create. For instance, if Bob ran mkdir lab4 in his m2130 directory, he
would see

lumsden $ mkdir lab4

lumsden $ ls

lab1 lab2 lab3 lab4

The command rmdir takes one argument, the pathname of a directory you wish to remove.
If the directory is not empty, rmdir will not function.

The command p is actually a shorter name for the command less. This is a program you
can use to quickly look at text files. p will display a screenful of the file and then stop with a
“:” prompt at the bottom of the screen. You can hit the space bar to see the next page, or the
u key to go upwards in half-screenfuls. When you reach the end of the file, p will prompt with
the name of the file followed by (END). Type the q key to quit from p.

Page 137



Appendix A: Quick UNIX reference A.8. Access permission

A.7 Redirection of output

Most students have little trouble making their programs to print on the screen, but they expe-
rience more difficulties in creating programs that would flush their output to a file. Not that
creating such a program in any language is very difficult, but it certainly requires more effort
and time. Redirection is a trick that can help to work around this problem.

Every program running under UNIX has a “file” already opened: standard output. Nor-
mally, it is your shell terminal’s window. You can redirect it to a text file in your directory.
For instance, if you want your program a.out to print the output to a file data-out instead of
the screen, you can run it like this:

lumsden $ a.out > data-out

Note that this could be a problem: if you have messages printed out prompting for certain
kinds of input, those messages will also be redirected into the file instead of the screen. You
should in this case write your programs so that they not be prompting for input. Or at least
know how many numbers and in what sequence the program wants you to enter; you can then
feed the data into your program blindfold.

Note also that if you run the same command again, the old contents of the file data-out
will be lost.

A.8 Access privileges

We mentioned previously that the system will deny Bob to access Lisa’s directory and vise
versa. Technically, the access is governed by certain attributes assigned to each directory and
file on the system. Each file has its owner, who belongs to a group. The owner can open or
close access to his/her files independently for self, group, and others (or for all at once), and
for three purposes: to read, to write, and to execute. The command is chmode. Consider a few
examples.

The following prohibits writing to file project1.tex to all, even to its owner. (A possible
purpose is to protect the important work after it is finished from accidental deletion.)

lumsden $ chmode a -w project1.tex

To prohibit group members and others (i.e. everbody but the file owner) from any kind of access
to the file project1.tex:

lumsden $ chmode go -wrx project1.tex

To grant everybody a permission to read all existing .pdf files in current directory:
lumsden $ chmode a +r *.pdf

Programs that you routinely work with (editors, compilers, etc.) properly set the access
privileges to the files that they create or modify. If, by any chance, a program says “Access
denied”, you may need to explore the status of the file concerned. A possible reason is that the
file is currently being used by another program, which temporarily closed an access to it.

Page 138


