M 3001

ASSIGNMENT 8: SOLUTION

Due in class: Wednesday, March 16, 2011

M.U.N. Number

1. Prove: if $\sum_{n=1}^{\infty} f_n$ is convergent on D, then $\lim_{n\to\infty} f_n(x) = 0$ for each $x \in D$. Solution. This follows from

$$f_n(x) = \sum_{k=1}^n f_k(x) - \sum_{k=1}^{n-1} f_k(x), \quad \forall x \in D.$$

- Prove that ∑_{k=1}[∞] f_k is uniformly convergent on the given domain D for which:

 f_k(x) = sin kx/k², D = (-∞,∞);
 f_k(x) = (tan x/2)^k, D = [0, π/4];
 f_k(x) = kx^k, D = [-2⁻¹, 2⁻¹];
 f_k(x) = kx^k, D = [1,∞).

 Solution. (i) Since |sin kx| ≤ 1 for all x ∈ (-∞,∞), take M_k = k⁻² and apply the M-Test.
 Since |tan x| ≤ 1 for all x ∈ [0, π/4], take M_k = 2^{-k} and apply the M-Test.

 Since |kx^k| ≤ k2^{-k} for all x ∈ [-2⁻¹, 2⁻¹], take M_k = k2^{-k} and apply the Ratio Test to show that Σ_{k=1} k2^{-k} is convergent, and then use the M-Test to get the result.
 If x ≥ 1, then k+1/ke^{kx} ≤ 2e^{-k}. Take M_k = 2e^{-k}; Σ_{k=1}[∞] e^{-k} is a convergent geometric series, and apply the M-Test.
- 3. By considering $f(x) = x^{-1}$ on (0, 1), prove that the Weierstrass Approximation Theorem would not hold if [a, b] were replaced by (a, b).

Solution. If we take $\epsilon = 1$, we wish to show that no polynomial P can satisfy

$$|P(x) - x^{-1}| < 1, \quad \forall x \in (0, 1).$$
(1)

Since the polynomial P is continuous, it is bounded on [0, 1]. Consequently, it is also bounded on (0, 1), say $\max_{x \in [0,1]} |P(x)| \leq M$. But this inequality and (1) together yield $x^{-1} < 1 + M$ for every $x \in (0, 1)$, which contradicts the unboundedness of x^{-1} on (0, 1).

Name