M 3001
ASSIGNMENT 9: SOLUTION

Due in class: Wednesday, March 23, 2011

Name IM.U.N. Number

1. Find the interval of convergence for each of the following power series.
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Solution. (i) First,
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Next, the power series is centered at © = —2. When = = —1, the series becomes 72, %
which is the convergent alternating harmonic series. When x = —3, the series becomes
— >, (k+1)7! which is divergent. Hence I = (-3, —1].
(ii) First,
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Next, when x = —1 we get that the series is divergent by the Raabe’s Test since
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When x = 1, we get an alternating series whose general term decreases in absolute value

(since “’““ < 1), and approaches zero (the reasoning is given below). Hence I = (—1, 1].
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By the Raabe’s Test, we find
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where ¢t = (2k + 1)7!. The limit of this expression, as k — oo, is (by 'Hospital’s Rule):
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Therefore the last series is convergent. So the necessary condition of the convergence for a
series implies limy_ .o by = 0, as desired.

(iii) First apply the Ratio Test:
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So this series converges for 22 < 1. When z = —1 we get >(—1)*/(2k + 1), which converges
by the Alternating Series Theorem. When z = 1, we get — > (—1)¥/(2k + 1), whence
I=[-1,1].

(iv) Consider the odd powers and even powers separately: Y VEkz?**! and Y- k2z%*. Both
of these series have R = 1, and at x = +1, the general terms do not approach zero. Hence
I=(-1,1).

(v) Let R be an arbitrary positive number. Since limy .o, Ink = 0o, we have Ink > R for
k sufficiently large. Therefore 332 (In k)*|z|* diverges whenever 3° R¥|x|F diverges, and the
latter series has (—R™!, R™!) as its interval of convergence. Thus Y32, (In k)*|z|* diverges
if |z] > R™!. Since R can be any positive number, it follows that the series converges only
when z = 0. Hence I = {0}.

Another method: since Ink < In(k + 1) and In(k + 1) — oo, we conclude that
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This gives that the convergence radius is 0. Of course, the series converges at 0 only.

. Evaluate the following sums:

(1) S (k + 1)a*, Jal < 1;

(if) 2R2o k227"

(iil) 2o (k* + 3k +1)27",

Solution. (i) Let f(xz) = 352, 2" = & for € (—1,1). This yields
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(ii) Let f(z) = 3522k = % for x € (—1,1). Then
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Multiplying through by x yields
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Now differentiate both sides to get
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and then multiply by x; hence

> z(1+ x)

];k%k BT re(—1,1),
Let . = 1/2 to get ¥ k*27% = 6.
(iid)

S +3k+1)27F=>"k2F 43 k2 F+ > 27F=6+3-24+2=14.
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