M 3001

ASSIGNMENT 10: SOLUTION

Due in class: Friday, April 1, 2011

Name

M.U.N. Number

- 1. Prove that f(x) = |x| does not have a MacLaurin series. Solution. This function fails to have derivatives of any order. So it cannot have a MacLaurin series.
- 2. Prove that the inverse tangent function is analytic on (-1, 1) and for each $x \in [-1, 1]$

$$\arctan x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}.$$

(Hint: Expand $(1 + t^2)^{-1}$ as a geometric series and integrate.) Solution. Write

$$1 - t^{2} + t^{4} - \dots + (-1)^{n} t^{2n} = \frac{1 - (-1)^{n+1} t^{2n+2}}{1 + t^{2}},$$

or

$$1 - t^{2} + t^{4} - \dots + (-1)^{n} t^{2n} - (1 + t^{2})^{-1} = \frac{(-1)^{n+1} t^{2n+2}}{1 + t^{2}}$$

For an arbitrary $x \in [-1, 1]$, integrate on [0, x] to get

$$\left|x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} - \arctan x\right| = \left|(-1)^{n+2} \int_0^x \frac{t^{2n+2}}{1+t^2} dt\right| < \int_0^1 t^{2n+2} dt = \frac{1}{2n+3} + \frac{1}{2n+3} +$$

Letting $n \to \infty$, we just reach the desired formula.

3. Find the Maclaurin series for $f(x) = x^{-1} \sin x$ and show that f is analytic on $(-\infty, \infty)$. Solution. Note that

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}, \quad \forall x \in (-\infty, \infty).$$

 So

$$x^{-1}\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k}, \quad \forall x \in (-\infty, \infty)$$

4. Find the Maclaurin series for $f(x) = \int_0^x \sin t^2 dt$. Solution. Note that

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}, \quad \forall x \in (-\infty, \infty).$$

So, substituting t^2 for x in this formula, we have

$$\sin t^2 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (t^2)^{2k+1}, \quad \forall t \in (-\infty, \infty).$$

Now integrating term-by-term, we get

$$\int_0^x \sin t^2 dt = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \int_0^x (t^2)^{2k+1} dt = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \cdot \frac{x^{4k+3}}{4k+3}, \quad \forall x \in (-\infty, \infty).$$

5. Suppose that α is continuous at a point $c \in [a, b]$. If

$$f(x) = \begin{cases} 0 & \text{if } x \neq c \\ 1 & \text{if } x = c, \end{cases}$$

prove that f is in $\mathcal{R}(\alpha)$ on [a, b] and that $\int_a^b f \, d\alpha = 0$.

Solution. Because f(x) = 0 for any $x \neq c$, $L(P, f, \alpha) = 0$ for any $P \in \mathcal{P}[a, b]$. Consequently, if $f \in \mathcal{R}(\alpha)$ on [a, b], then $\int_a^b f \, d\alpha = \sup\{L(P, f, \alpha) : P \in \mathcal{P}[a, b]\} = 0$. Let $P = \{x_j\}_{j=0}^n$ be in $\mathcal{P}[a, b]$. If c = a, then $U(P, f, \alpha) = M_1 \Delta \alpha_1 = 1\Delta \alpha_1 = \alpha(x_1) - \alpha(c)$; if c = b, then $U(P, f, \alpha) = \Delta \alpha_n = \alpha(c) - \alpha(x_{n-1})$; if a < c < b, then we first refine P whenever necessary so that $c = x_j$ for some $j \in \{1, 2, ..., n-1\}$ and then $U(P, f, \alpha) = \Delta a_j + \Delta \alpha_{j+1} = (\alpha(c) - \alpha(x_{j-1})) + (\alpha(x_{j+1}) - \alpha(c))$.

Given $\epsilon > 0$. Since α is continuous at c, there is a $\delta > 0$ such that if $x \in [a, b]$ with $|x - c| < \delta$, then $|\alpha(x) - \alpha(c)| < \epsilon/2$. Choose $P - \{x_j\}_{j=0}^n \in \mathcal{P}[a, b]$ with $c = x_j$ for some $j \in \{0, 1, ..., n\}$ and with $||P|| < \delta$. Then $U(P, f, \alpha) - L(P, f, \alpha) = U(P, f, \alpha) < \epsilon$ in all three cases, and so $f \in \mathcal{R}(\alpha)$ on [a, b].

6. Prove that if the sequence of functions $(f_n)_{n=1}^{\infty}$ converges uniformly to F on [a, b] and if each f_n is in $\mathcal{R}(\alpha)$ on [a, b], then F is in $\mathcal{R}(\alpha)$ on [a, b] and $\int_a^b F \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha$.

Solution. Without loss of generality, we may assume that α is not a constant function. Given $\epsilon > 0$. Choose $n \in \mathbb{N}$ such that $\sup_{x \in [a,b]} |f_n(x) - F(x)| < \epsilon(3(\alpha(b) - \alpha(a)))^{-1}$. For such an f_n choose $P = \{x_j\}_{j=0}^k \in \mathcal{P}[a,b]$ with $U(P, f_n, \alpha) - L(P, f_n, \alpha) < \epsilon/3$. Letting $M_j = \sup_{x \in [x_j, x_{j+1}]} F(x)$ and $M_{j,n} = \sup_{x \in [x_j, x_{j+1}]} f_n(x)$, we get

$$|U(P, F, \alpha) - U(P, f_n, \alpha)| \le \sum_{j=1}^k |M_j - M_{j,n}| \Delta \alpha_j \le \epsilon (3(\alpha(b) - \alpha(a)))^{-1} \sum_{j=1}^k \Delta \alpha_j = \epsilon/3.$$

Similarly, $|L(P, F, \alpha) - L(P, f_n, \alpha)| < \epsilon/3$. An application of the triangle inequality gives $|U(P, F, \alpha) - L(P, F, \alpha)| < \epsilon$, and so $F \in \mathcal{R}(\alpha)$ on [a, b].

To prove $\int_a^b F \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha$, let $\epsilon > 0$ and choose $N \in \mathbf{N}$ such that

$$\sup_{x \in [a,b]} |f_n(x) - F(x)| < \frac{\epsilon}{2(\alpha(b) - \alpha(a))} \quad \text{as} \quad n \ge N.$$

As a result, we get that under $n \ge N$,

$$\left|\int_{a}^{b} F \, d\alpha - \int_{a}^{b} f_{n} \, d\alpha\right| \leq \int_{a}^{b} |F - f_{n}| \, d\alpha \leq \frac{\epsilon}{2(\alpha(b) - \alpha(a))} \int_{a}^{b} d\alpha = \epsilon/2 < \epsilon,$$

as wanted.

7. Prove that if f and g are in $\mathcal{R}(\alpha)$ on [a, b] then $|\int_a^b fg \, d\alpha|^2 \leq \int_a^b f^2 \, d\alpha \int_a^b g^2 \, d\alpha$. Solution. Note that

$$0 \le \int_a^b (xf+g)^2 \, d\alpha = x^2 \int_a^b f^2 \, d\alpha + 2x \int_a^b fg \, d\alpha + \int_a^b g^2 \, d\alpha.$$

Letting

$$A = \int_a^b f^2 \, d\alpha; \quad B = 2 \int_a^b fg \, d\alpha; \quad C = \int_a^b g^2 \, d\alpha$$

we get $Ax^2 + Bx + C \ge 0$, whence $B^2 \le 4AC$ that derives the required inequality.