ASSIGNMENT 8: SOLUTION

Due in class: Wednesday, March 16, 2011

Name

M.U.N. Number

1. Prove: if $\sum_{n=1}^{\infty} f_{n}$ is convergent on D, then $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each $x \in D$.

Solution. This follows from

$$
f_{n}(x)=\sum_{k=1}^{n} f_{k}(x)-\sum_{k=1}^{n-1} f_{k}(x), \quad \forall x \in D .
$$

2. Prove that $\sum_{k=1}^{\infty} f_{k}$ is uniformly convergent on the given domain D for which:
(i) $f_{k}(x)=\frac{\sin k x}{k^{2}}, D=(-\infty, \infty)$;
(ii) $f_{k}(x)=\left(\frac{\tan x}{2}\right)^{k}, D=\left[0, \frac{\pi}{4}\right]$;
(iii) $f_{k}(x)=k x^{k}, D=\left[-2^{-1}, 2^{-1}\right]$;
(iv) $f_{k}(x)=\frac{k+1}{k e^{k x}}, D=[1, \infty)$.

Solution. (i) Since $|\sin k x| \leq 1$ for all $x \in(-\infty, \infty)$, take $M_{k}=k^{-2}$ and apply the M-Test.
(ii) Since $|\tan x| \leq 1$ for all $x \in\left[0, \frac{\pi}{4}\right]$, take $M_{k}=2^{-k}$ and apply the M-Test.
(iii) Since $\left|k x^{k}\right| \leq k 2^{-k}$ for all $x \in\left[-2^{-1}, 2^{-1}\right]$, take $M_{k}=k 2^{-k}$ and apply the Ratio Test to show that $\sum_{k=1} k 2^{-k}$ is convergent, and then use the M-Test to get the result.
(iv) If $x \geq 1$, then $\frac{k+1}{k e^{k x}} \leq 2 e^{-k}$. Take $M_{k}=2 e^{-k} ; \sum_{k=1}^{\infty} e^{-k}$ is a convergent geometric series, and apply the M-Test.
3. By considering $f(x)=x^{-1}$ on $(0,1)$, prove that the Weierstrass Approximation Theorem would not hold if $[a, b]$ were replaced by (a, b).
Solution. If we take $\epsilon=1$, we wish to show that no polynomial P can satisfy

$$
\begin{equation*}
\left|P(x)-x^{-1}\right|<1, \quad \forall x \in(0,1) . \tag{1}
\end{equation*}
$$

Since the polynomial P is continuous, it is bounded on $[0,1]$. Consequently, it is also bounded on (0,1), say $\max _{x \in[0,1]}|P(x)| \leq M$. But this inequality and (1) together yield $x^{-1}<1+M$ for every $x \in(0,1)$, which contradicts the unboundedness of x^{-1} on $(0,1)$.

