M 3001

ASSIGNMENT 9: SOLUTION

Due in class: Wednesday, March 23, 2011

Name

M.U.N. Number

1. Find the interval of convergence for each of the following power series.
(i) $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+1}(x+2)^{k}$;
(ii) $1-\frac{1}{2} x+\frac{1 \cdot 3}{2 \cdot 4} x^{2}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\cdots$;
(iii) $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2 k+1} x^{2 k+1}$;
(iv) $x+1^{2} x^{2}+\sqrt{1} x^{3}+2^{2} x^{4}+\sqrt{2} x^{5}+3^{2} x^{6}+\sqrt{3} x^{7}+\cdots$.
(v) $\sum_{k=1}^{\infty}(\ln k)^{k} x^{k}$.

Solution. (i) First,

$$
R=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=\lim _{k \rightarrow \infty} \frac{k+2}{k+1}=1
$$

Next, the power series is centered at $x=-2$. When $x=-1$, the series becomes $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+1}$ which is the convergent alternating harmonic series. When $x=-3$, the series becomes $-\sum_{k=0}^{\infty}(k+1)^{-1}$ which is divergent. Hence $I=(-3,-1]$.
(ii) First,

$$
R=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=\lim _{k \rightarrow \infty} \frac{2 k+2}{2 k+1}=1 .
$$

Next, when $x=-1$ we get that the series is divergent by the Raabe's Test since

$$
k\left(\frac{\left|a_{k}\right|}{\left|a_{k+1}\right|}-1\right)=\frac{k}{2 k+1} \rightarrow 1 / 2
$$

When $x=1$, we get an alternating series whose general term decreases in absolute value (since $\left|\frac{a_{k+1}}{a_{k}}\right|<1$), and approaches zero (the reasoning is given below). Hence $I=(-1,1]$. To prove

$$
\lim _{k \rightarrow \infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{2 \cdot 4 \cdot 6 \cdots 2 k}=0
$$

we verify

$$
\sum_{k=1}^{\infty} b_{k}=\left(\frac{1}{2}\right)^{3}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{3}+\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{3}+\cdots+\left(\frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{2 \cdot 4 \cdot 6 \cdots 2 k}\right)^{3}+\cdots<\infty .
$$

By the Raabe's Test, we find

$$
k\left(\frac{b_{k}}{b_{k+1}}-1\right)=k\left(\left(\frac{2 k+2}{2 k+1}\right)^{3}-1\right)=\frac{2 k}{2 k+1} \cdot \frac{(1+t)^{3}-1}{2 t},
$$

where $t=(2 k+1)^{-1}$. The limit of this expression, as $k \rightarrow \infty$, is (by l'Hospital's Rule):

$$
\lim _{t \rightarrow 0} \frac{(1+t)^{3}-1}{2 t}=\lim _{t \rightarrow 0} \frac{3(1+t)^{2}}{2}=\frac{3}{2}>1 .
$$

Therefore the last series is convergent. So the necessary condition of the convergence for a series implies $\lim _{k \rightarrow \infty} b_{k}=0$, as desired.
(iii) First apply the Ratio Test:

$$
\lim _{k \rightarrow \infty} \frac{\frac{x^{2 k+3}}{2 k+3}}{\frac{x^{2 k+1}}{2 k+1}}=\lim _{k \rightarrow \infty} \frac{2 k+1}{2 k+3} \cdot x^{2}=x^{2}
$$

So this series converges for $x^{2}<1$. When $x=-1$ we get $\sum(-1)^{k} /(2 k+1)$, which converges by the Alternating Series Theorem. When $x=1$, we get $-\sum(-1)^{k} /(2 k+1)$, whence $I=[-1,1]$.
(iv) Consider the odd powers and even powers separately: $\sum \sqrt{k} x^{2 k+1}$ and $\sum k^{2} x^{2 k}$. Both of these series have $R=1$, and at $x= \pm 1$, the general terms do not approach zero. Hence $I=(-1,1)$.
(v) Let R be an arbitrary positive number. Since $\lim _{k \rightarrow \infty} \ln k=\infty$, we have $\ln k>R$ for k sufficiently large. Therefore $\sum_{k=1}^{\infty}(\ln k)^{k}|x|^{k}$ diverges whenever $\sum R^{k}|x|^{k}$ diverges, and the latter series has $\left(-R^{-1}, R^{-1}\right)$ as its interval of convergence. Thus $\sum_{k=1}^{\infty}(\ln k)^{k}|x|^{k}$ diverges if $|x| \geq R^{-1}$. Since R can be any positive number, it follows that the series converges only when $x=0$. Hence $I=\{0\}$.
Another method: since $\ln k<\ln (k+1)$ and $\ln (k+1) \rightarrow \infty$, we conclude that

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=\lim _{k \rightarrow \infty}\left(\frac{\ln k}{\ln (k+1)}\right)^{k} \cdot \frac{1}{\ln (k+1)}=0
$$

This gives that the convergence radius is 0 . Of course, the series converges at 0 only.
2. Evaluate the following sums:
(i) $\sum_{k=0}^{\infty}(k+1) x^{k},|x|<1$;
(ii) $\sum_{k=0}^{\infty} k^{2} 2^{-k}$
(iii) $\sum_{k=0}^{\infty}\left(k^{2}+3 k+1\right) 2^{-k}$.

Solution. (i) Let $f(x)=\sum_{k=0}^{\infty} x^{k}=\frac{x}{1-x}$ for $x \in(-1,1)$. This yields

$$
f^{\prime}(x)=\sum_{k=0}^{\infty}(k+1) x^{k}=\frac{d}{d x}\left(\frac{x}{1-x}\right)=\frac{1}{(1-x)^{2}}, \quad x \in(-1,1) .
$$

(ii) Let $f(x)=\sum_{k=0}^{\infty} x^{k}=\frac{x}{1-x}$ for $x \in(-1,1)$. Then

$$
f^{\prime}(x)=\sum_{k=0}^{\infty}(k+1) x^{k}=\frac{d}{d x}\left(\frac{x}{1-x}\right)=\frac{1}{(1-x)^{2}}, \quad x \in(-1,1) .
$$

Multiplying through by x yields

$$
\sum_{k=1}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}, \quad x \in(-1,1) .
$$

Now differentiate both sides to get

$$
\sum_{k=1}^{\infty} k^{2} x^{k-1}=\frac{1+x}{(1-x)^{3}}, \quad x \in(-1,1)
$$

and then multiply by x; hence

$$
\sum_{k=1}^{\infty} k^{2} x^{k}=\frac{x(1+x)}{(1-x)^{3}}, \quad x \in(-1,1)
$$

Let $x=1 / 2$ to get $\sum k^{2} 2^{-k}=6$.
(iii)

$$
\sum_{k=0}^{\infty}\left(k^{2}+3 k+1\right) 2^{-k}=\sum_{k=0}^{\infty} k^{2} 2^{-k}+3 \sum_{k=0}^{\infty} k 2^{-k}+\sum_{k=0}^{\infty} 2^{-k}=6+3 \cdot 2+2=14 .
$$

