
M 3001

ASSIGNMENT 10: SOLUTION

Due in class: Friday, April 1, 2011

Name M.U.N. Number

1. Prove that f(x) = |x| does not have a MacLaurin series.

Solution. This function fails to have derivatives of any order. So it cannot have a MacLaurin
series.

2. Prove that the inverse tangent function is analytic on (−1, 1) and for each x ∈ [−1, 1]

arctan x =
∞∑

k=0

(−1)k

2k + 1
x2k+1.

(Hint: Expand (1 + t2)−1 as a geometric series and integrate.)

Solution. Write

1− t2 + t4 − · · ·+ (−1)nt2n =
1− (−1)n+1t2n+2

1 + t2
,

or

1− t2 + t4 − · · ·+ (−1)nt2n − (1 + t2)−1 =
(−1)n+1t2n+2

1 + t2
.

For an arbitrary x ∈ [−1, 1], integrate on [0, x] to get

∣∣∣x− x3

3
+

x5

5
−· · ·+(−1)n x2n+1

2n + 1
−arctan x

∣∣∣ =
∣∣∣(−1)n+2

∫ x

0

t2n+2

1 + t2
dt

∣∣∣ <
∫ 1

0
t2n+2dt =

1

2n + 3
.

Letting n →∞, we just reach the desired formula.

3. Find the Maclaurin series for f(x) = x−1 sin x and show that f is analytic on (−∞,∞).

Solution. Note that

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1, ∀x ∈ (−∞,∞).

So

x−1 sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k, ∀x ∈ (−∞,∞).

4. Find the Maclaurin series for f(x) =
∫ x
0 sin t2dt.

Solution. Note that

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1, ∀x ∈ (−∞,∞).

So, substituting t2 for x in this formula, we have

sin t2 =
∞∑

k=0

(−1)k

(2k + 1)!
(t2)2k+1, ∀t ∈ (−∞,∞).

Now integrating term-by-term, we get

∫ x

0
sin t2dt =

∞∑
k=0

(−1)k

(2k + 1)!

∫ x

0
(t2)2k+1dt =

∞∑
k=0

(−1)k

(2k + 1)!
· x4k+3

4k + 3
, ∀x ∈ (−∞,∞).



5. Suppose that α is continuous at a point c ∈ [a, b]. If

f(x) =

{
0 if x 6= c
1 if x = c,

prove that f is in R(α) on [a, b] and that
∫ b
a f dα = 0.

Solution. Because f(x) = 0 for any x 6= c, L(P, f, α) = 0 for any P ∈ P [a, b]. Consequently,
if f ∈ R(α) on [a, b], then

∫ b
a f dα = sup{L(P, f, α) : P ∈ P[a, b]} = 0. Let P = {xj}n

j=0

be in P [a, b]. If c = a, then U(P, f, α) = M1∆α1 = 1∆α1 = α(x1) − α(c); if c = b,
then U(P, f, α) = ∆αn = α(c) − α(xn−1); if a < c < b, then we first refine P whenever
necessary so that c = xj for some j ∈ {1, 2, ..., n− 1} and then U(P, f, α) = ∆aj + ∆αj+1 =
(α(c)− α(xj−1)) + (α(xj+1)− α(c)).

Given ε > 0. Since α is continuous at c, there is a δ > 0 such that if x ∈ [a, b] with |x−c| < δ,
then |α(x)−α(c)| < ε/2. Choose P −{xj}n

j=0 ∈ P [a, b] with c = xj for some j ∈ {0, 1, ..., n}
and with ‖P‖ < δ. Then U(P, f, α) − L(P, f, α) = U(P, f, α) < ε in all three cases, and so
f ∈ R(α) on [a, b].

6. Prove that if the sequence of functions (fn)∞n=1 converges uniformly to F on [a, b] and if each
fn is in R(α) on [a, b], then F is in R(α) on [a, b] and

∫ b
a F dα = limn→∞

∫ b
a fn dα.

Solution. Without loss of generality, we may assume that α is not a constant function.
Given ε > 0. Choose n ∈ N such that supx∈[a,b] |fn(x) − F (x)| < ε(3(α(b) − α(a)))−1. For

such an fn choose P = {xj}k
j=0 ∈ P [a, b] with U(P, fn, α) − L(P, fn, α) < ε/3. Letting

Mj = supx∈[xj ,xj+1] F (x) and Mj,n = supx∈[xj ,xj+1] fn(x), we get

|U(P, F, α)− U(P, fn, α)| ≤
k∑

j=1

|Mj −Mj,n|∆αj ≤ ε(3(α(b)− α(a)))−1
k∑

j=1

∆αj = ε/3.

Similarly, |L(P, F, α) − L(P, fn, α)| < ε/3. An application of the triangle inequality gives
|U(P, F, α)− L(P, F, α)| < ε, and so F ∈ R(α) on [a, b].

To prove
∫ b
a F dα = limn→∞

∫ b
a fn dα, let ε > 0 and choose N ∈ N such that

sup
x∈[a,b]

|fn(x)− F (x)| < ε

2(α(b)− α(a))
as n ≥ N.

As a result, we get that under n ≥ N ,

∣∣∣ ∫ b

a
F dα−

∫ b

a
fn dα

∣∣∣ ≤ ∫ b

a
|F − fn| dα ≤ ε

2(α(b)− α(a))

∫ b

a
dα = ε/2 < ε,

as wanted.

7. Prove that if f and g are in R(α) on [a, b] then |
∫ b
a fg dα|2 ≤

∫ b
a f 2 dα

∫ b
a g2 dα.

Solution. Note that

0 ≤
∫ b

a
(xf + g)2 dα = x2

∫ b

a
f 2 dα + 2x

∫ b

a
fg dα +

∫ b

a
g2 dα.

Letting

A =
∫ b

a
f 2 dα; B = 2

∫ b

a
fg dα; C =

∫ b

a
g2 dα,

we get Ax2 + Bx + C ≥ 0, whence B2 ≤ 4AC that derives the required inequality.


