
M 3001

ASSIGNMENT 9: SOLUTION

Due in class: Wednesday, March 23, 2011

Name M.U.N. Number

1. Find the interval of convergence for each of the following power series.

(i)
∑∞

k=0
(−1)k+1

k+1
(x + 2)k;

(ii) 1− 1
2
x + 1·3

2·4x
2 − 1·3·5

2·4·6x
3 + · · ·;

(iii)
∑∞

k=0
(−1)k+1

2k+1
x2k+1;

(iv) x + 12x2 +
√

1x3 + 22x4 +
√

2x5 + 32x6 +
√

3x7 + · · ·.
(v)

∑∞
k=1(ln k)kxk.

Solution. (i) First,

R = lim
k→∞

∣∣∣ ak

ak+1

∣∣∣ = lim
k→∞

k + 2

k + 1
= 1.

Next, the power series is centered at x = −2. When x = −1, the series becomes
∑∞

k=0
(−1)k+1

k+1

which is the convergent alternating harmonic series. When x = −3, the series becomes
−∑∞

k=0 (k + 1)−1 which is divergent. Hence I = (−3,−1].

(ii) First,

R = lim
k→∞

∣∣∣ ak

ak+1

∣∣∣ = lim
k→∞

2k + 2

2k + 1
= 1.

Next, when x = −1 we get that the series is divergent by the Raabe’s Test since

k
( |ak|
|ak+1|

− 1
)

=
k

2k + 1
→ 1/2.

When x = 1, we get an alternating series whose general term decreases in absolute value
(since

∣∣∣ak+1

ak

∣∣∣ < 1), and approaches zero (the reasoning is given below). Hence I = (−1, 1].

To prove

lim
k→∞

1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · 2k
= 0,

we verify

∞∑
k=1

bk =
(1

2

)3
+
(1 · 3
2 · 4

)3
+
(1 · 3 · 5
2 · 4 · 6

)3
+ · · ·+

(1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · 2k
)3

+ · · · < ∞.

By the Raabe’s Test, we find

k
( bk

bk+1

− 1
)

= k

((2k + 2

2k + 1

)3
− 1

)
=

2k

2k + 1
· (1 + t)3 − 1

2t
,

where t = (2k + 1)−1. The limit of this expression, as k →∞, is (by l’Hospital’s Rule):



lim
t→0

(1 + t)3 − 1

2t
= lim

t→0

3(1 + t)2

2
=

3

2
> 1.

Therefore the last series is convergent. So the necessary condition of the convergence for a
series implies limk→∞ bk = 0, as desired.

(iii) First apply the Ratio Test:

lim
k→∞

x2k+3

2k+3

x2k+1

2k+1

= lim
k→∞

2k + 1

2k + 3
· x2 = x2.

So this series converges for x2 < 1. When x = −1 we get
∑

(−1)k/(2k + 1), which converges
by the Alternating Series Theorem. When x = 1, we get −∑(−1)k/(2k + 1), whence
I = [−1, 1].

(iv) Consider the odd powers and even powers separately:
∑√

kx2k+1 and
∑

k2x2k. Both
of these series have R = 1, and at x = ±1, the general terms do not approach zero. Hence
I = (−1, 1).

(v) Let R be an arbitrary positive number. Since limk→∞ ln k = ∞, we have ln k > R for
k sufficiently large. Therefore

∑∞
k=1(ln k)k|x|k diverges whenever

∑
Rk|x|k diverges, and the

latter series has (−R−1, R−1) as its interval of convergence. Thus
∑∞

k=1(ln k)k|x|k diverges
if |x| ≥ R−1. Since R can be any positive number, it follows that the series converges only
when x = 0. Hence I = {0}.
Another method: since ln k < ln(k + 1) and ln(k + 1) →∞, we conclude that

lim
k→∞

∣∣∣ ak

ak+1

∣∣∣ = lim
k→∞

( ln k

ln(k + 1)

)k
· 1

ln(k + 1)
= 0.

This gives that the convergence radius is 0. Of course, the series converges at 0 only.

2. Evaluate the following sums:

(i)
∑∞

k=0(k + 1)xk, |x| < 1;

(ii)
∑∞

k=0 k22−k

(iii)
∑∞

k=0(k
2 + 3k + 1)2−k.

Solution. (i) Let f(x) =
∑∞

k=0 xk = x
1−x

for x ∈ (−1, 1). This yields

f ′(x) =
∞∑

k=0

(k + 1)xk =
d

dx

( x

1− x

)
=

1

(1− x)2
, x ∈ (−1, 1).

(ii) Let f(x) =
∑∞

k=0 xk = x
1−x

for x ∈ (−1, 1). Then

f ′(x) =
∞∑

k=0

(k + 1)xk =
d

dx

( x

1− x

)
=

1

(1− x)2
, x ∈ (−1, 1).

Multiplying through by x yields

∞∑
k=1

kxk =
x

(1− x)2
, x ∈ (−1, 1).

Now differentiate both sides to get



∞∑
k=1

k2xk−1 =
1 + x

(1− x)3
, x ∈ (−1, 1),

and then multiply by x; hence

∞∑
k=1

k2xk =
x(1 + x)

(1− x)3
, x ∈ (−1, 1),

Let x = 1/2 to get
∑

k22−k = 6.

(iii)
∞∑

k=0

(k2 + 3k + 1)2−k =
∞∑

k=0

k22−k + 3
∞∑

k=0

k2−k +
∞∑

k=0

2−k = 6 + 3 · 2 + 2 = 14.


