ASSIGNMENT 10: SOLUTION

Due in class: Friday, April 1, 2011

Name

M.U.N. Number

1. Prove that $f(x)=|x|$ does not have a MacLaurin series.

Solution. This function fails to have derivatives of any order. So it cannot have a MacLaurin series.
2. Prove that the inverse tangent function is analytic on $(-1,1)$ and for each $x \in[-1,1]$

$$
\arctan x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} .
$$

(Hint: Expand $\left(1+t^{2}\right)^{-1}$ as a geometric series and integrate.)
Solution. Write

$$
1-t^{2}+t^{4}-\cdots+(-1)^{n} t^{2 n}=\frac{1-(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

or

$$
1-t^{2}+t^{4}-\cdots+(-1)^{n} t^{2 n}-\left(1+t^{2}\right)^{-1}=\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

For an arbitrary $x \in[-1,1]$, integrate on $[0, x]$ to get
$\left|x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}-\arctan x\right|=\left|(-1)^{n+2} \int_{0}^{x} \frac{t^{2 n+2}}{1+t^{2}} d t\right|<\int_{0}^{1} t^{2 n+2} d t=\frac{1}{2 n+3}$.
Letting $n \rightarrow \infty$, we just reach the desired formula.
3. Find the Maclaurin series for $f(x)=x^{-1} \sin x$ and show that f is analytic on $(-\infty, \infty)$.

Solution. Note that

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}, \quad \forall x \in(-\infty, \infty)
$$

So

$$
x^{-1} \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k}, \quad \forall x \in(-\infty, \infty) .
$$

4. Find the Maclaurin series for $f(x)=\int_{0}^{x} \sin t^{2} d t$.

Solution. Note that

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}, \quad \forall x \in(-\infty, \infty) .
$$

So, substituting t^{2} for x in this formula, we have

$$
\sin t^{2}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!}\left(t^{2}\right)^{2 k+1}, \quad \forall t \in(-\infty, \infty) .
$$

Now integrating term-by-term, we get

$$
\int_{0}^{x} \sin t^{2} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{x}\left(t^{2}\right)^{2 k+1} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \cdot \frac{x^{4 k+3}}{4 k+3}, \quad \forall x \in(-\infty, \infty) .
$$

5. Suppose that α is continuous at a point $c \in[a, b]$. If

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \neq c \\
1 & \text { if } & x=c
\end{array}\right.
$$

prove that f is in $\mathcal{R}(\alpha)$ on $[a, b]$ and that $\int_{a}^{b} f d \alpha=0$.
Solution. Because $f(x)=0$ for any $x \neq c, L(P, f, \alpha)=0$ for any $P \in \mathcal{P}[a, b]$. Consequently, if $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then $\int_{a}^{b} f d \alpha=\sup \{L(P, f, \alpha): P \in \mathcal{P}[a, b]\}=0$. Let $P=\left\{x_{j}\right\}_{j=0}^{n}$ be in $\mathcal{P}[a, b]$. If $c=a$, then $U(P, f, \alpha)=M_{1} \Delta \alpha_{1}=1 \Delta \alpha_{1}=\alpha\left(x_{1}\right)-\alpha(c)$; if $c=b$, then $U(P, f, \alpha)=\Delta \alpha_{n}=\alpha(c)-\alpha\left(x_{n-1}\right)$; if $a<c<b$, then we first refine P whenever necessary so that $c=x_{j}$ for some $j \in\{1,2, \ldots, n-1\}$ and then $U(P, f, \alpha)=\Delta a_{j}+\Delta \alpha_{j+1}=$ $\left(\alpha(c)-\alpha\left(x_{j-1}\right)\right)+\left(\alpha\left(x_{j+1}\right)-\alpha(c)\right)$.
Given $\epsilon>0$. Since α is continuous at c, there is a $\delta>0$ such that if $x \in[a, b]$ with $|x-c|<\delta$, then $|\alpha(x)-\alpha(c)|<\epsilon / 2$. Choose $P-\left\{x_{j}\right\}_{j=0}^{n} \in \mathcal{P}[a, b]$ with $c=x_{j}$ for some $j \in\{0,1, \ldots, n\}$ and with $\|P\|<\delta$. Then $U(P, f, \alpha)-L(P, f, \alpha)=U(P, f, \alpha)<\epsilon$ in all three cases, and so $f \in \mathcal{R}(\alpha)$ on $[a, b]$.
6. Prove that if the sequence of functions $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to F on $[a, b]$ and if each f_{n} is in $\mathcal{R}(\alpha)$ on $[a, b]$, then F is in $\mathcal{R}(\alpha)$ on $[a, b]$ and $\int_{a}^{b} F d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$.
Solution. Without loss of generality, we may assume that α is not a constant function. Given $\epsilon>0$. Choose $n \in \mathbf{N}$ such that $\sup _{x \in[a, b]}\left|f_{n}(x)-F(x)\right|<\epsilon(3(\alpha(b)-\alpha(a)))^{-1}$. For such an f_{n} choose $P=\left\{x_{j}\right\}_{j=0}^{k} \in \mathcal{P}[a, b]$ with $U\left(P, f_{n}, \alpha\right)-L\left(P, f_{n}, \alpha\right)<\epsilon / 3$. Letting $M_{j}=\sup _{x \in\left[x_{j}, x_{j+1}\right]} F(x)$ and $M_{j, n}=\sup _{x \in\left[x_{j}, x_{j+1}\right]} f_{n}(x)$, we get

$$
\left|U(P, F, \alpha)-U\left(P, f_{n}, \alpha\right)\right| \leq \sum_{j=1}^{k}\left|M_{j}-M_{j, n}\right| \Delta \alpha_{j} \leq \epsilon(3(\alpha(b)-\alpha(a)))^{-1} \sum_{j=1}^{k} \Delta \alpha_{j}=\epsilon / 3
$$

Similarly, $\left|L(P, F, \alpha)-L\left(P, f_{n}, \alpha\right)\right|<\epsilon / 3$. An application of the triangle inequality gives $|U(P, F, \alpha)-L(P, F, \alpha)|<\epsilon$, and so $F \in \mathcal{R}(\alpha)$ on $[a, b]$.
To prove $\int_{a}^{b} F d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$, let $\epsilon>0$ and choose $N \in \mathbf{N}$ such that

$$
\sup _{x \in[a, b]}\left|f_{n}(x)-F(x)\right|<\frac{\epsilon}{2(\alpha(b)-\alpha(a))} \quad \text { as } \quad n \geq N .
$$

As a result, we get that under $n \geq N$,

$$
\left|\int_{a}^{b} F d \alpha-\int_{a}^{b} f_{n} d \alpha\right| \leq \int_{a}^{b}\left|F-f_{n}\right| d \alpha \leq \frac{\epsilon}{2(\alpha(b)-\alpha(a))} \int_{a}^{b} d \alpha=\epsilon / 2<\epsilon,
$$

as wanted.
7. Prove that if f and g are in $\mathcal{R}(\alpha)$ on $[a, b]$ then $\left|\int_{a}^{b} f g d \alpha\right|^{2} \leq \int_{a}^{b} f^{2} d \alpha \int_{a}^{b} g^{2} d \alpha$.

Solution. Note that

$$
0 \leq \int_{a}^{b}(x f+g)^{2} d \alpha=x^{2} \int_{a}^{b} f^{2} d \alpha+2 x \int_{a}^{b} f g d \alpha+\int_{a}^{b} g^{2} d \alpha
$$

Letting

$$
A=\int_{a}^{b} f^{2} d \alpha ; \quad B=2 \int_{a}^{b} f g d \alpha ; \quad C=\int_{a}^{b} g^{2} d \alpha
$$

we get $A x^{2}+B x+C \geq 0$, whence $B^{2} \leq 4 A C$ that derives the required inequality.

