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Preface

This book is based on a one-semester course in the Introductory Functional
Analysis the author offered at MUN in the winter of 2005 for both undergraduate
and graduate students. The prerequisites of this book are deliberately modest,
and it is assumed that this will be the student’s first experience with abstract
mathematical reasoning. Thus the exposition of this book is careful and detailed
with an emphasis on simplicity, concreteness and abstraction, and the examples
are all quite elementary, requiring at most some knowledge of elementary linear
algebra and real analysis.

As can be seen from the table of Contents, the students who take and finish
this course should have a good understanding of normed vector spaces, Banach
spaces with fixed point theorems, linear operators, and four fundamental theo-
rems – Hahn-Banach Theorem, Uniform Boundedness Principle, Open Mapping
Theorem and Closed Graph Theorem, Hilbert spaces and their adjoint opera-
tors. In the process of learning this course, the students are strongly suggested
to follow an important principle; that is, the best way to learn mathematics is
to do mathematics. Moreover, the students are urged to acquire the habit of
studying with paper and pencil in hand; in this way mathematics will become
increasingly meaningful to them. At the end of each chapter there are some ba-
sic problems for the students. Answers to those problems can be found in the
part of Solutions to Exercises. This part is followed by a list of references. These
books also supplement the author’s text since they were used while preparing
the course. Last but not least, an index is attached.

The author would like to express his gratitude to Professor B. Watson of
MUN who had made some valuable suggestions on a course outline. The author
would also like to take this opportunity to thank his undergraduate students:
J. Bishop, P. Deal, J. Martin, S. Maye, B. Rowe, M. White and graduate stu-
dents: J. Howell, N. Kirby, L. Li, J. McGraw, X. Yang and O. Yasar, as well as
his teaching assistant: F. Zhang, who participated in the course. Without their
compliments, criticisms, comments, and careful scrutiny of the text at all stages
from classroom notes to page proofs, the author would not have ended up with
the typewriting of this textbook.

St. John’s, 2005 J. Xiao
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1. Normed Linear Spaces

In this chapter, we discuss the definition of a linear space which is the same as
thing as a vector space – simply an abstract version of the familiar vector spaces
Rn, n ∈ N.We shall always use the former terminology in order to emphasize
the linearity that permeates the subject of this course. Note that vector spaces
have certain algebraic properties: vectors may be added, multiplied by scalars,
and vector spaces have bases and subspaces. Linear maps between vector spaces
may be described in terms of matrices. Using Euclidean norm or distance, vector
spaces have other analytic properties: for instance, certain functions from Rn to
R are continuous, differentiable, Riemann integrable and so on.

1.1 Linear Spaces, Subspaces and Independence

Definition 1.1.1. A linear space over a field F is a set V equipped with maps
⊕ : V × V → V and � : F× V → V with the properties below:

(i) (commutative for vector addition) x⊕ y = y ⊕ x ∀x, y ∈ V ;
(ii) (associative for vector addition) (x⊕ y)⊕ z = x⊕ (y ⊕ z) ∀x, y, z ∈ V ;
(iii) (a zero element for vector addition) ∃ 0 ∈ V 3 x⊕0 = 0⊕x = x ∀x ∈ V ;
(iv) (additive inverse for vector addition) ∃ −x ∈ V 3 x⊕(−x) = (−x)⊕x =

0 ∀x ∈ V ;
(v) (associative for scalar multiplication) α � (β � x) = (αβ) � x ∀α, β ∈

F, x ∈ V ;
(vi) (distributive for scalar multiplication over scalar addition) (α+β)�x =

(α � x)⊕ (β � x) ∀α, β ∈ F, x ∈ V ;
(vii) (distributive for scalar multiplication over vector addition) α�(x⊕y) =

(α � x)⊕ (α� y) ∀α ∈ F, x, y ∈ V ;
(viii) (a unit element for scalar multiplication) 1� x = x ∀x ∈ V where 1 is

the multiplicative identity in F.

Example 1.1.1. (i) V = Rn is a linear space with the usual vector addition and
scalar multiplication over R.

(ii) Let V be the set of all polynomials with coefficients in R of degree less
than n. Then V is a linear space with usual addition of polynomials and scalar
multiplication over R.

(iii) Let V be Mm,n(C) of complex-valued m×n matrices. Then V is a linear
space with usual addition of matrices and scalar multiplication over C.
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(iv) Let `∞ denote the set of infinite sequences (xj) that are bounded:
supj |xj | <∞. Then `∞ is a linear space over R with:

sup
j
|xj + yj | ≤ sup

j
|xj |+ sup

j
|yj |; sup

j
|αxj | = |α| sup

j
|xj | <∞.

(v) Let C(S) be the class of continuous functions f : S → R with (f⊕g)(x) =
f(x) + g(x) and (α� f)(x) = αf(x). Here S is any nonempty subset of R. Then
C(S) is a linear space over R.

(vi) Let V be the class of Riemann-integrable functions f : (0, 1) → R for

which
∫ 1

0 |f |2 < ∞. Then V is a linear space over R with usual addition and
scalar multiplication. Indeed, by the Cauchy-Schwartz inequality:

(∫ 1

0

|fg|
)2

≤
(∫ 1

0

|f |2
)(∫ 1

0

|g|2
)
∀f, g ∈ V,

we have

∫ 1

0

|f + g|2 ≤
∫ 1

0

(
|f |2 + 2|f ||g|+ |g|2

)

≤
∫ 1

0

|f |2 + 2
(∫ 1

0

|f |2
) 1

2
(∫ 1

0

|g|2
) 1

2

+

∫ 1

0

|g|2

=
(( ∫ 1

0

|f |2
) 1

2 +
( ∫ 1

0

|g|2
) 1

2

)2

.

Meanwhile, ∫ 1

0

|αf |2 = |α|2
∫ 1

0

|f |2.

(vii) Let C∞[a, b] be the space of infinitely differentiable functions on [a, b].
Then it is linear space over R with usual addition and scalar multiplication.

(viii) Let Ω ⊂ Rn be nonempty, and Ck(Ω) the space of k times continuously
differentiable functions. This means that if a = (a1, ..., an) ∈ Nn has |a| =
a1 + · · · an ≤ k, then the partial derivatives

Da =
∂|a|f

∂xa1
1 ...∂xann

exists and are continuous. Then it is linear space over R with usual addition and
scalar multiplication.

Note: For convenience, we shall drop the special notation ⊕, � for vector
addition and scalar multiplication, and simply refer to V as a linear space over
F. Moreover, if F = R then we shall say that V is a real linear space; whereas
if F = C, then we shall say that V is a complex linear space.

As in the linear algebra of finite-dimensional vector spaces, subsets of linear
spaces that are themselves linear spaces are called linear subspaces. With this,
we have
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Definition 1.1.2. Let V be a linear space over the field F. A subset W ⊂ V is
called a linear subspace of V if αx+ βy ∈ W for ∀α, β ∈ F and ∀x, y ∈W .

Example 1.1.2. (i) The set of vectors in Rn of the form (x1, x2, x3, 0, ..., 0) forms
a three-dimensional (3D) linear subspace of Rn.

(ii) The set of polynomials of degree ≤ r forms a linear subspace of the set
of polynomials of degree ≤ n for any r ≤ n.

(iii) The space Ck+1(Ω) is a linear subspace of Ck(Ω).

Definition 1.1.3. Let V be a linear space over F. If W = {x0 + c : x0 ∈ S}
where S is a linear subspace of V and c is a fixed element of V , then W is called
an affine subset of V .

Example 1.1.3. (i) If W = {x = (x1, x2, 1, ..., 1)︸ ︷︷ ︸
n

∈ Rn} then it is an affine subset

of Rn.
(ii) In Example 1.1.1 (iii), let W be the set of matrices with certain blocks

of 1′s. Then W is an affine subset of Mm,n(C).
(iii) In R3 all lines and planes through the origin are subspaces, whereas lines

and planes not passing through the origin are affine subsets.

Definition 1.1.4. A hyperplane W of a linear space V is a maximal proper
affine subset of V ; that is, W = {x ∈ V : x = x0 + c, x0 ∈ S} where c ∈ V
is fixed, and S is a maximal linear subspace of V in the sense that any other
subspace of V containing S is either S or V itself.

Note that a hyperplane W is proper subset of V . So W 6= V which implies
S 6= V .

Example 1.1.4. Hyperplanes in R2 are lines; hyperplanes in R3 are planes.

A fundamental concept for linear spaces is that of dimension, but first we
need a few more definitions.

Given a linear space V . Elements x1, x2, ..., xn ∈ V are linearly dependent
provided that there are scalars α1, α2, ..., αn (not all zero) such that α1x1 +
α2x2 + · · · + αnxn = 0. If there is no such set of scalars, then they are linearly
independent.

The linear span of the vectors x1, x2, ..., xn ∈ V is the linear subspace of V :

span{x1, ..., xn} =
{
x =

n∑

j=1

αjxj : αj ∈ F
}
.

Definition 1.1.5. If the linear space V is equal to the space spanned by a lin-
early independent set of n vectors, then V is said to have dimension n. If there
is no such set of vectors, then V is infinite-dimensional. Furthermore, a linearly
independent set of vectors that spans V is called a basis for V .

.
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Example 1.1.5. (i) The space Rn has dimension n; the standard basis is given
by the vectors e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0),..., en = (0, 0, ..., 0, 1).

(ii) {1, t, t2, ..., tn} is a basis of the linear space of polynomials of degree ≤ n
which has dimension n+ 1.

(iii) All linear spaces given in Example 1.1 (iv)-(viii) are infinite-dimensional.

1.2 Norms

A norm on a a vector space is a way of measuring the length of a vector and
hence the distance between two vectors.

Definition 1.2.1. A norm on a linear space V over the field F is a non-negative
function ‖ · ‖ : V → R with the following properties:

(i) ‖x‖ = 0 iff x = 0;
(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for ∀x, y ∈ V ;
(iii) ‖αx‖ = |α|‖x‖ for ∀x ∈ V and ∀α ∈ F.

In the definition we are assuming that | · | denotes the usual absolute value.
If ‖ · ‖ is a function with (ii) and (iii) only it is called a semi-norm.

Definition 1.2.2. Let V be a linear space over the field F.
(i) The normed linear space (V, ‖ · ‖) is V with a norm ‖ · ‖(denoted by ‖ · ‖V ,

sometimes);
(ii) A set C ⊂ V is convex if for any two points x, y ∈ C, tx+ (1− t)y ∈ C

for ∀t ∈ [0, 1];
(iii) A norm ‖ · ‖ is strictly convex if ‖x‖ = ‖y‖ = 2−1‖x + y‖ = 1 implies

x = y.

Example 1.2.1. (i) Let V = Rn with the usual Euclidean norm

‖x‖2 =
( n∑

j=1

|xj |2
) 1

2

.

Note that the only difficulty is the triangle inequality–for this we use the Cauchy-
Schwarz inequality:

n∑

j=1

|xjyj | ≤
( n∑

j=1

|xj |2
) 1

2
( n∑

j=1

|yj |2
) 1

2

.

(ii) There are many other norms on Rn, called the p-norms. For p ∈ [1,∞)
define

‖x‖p =
( n∑

j=1

|xj |p
) 1
p

.

Then ‖ · ‖p is a norm on V : it suffices to verify the triangle inequality which
follows from the Minkowski’s inequality
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( n∑

j=1

|xj + yj |p
) 1
p ≤

( n∑

j=1

|xj |p
) 1
p

+
( n∑

j=1

|xj |p
) 1
p

.

In case of p =∞, define
‖x‖∞ = sup

1≤j≤n
|xj |.

It is conventional to write `np for these spaces. Note that `np and `nq have exactly
the same elements.

(iii) Let V = `∞, the linear space of bounded infinite sequences. Define

‖x‖p =





(∑∞
j=1 |xj |p

) 1
p

, if 1 ≤ p <∞,
sup1≤j<∞ |xj |, if p =∞.

If we restrict attention to the linear subspace on which ‖ · ‖p is finite, then ‖ · ‖p
is a norm: the somewhat difficult triangle inequality follows from the infinite
version of Minkowski’s inequality. This yields an infinite family of normed linear
spaces:

`p = {x = (xj) : ‖x‖p <∞}.
Notice that for p ∈ [1,∞) there is a strict inclusions: `p ⊂ `∞ and `p ⊂ `q and
hence `p is a linear subspace of `q whenever p < q. Consequently, `p 6= `q if
p 6= q.

(iv) Let V = C[a, b]. Then it becomes a normed space with the p-norm below

‖f‖p =





(∫ b
a
|f(t)|pdt

) 1
p

, if 1 ≤ p <∞,
supa≤t≤b |f(t)|, if p =∞.

Note that the triangle inequality for p ∈ [1,∞) follows from the integral form of
the Minkowski inequality:

(∫ b

a

|f + g|p
) 1
p ≤

(∫ b

a

|f |p
) 1
p

+
(∫ b

a

|g|p
) 1
p

.

(v) Let V be the class of Riemann-integrable functions f : (0, 1)→ R with

‖f‖2 =
(∫ 1

0

|f |2
) 1

2

.

Then it is a normed linear space.

1.3 Isomorphism and Product of Normed Spaces

Recall from linear algebra that linear spaces V and W over the field F are
algebraically isomorphic if there is a bijection T : V →W that is linear:

T (αx+ βy) = αT (x) + βT (y), ∀α, β ∈ F; ∀x, y ∈ V.
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Definition 1.3.1. (i) A pair (X, ‖ · ‖X), (Y, ‖ · ‖Y ) of normed linear spaces are
topologically isomorphic if there is a linear bijection T : X → Y with the property
that there are two positive constants c1 and c2 with

c1‖x‖X ≤ ‖T (x)‖Y ≤ c2‖x‖X .

We shall usually denote topological isomorphism by X ∼= Y . If c1 = c2 = 1 then
T is called an isometry and the normed spaces X and Y are called isometric.

(ii) Two norms ‖ · ‖(1) and ‖ · ‖(2) defined on X are said to be equivalent if
there are two constants c1, c2 > 0 such that

c1‖ · ‖(1) ≤ ‖ · ‖(2) ≤ c2‖ · ‖(1).

Example 1.3.1. (i) Let X be the set of all real polynomials of the form f(t) =
a + bt+ c

2 t
2 with the norm ‖f‖X = max{|a|, |b|, |c|}, and Y the set of all three

dimensional vectors z = ai + bj + ck with the norm ‖z‖Y =
√
a2 + b2 + c2. If

T : Y → X is given by T (z) = a+ bt+ c
2 t

2, then T is linear, bijective and has

‖T (z)‖X = max{a, b, c} ≤
√
a2 + b2 + c2 = ‖z‖Y ;

1√
3
‖z‖Y ≤ ‖T (z)‖X ≤ ‖z‖Y .

So the two spaces are topologically isomorphic.
(ii) The real linear spaces (C, | · |) and (R2, ‖ · ‖2) are topologically isometric.

Theorem 1.3.1. (i) Any two norms on a finite dimensional linear spaces are
equivalent.

(ii) If X and Y are n-dimensional normed linear spaces over the field F then
X and Y are topologically isomorphic.

Proof. (i) Let X be an n-dimensional linear space over F and let ‖·‖(k), k = 1, 2,
be two norms on X . Choose a basis x1, ..., xn for X and define a third norm,
‖ · ‖(3), as follows: For each x ∈ X there is a unique set of scalars α1, ..., αn in F
such that x =

∑n
j=1 αjxj . Let

‖ · ‖(3) =

n∑

j=1

|αj |.

Suppose that each of the norms ‖ · ‖(k), k = 1, 2 is equivalent to ‖ · ‖(3). Then
there are positive constants m1,M1 and m2,M2 such that

mk‖ · ‖(k) ≤ ‖ · ‖(3) ≤Mk‖ · ‖(k), k = 1, 2.

It follows that
m1

M2
‖ · ‖(1) ≤ ‖ · ‖(2) ≤

M1

m2
‖ · ‖(1),

implying the desired.
Now let ‖ · ‖ denote either ‖ · ‖(1) or ‖ · ‖(2). We shall show that ‖ · ‖ is

equivalent to ‖ · ‖(3). If x =
∑n

j=1 αjxj then
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‖x‖ ≤
n∑

j=1

|αj |‖xj‖ ≤
(

max
1≤j≤n

‖xj‖
)
‖x‖(3).

This implies one-side estimate. To prove that there is a constant c > 0 such that
‖ · ‖(3) ≤ c‖ · ‖, i.e.,

n∑

j=1

|αj | ≤ c
∥∥∥

n∑

j=1

αjxj

∥∥∥. (1.1)

We may assume that ‖x‖(3) = 1 by dividing the last inequality by
∑n

j=1 |αj |.
Now if (1.1) is not true then there would be a sequence yk =

∑n
j=1 αkjxj with

‖yk‖(3) =
∑n
j=1 |αkj | = 1 but limk→∞ ‖yk‖ = 0. Note that |αkj | ≤ 1 for j =

1, ..., n and every k. So there is a subsequence of (yk), denoted itself also, such
that limk→∞ αkj exists and equals, say, αj for j = 1, 2, ..., n as well as

lim
k→∞

‖yk −
n∑

j=1

αjxj‖ ≤ max
1≤j≤n

‖xj‖ lim
k→∞

n∑

j=1

|αkj − αj | = 0.

Thus
∑n

j=1 |αj | = 1 while
∑

j=1 αjxj = 0. This is impossible, since the xj are
linearly independent. This completes the argument.

(ii) It suffice to show that X is topologically isomorphic to Fn with the
Euclidean norm. There is an isomorphism T from X onto Fn. We can use this
map to define a new norm on X as follows: For each x ∈ X let |||x||| be the
norm of T (x) in Fn. When X is given this new norm T becomes a topological
isomorphism. However, (i) shows that ||| · ||| is equivalent to any norm ‖ · ‖X on
X . Hence T is a topological isomorphism from (X, ‖ · ‖X) onto Fn.

If Y is a subspace of a linear normed space (X, ‖ · ‖X) then ‖ · ‖X restricted
to Y makes Y into a normed subspace.

Example 1.3.2. Let Y be the space of infinite real sequences with only finitely
many non-zero terms. Then Y is a linear subspace of `p, 1 ≤ p ≤ ∞, so the
p-norm makes Y into a normed space.

Definition 1.3.2. If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are normed linear spaces, then
their product is defined by

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
It may be made into a normed space under any of the following norms:

(i) ‖(x, y)‖ = (‖x‖pX + ‖y‖pY )
1
p , p ∈ [1,∞);

(ii) ‖(x, y)‖ = max{‖x‖X , ‖y‖Y }.
Of course, this does not exhaust all the possible combinations of the norms

‖x‖X and ‖y‖Y , but these are the most commonly used ones. The extension to
products of n normed linear spaces is defined in a similar manner.

Example 1.3.3. If n = m+ k with m > 0, k > 0, n <∞ then `np may be viewed

as the product of normed linear spaces `mp and `kp.
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1.4 Continuous Mappings between Normed Spaces

We have seen continuous mappings between R and R in real analysis. To make
this definition we used the distance function |x− y| on R: a function f : R→ R
is continuous at a ∈ R if

∀ε > 0, ∃δ > 0 3 |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Looking at this, we find that exactly the same definition can be made for map-
pings between linear normed spaces. Thus, on suitably defined spaces, questions
like “is the mapping f 7−→ f ′ or

∫ x
0 f continuous?” can be asked.

Definition 1.4.1. A mapping T : X → Y between normed linear spaces (X, ‖ ·
‖X) and (Y, ‖ · ‖Y ) is continuous at a ∈ X if

∀ε > 0, ∃δ = δ(ε, a) > 0 3 ‖x− a‖X < δ ⇒ ‖T (x)− T (a)‖Y < ε.

If f is continuous at every a ∈ X then we simply say T is continuous on X.
Moreover, T is called uniformly continuous if

∀ε > 0, ∃δ = δ(ε) > 0 3 ‖x− a‖X < δ ⇒ ‖T (x)− T (a)‖Y < ε.

Example 1.4.1. (i) The mapping x 7−→ x2 from (R, | · |) to itself is continuous
but not uniformly continuous.

(ii) Let T (x) = Ax be the non-trivial linear map from Rn to Rm (with
Euclidean norms) defined by the m × n matrix A = (aij). Using the Cauchy-
Schwarz inequality, we see that f is uniformly continuous. In fact, fix a ∈ Rn

and b = Aa. Then for any x ∈ Rn we have

‖Ax−Aa‖22 =

m∑

i=1

∣∣∣
n∑

j=1

aij(xj − aj)
∣∣∣
2

≤
m∑

i=1

( n∑

j=1

|aij |2
)( n∑

j=1

|xj − aj |2
)

= C2‖x− a‖22

where

C2 =

m∑

i=1

n∑

j=1

|aij |2 > 0.

(iii) Let X = C[−1, 1] with the sup-norm. Define a map T : X → X by

T (u)(t) = 1 +

∫ t

0

(
sinu(s) + tan s

)
ds.

The map T is uniformly continuous on X . To see this, we calculate by the Mean
Value Theorem for Derivatives
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||T (u)− T (v)||∞ = sup
t∈[−1,1]

|T (u)(t)− T (v)(t)|

= sup
t∈[−1,1]

∣∣∣
∫ t

0

(
sinu(s)− sin v(s)

)
ds
∣∣∣

≤ sup
t∈[−1,1]

∫ t

0

∣∣∣ sinu(s)− sin v(s)
∣∣∣ds

≤ sup
t∈[−1,1]

∫ t

0

∣∣∣u(s)− v(s)
∣∣∣ds

≤ ‖u− v‖∞.
(iv) Let X be the space of complex-valued square-integrable Riemann inte-

grable functions on [0, 1] with 2-norm. Define a map T : X → X by

T (u)(t) =

∫ t

0

u2(s)ds.

Then T is continuous. To see this, we estimate by Hölder’s inequality and
Minkowski’s inequality

|T (u)(t)− T (v)(t)| =
∣∣∣
∫ t

0

(
u2(s)− v2(s)

)
ds
∣∣∣

≤
(∫ t

0

(
|u(s) + v(s)|

)2
ds
) 1

2
(∫ t

0

(
|u(s)− v(s)|

)2
ds
) 1

2

≤ (‖u‖2 + ‖v‖2)‖u− v‖2,
so that

‖T (u)− T (v)‖2 ≤ sup
t∈[0,1]

|T (u)(t)− T (v)(t)| ≤ (‖u‖2 + ‖v‖2)‖u− v‖2.

(v) The same map as in (iv) applied to square-integrable Riemann integrable
functions on [0,∞) is not continuous. To see this, let a, b > 0 and define

u(t) =




a, 0 ≤ t ≤ 2b2,
ia, 2b2 < t ≤ 4b2,
0, otherwise

Then ‖u− 0‖2 = 2ab. On the other hand,

T (u)(t) =





a2t, 0 ≤ t ≤ 2b2,
4b2a2 − a2t, 2b2 < t ≤ 4b2,

0, otherwise

Then ‖T (u)−T (0)‖2 = 3√
3
a2b3. Now, given any δ > 0 we may choose constants

a, b with 2ab < δ but 4√
3
a2b3 = 1. This is, given any δ > 0 there is a function u

with the property that ‖u− 0‖2 < δ but ‖T (u)− T (0)‖2 = 1, showing that T is
not continuous.
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1.5 Sequences and Completeness in Normed Spaces

Let X = (X, ‖ · ‖X) be a normed linear space. Just as for continuity, we can
employ ‖ · ‖X to define convergence for sequences and series in X using the
corresponding notion for R.

Definition 1.5.1. A sequence (xj) in X is said to converge to a ∈ X if
limj→∞ ‖xj − a‖X = 0. Similarly, a series

∑
j xj converges if the sequence of

partial sums (sk) defined by sk =
∑k

j=1 xj is convergent in X.

Example 1.5.1. (i) If (xj) is a sequence in Rn, with xj = (x
(1)
j , ..., x

(n)
j ), then for

p ∈ [1,∞], ‖xj‖p → 0 iff x
(k)
j → 0 for each k = 1, ..., n.

(ii) For infinite-dimensional spaces, it is not enough to check convergence on
each component using a basis. Given p ∈ [1,∞]. Suppose (xj) is the sequence
in `p given by xj = (0, 0, ..., 1, ...) where the 1 appears in the jth position. Then

if we write xj = (x
(1)
j , x

(2)
j , ...) we certainly have x

(k)
j → 0 as j → ∞ for each

k. However, we also have ‖xj‖p = 1 for all j, so the sequence is certainly not
converging to 0. As a matter of fact, it is not converging to anything.

Theorem 1.5.1. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be normed linear
spaces. A map T : X → Y is continuous at a ∈ X iff limj→∞ T (xj) = T (a) in
Y for every sequence (xj) converging to a in X.

Proof. Replace | · | with ‖ · ‖ in the proof of this statement for functions from R
to itself.

Definition 1.5.2. A sequence (xj) is a Cauchy sequence in the normed linear
space X = (X, ‖ · ‖X) if

∀ε > 0, ∃N 3 n,m > N ⇒ ‖xn − xm‖X < ε.

Clearly, a convergence sequence is a Cauchy sequence. We know that in the
normed linear space (R, | · |) the converse also holds, and it is a simple matter to
verify that in Rn the converse holds too. In many reasonable infinite-dimensional
normed linear spaces however there are Cauchy sequences that do not converge.

Example 1.5.2. Let X = (C[0, 1], ‖ · ‖2). If (fj) in X is defined by

fj(t) =





0, 0 ≤ t ≤ 1
2 − 1

j
jt
2 −

j
4 + 1

2 ,
1
2 − 1

j ≤ t ≤ 1
2 + 1

j

1, 1
2 + 1

j ≤ t ≤ 1

Note that (fj) is Cauchy due to

‖fn − fm‖22 =

∫ 1
2

1
2− 1

n

|fn(t)− fm(t)|2dt+

∫ 1
2 + 1

n

1
2

|fn(t)− fm(t)|2dt

→ 0 as m > n→∞.
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But nevertheless, it is not hard to verify limj→∞ ‖fj − f‖2 = 0, where

f(t) =





0, 0 ≤ t < 1
2

1
2 , t = 1

2
1, 1

2 < t ≤ 1

is not continuous at t = 1
2 and so not in C[0, 1]. In other words, (fj) does not

converge in C[0, 1] with respect to ‖ · ‖2. In fact, if there is a function g ∈ C[0, 1]
such that limj→∞ ‖fj−g‖2 = 0, then the triangle inequality implies ‖f−g‖2 = 0.
Now consider g( 1

2 ). If g( 1
2 ) 6= f( 1

2 ), then |f − g| must be positive on ( 1
2 − δ, 1

2 )
for some δ > 0, which contradicts ‖f − g‖2 = 0. If g( 1

2 ) = f( 1
2 ), then |f − g|

must be positive on ( 1
2 , δ+ 1

2 ) for some δ > 0, again contradicting ‖f − g‖2 = 0.

Definition 1.5.3. A normed linear space is said to be complete if all Cauchy
sequences are convergent.

Example 1.5.3. (i) If C[0, 1] is equipped with the sup-norm, then it is complete.
(ii) (C[0, 1], ‖ · ‖2) is not complete.

1.6 Some Topology

There are some properties of subsets of normed linear spaces and other more
general spaces that we use very often. Topology is a subject that begins by
attaching names to these properties and then develops a shorthand for talking
about such things.

Definition 1.6.1. Let X = (X, ‖ · ‖X) be a normed linear space.
(i) A set C ⊂ X is closed if whenever (cj) is a sequence in C that is convergent

in X, the limit limj→∞ cj also lies in C.
(ii) A set U ⊂ X is open if for every u ∈ U there exists ε > 0 such that

‖x− u‖X < ε⇒ x ∈ U .
(iii) A set S ⊂ X is bounded if there is an M > 0 with the property that

x ∈ S ⇒ ‖x‖X ≤M .
(iv) A set S ⊂ X is connected if there do not exist open sets A,B in X with

S ⊂ A ∪ B, S ∩A 6= ∅, S ∩ B 6= ∅ and S ∩A ∩ B = ∅.
(v) The interior of S ⊂ X is the set

S◦ = {x ∈ X : ∃δ > 0 3 ‖x− y‖X < δ ⇒ y ∈ S}.

(vi) The closure of S ⊂ X is the set

S̄ = {x ∈ X : ∀ε > 0 ∃ s ∈ S 3 ‖s− x‖X < ε}.

Clearly, S◦ ⊂ S ⊂ S̄ for any S ⊂ X . Moreover, a map f : X → Y between
two normed linear spaces is continuous iff for every open set U ⊂ Y , the pre-
image f−1(U) ⊂ X is also open. But, there is a continuous map f : R→ R such
that f(U) is not open even if U is open.
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Recall that the Bolzano-Weierstrass theorem: if S ⊂ Rn is bounded and
closed, then a continuous function f : S → R attains its maximum and mini-
mum: ∃x1, x2 ∈ S 3 f(x1) = supx∈S f(x), f(x2) = infx∈S f(x). This is really
the same as the Heine-Borel theorem that reads: a subset of Rn is compact iff
it is bounded and closed.

Definition 1.6.2. (i) A subset S of a normed linear space is compact iff every
sequences (sj) in S has a subsequence (sjk ) that converges in S.

(ii) A subset S of a normed linear space is relatively (conditionally) compact
iff its closure S̄ is compact.

Below is a more general version of the Bolzano-Weierstrass theorem.

Theorem 1.6.1. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be two normed linear
spaces, and f : X → Y a continuous map. If A ⊂ X is compact, then f(A) ⊂ Y
is compact too. Consequently, if Y = (R, | · |) then f attains its maximum and
minimum on A.

Proof. Assume that (yj) is a sequence in f(A). For each j ∈ N let xj ∈ A satisfy
f(xj) = yj . Since A is compact, we conclude that (xj) has a subsequence (xjk )
converging to x0 ∈ A. Note that f is continuous at x0. So yjk = f(xjk )→ f(x0)
in Y as k → ∞. Obviously, f(x0) ∈ f(A). Thus, f(A) is compact. In case
Y = (R, | · |), we know f(A) is bounded and closed in R and thus get the desired
result.

Some standard sets are used so often that we give them special names.

Definition 1.6.3. Let X = (X, ‖ · ‖X) be a normed linear space.
(i) The open ball of radius r > 0 and center x0 is the set

Br(x0) = {x ∈ X : ‖x− x0‖X < r}.

(ii) The closed ball of radius r > 0 and center x0 is the set

Br(x0) = {x ∈ X : ‖x− x0‖X ≤ r}.

(iii) A subset S ⊂ X is dense if every open ball in X has non-empty intersec-
tion with S. X is said to be separable if there is a countable set S = {x1, x2, ...}
that is dense in X.

Example 1.6.1. (i) Open and closed balls in normed linear spaces are convex.
(ii) Rn, equipped with the norm ‖·‖2, is separable because Qn is a countable

set and is dense in Rn.
(iii) C[a, b] is separable under the sup-norm: Let S be the set of piecewise

linear functions of the form

f(t) = sk +
sk+1 − sk
tk+1 − tk

(t− tk), tk ≤ t ≤ tk+1,
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where a = t0 < t1 < · · · < tn = b is a partition of [a, b], and the sk, tk are rational
(with the possible exceptions of t0 = a and tn = b). The set S is enumerable.
Given g ∈ C[a, b]. For any ε > 0. Then there is a δ > 0 such that

|t− s| < δ =⇒ |g(t)− g(s)| < ε

4
.

Let a = t0 < t1 < · · · < tn = b be a partition of [a, b] with t1, ..., tn−1 rational
and such that maxk(tk+1 − tk) < δ. Let s0, ..., sn be rational numbers such that
maxk |g(tk)− sk| < ε

4 . Then for tk ≤ t ≤ tk+1 we have

f(t)− g(t) =
tk+1 − t
tk+1 − tk

(sk − g(t)) +
t− tk

tk+1 − tk
(sk+1 − g(t)),

and hence

|f(t)−g(t)| ≤ |sk−g(tk)|+ |g(tk)−g(t)|+ |sk+1−g(tk+1)|+ |g(tk+1)−g(t)| < ε.

Thus S is dense in C[a, b].
(iii) (`p, ‖ · ‖p) is separable for 1 ≤ p <∞ but not for p =∞. In fact, let W

be the set of all elements of `p of the form x = (x1, ..., xj , ...), where all of the xj
are rational and all but a finite number of them vanish. Clearly, W is countable.
If p ∈ [1,∞) then W is dense in `p. To see this, let ε > 0 and x ∈ `p be given.
Then take N so large that

∑∞
k=N+1 |xk |p < ε/2. Now for each k ≤ N , there is a

rational number rk such that

1 ≤ k ≤ N ⇒ |xk − rk|p <
ε

2N
.

Set r = (r1, ..., rN , 0, 0, ...). Then r ∈W and

‖x− r‖pp =
N∑

k=1

|xk − rk |p +
∞∑

k=N+1

|xk|p < ε.

This shows that W is dense in `p, p ∈ [1,∞). But, if p = ∞ then let x(n) =

(x
(n)
1 , x

(n)
2 , ..., x

(n)
j , ...), n ∈ N, be any sequence of elements in `∞. Define x =

(x1, ..., xj , ...), where

xj =

{
x

(j)
j + 1, if |x(j)

j | ≤ 1

0, if |x(j)
j | > 1.

Thus x ∈ `∞. Moreover,

‖x− x(n)‖∞ ≥ |xn − x(n)
n | ≥ 1, n ∈ N.

This shows that the sequence (x(n)) cannot be dense in `∞.

As an application of the above concepts, quotients of normed linear spaces
may be formed. Note that we need both the algebraic structure (subspace of a
linear space) and a topological property (closed) to make it all work.
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Definition 1.6.4. Let X be a normed linear space over F and Y be a linear
subspace of X. Then the linear space X/Y –the quotient or factor space is formed
as follows. The elements of X/Y are cosets of Y – sets of the form x + Y =
{x + y : y ∈ Y } for x ∈ X. The set of cosets is a linear space under the
operations:

(x1 + Y )⊕ (x2 + Y ) = (x1 + x2 + Y ); λ� (x+ Y ) = λx+ Y

for any x1, x2, x ∈ X and λ ∈ F.

It is worth remarking that the operations make sense precisely because Y is
itself a linear space, so for instance Y + Y = {y1 + y2 : y1, y2 ∈ Y } = Y and
λY = {λy : y ∈ Y } = Y for λ 6= 0. Moreover, x1 +Y and x2 +Y are equal iff as
sets x1 + Y = x2 + Y ; this is true iff x1 − x2 ∈ Y which is denoted by x1 ∼ x2 –
x1 is equivalent to x2 with respect to Y .

Example 1.6.2. (i) Let X = R3, and let Y be the subspace spanned by (1, 1, 0).
Then X/Y is a two-dimensional real vector space: since (1, 0, 1)+Y and (0, 0, 1)+
Y generate X/Y .

(ii) The linear space Y of finitely supported sequences (of which all but a
finite number of entries vanish) in `1 is a linear subspace. The quotient space
`1/Y is very hard to visualize: its elements are equivalence classes under the
relation (xj) ∼ (yj) if (xj) and (yj) differ in finitely many positions.

(iii) The linear space Y of `1 sequences of the form (0, ..., 0, xn+1, ...) (first
n are zero) is a linear subspace of `1. Here the quotient space `1/Y is quite
reasonable: in fact it is isomorphic to Rn.

(iv) Recall that for p, q ∈ [1,∞), p < q ⇒ `p ⊂ `q. This means that for
any p < q there is a linear quotient space `q/`p. These quotient spaces are very
pathological.

(v) Let X = C[0, 1] and Y = {f ∈ X : f(0) = 0}. Then X/Y is isomorphic
to R.

(vi) Y = C[0, 1] is a linear subspace of the space X of square-Riemann-
integrable functions on [0, 1]. The quotient X/Y is again a linear space that is
impossible to work with.

Evidently, these examples tell us that not all linear subspaces are equally
good: (i), (iii) and (v) are quite reasonable, whereas (ii), (iv) and (vi) are ex-
amples of linear spaces unlike any we have seen. The reason is the following:
the space X/Y is guaranteed to be a normed space with a norm related to the
original norm on X only when the subspace Y is itself closed. Notice that (i),
(iii) and (v) are precisely the ones in which the subspace is closed.

Theorem 1.6.2. If X = (X, ‖ · ‖X) is a normed linear space, and Y is a
closed subspace of X, then X/Y is a normed space under the norm ‖x+ Y ‖ =
infz∈x+Y ‖z‖X .

Proof. Note that ‖x+ Y ‖ = infz∈x+Y ‖z‖X = infy∈Y ‖x− y‖.
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Firstly, if ‖x + Y ‖ = 0 then there is a sequence of vectors yj ∈ Y such
that limj→∞ ‖x − yj‖ = 0. Since Y is closed, x ∈ Y and then x + Y = 0 + Y .
Conversely, ‖0 + Y ‖ = 0.

Secondly, the homogeneity is clear:

‖λ(x+ Y )‖ = inf
z∈x+Y

‖λz‖X = |λ| inf
z∈x+Y

‖z‖X = |λ|‖x+ Y ‖.

Finally, the triangle inequality:

‖(x1 + Y ) + (x2 + Y )‖ = inf
z1∈x1+Y,z2∈x2+Y

‖z1 + z2‖X
≤ inf

z1∈x1+Y
‖z1‖X + inf

z2∈x2+Y
‖z2‖X

= ‖x1 + Y ‖+ ‖x2 + Y ‖

Example 1.6.3. (i) If X = (R2, ‖ · ‖2) and Y = (1, 0)R, then X/Y consists of
lines in X of the form (s, t)+Y . Note that each such line may be written uniquely
in the form (0, t) + Y , and this choice minimizes the norm of the element of X
that represents the line.

(ii) The quotient space may be a little odd. For instance, let c denote the
space of all sequences (xj) with the property that limj→∞ xj exists. This is a
closed subspace of `∞. What is the quotient `∞/c?

(iii) ‖x+ Y ‖ defines a norm on X/Y only if Y is a closed subspace.
(iv) dim(X/Y )–the dimension of X/Y is called the codimension of Y . More-

over, a linear subspace of codimension one is called a hyperplane.

Exercises

1.1 Let p ∈ (1,∞) and q = p/(p− 1). Prove Hölder’s inequality in the following
forms. For vectors:

n∑

j=1

|xjyj | ≤
( n∑

j=1

|xj |p
) 1
p
( n∑

j=1

|yj |q
) 1
q

.

For sequences (xj) and (yj) with
∑

j |xj |p <∞ and
∑
j |yj |q <∞:

∑

j

|xjyj | ≤
(∑

j

|xj |p
) 1
p
(∑

j

|yj |q
) 1
q

.

For Riemann-integrable functions f, g with
∫ 1

0 |f |p <∞,
∫ 1

0 |g|q <∞:

∫ 1

0

|fg| ≤
(∫ 1

0

|f |p
) 1
p
(∫ 1

0

|g|q
) 1
q

.
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1.2 Let p ∈ [1,∞). Show Minkowski’s inequality in the following forms. For
vectors: ( n∑

j=1

|xj + yj |p
) 1
p ≤

( n∑

j=1

|xj |p
) 1
p

+
( n∑

j=1

|yj |p
) 1
p

.

For sequences (xj) and (yj) with
∑

j |xj |p <∞ and
∑
j |yj |p <∞:

(∑

j

|xj + yj |p
) 1
p ≤

(∑

j

|xj |p
) 1
p

+
(∑

j

|yj |p
) 1
p

.

For Riemann-integrable functions f, g with
∫ 1

0 |f |p <∞,
∫ 1

0 |g|p <∞:

(∫ 1

0

|f + g|p
) 1
p ≤

(∫ 1

0

|f |p
) 1
p

+
(∫ 1

0

|g|p
) 1
p

.

1.3 For each of the following linear spaces, determine the dimension:
(i) The set of vectors x = (xj) in Rn with

∑n
j=1 xj = 0;

(ii) The set of continuous functions f : [0, 1]→ R;
(iii) The set of polynomials on [0, 1].

1.4 Prove that if X is an n-dimensional normed linear spaces over R then X is
topologically isomorphic to Rn.

1.5 Norms ‖ · ‖(1) and ‖ · ‖(2) are said to be equivalent if the identity map
I : (X, ‖ · ‖(1))→ (X, ‖ · ‖(2)) is a topological isomorphism. Prove that on C[0, 1]
the sup-norm is not equivalent to any p-norm, 1 ≤ p <∞.

1.6 Prove that any norm ‖ · ‖ : V → R on a linear space V over the field
F is continuous on V , but also vector addition and scalar multiplication are
continuous whenever X × Y is equipped with the norm ‖ · ‖X + ‖ · ‖Y .

1.7 Recall that `∞ is the space of all bounded infinite sequences x = (xj) of
complex numbers with the sup-norm ‖x‖∞ = supj∈N |xj |. Prove: if `0 is the
class of all infinite sequence of complex numbers which have only finitely many
non-zero terms, then `0 is not closed in `∞.

1.8 Given a normed linear space X = (X, ‖·‖X). Prove the following statements:
(i) S◦ ⊂ S ⊂ S̄ for any S ⊂ X ;
(ii) Suppose Y = (Y, ‖ · ‖Y ) is another normed linear space. Then a map

f : X → Y is continuous iff for every open set U ⊂ Y , the pre-image f−1(U) ⊂ X
is also open. But, there is a continuous map f : R → R such that f(U) is not
open even if U is open.

(iii) Any open and closed balls in X are convex.

1.9 Prove that if X = (X, ‖ · ‖X) is a normed linear space, and Y is a subspace
of X , then X/Y is a normed space under the norm ‖x + Y ‖ = infz∈x+Y ‖z‖X
iff Y is closed.



2. Banach Spaces

In this chapter, we consider complete spaces - trying to do functional analysis
in non-complete spaces is a little like trying to do elementary analysis over the
rationals. In particular, we discuss the contraction mappings on Banach spaces
and their applications in differential and integral equations.

2.1 Definition

Definition 2.1.1. A complete normed linear space is called a Banach space.

Example 2.1.1. (i) Any finite-dimensional normed linear space (`np , 1 ≤ p ≤ ∞)
is a Banach space.

(ii) C[0, 1] with sup-norm is a Banach space over R. In fact, if (fj) is Cauchy
in C[0, 1], then for any ε > 0 there exists N ∈ N such that

m,n ≥ N ⇒ |fm(x)− fn(x)| ≤ ‖fm − fn‖∞ < ε for all x ∈ [0, 1].

So (fj(x)) is Cauchy sequence in R. Therefore it converges to some real number
f(x) for each x ∈ [0, 1]; this defines a new function f such that fj → f pointwise.
It remains to be shown that (fj) converges to f uniformly on [0, 1], and that
f ∈ C[0, 1]. But this follows readily from the last estimate when letting m→∞.

(iii) The sequence space `p is a Banach space. To see this, assume that (xj)

is a Cauchy in `p, and write xj = (x
(1)
j , x

(2)
j , ...). Recall that ‖ · ‖p ≥ ‖ ·‖∞ for all

p ∈ [1,∞]. So, given ε > 0 we may find N such that m,n > N ⇒ ‖xn−xm‖p < ε

which in turn implies that ‖xn−xm‖∞ < ε, so for each k, |x(k)
n −x(k)

m | < ε. That

is, if (xj) is Cauchy in `p then (x
(k)
j ) is a Cauchy in R. Since R is complete, we

deduce that for each k we have x
(k)
j → y(k). Note that this does not imply by

itself xj → y. However, if we know that (xj) is Cauchy, then it does. In fact,
we prove this for p < ∞ but the p = ∞ case is similar. Fix ε > 0, and use the
Cauchy criterion to find N such that n,m > N implies that

∞∑

k=1

|x(k)
n − x(k)

m |p < ε.

Now fix n and let m→∞ to see that
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∞∑

k=1

|x(k)
n − y(k)|p ≤ ε.

This last inequality means that ‖xn − y‖p ≤ ε
1
p , showing that xn → y =

(y(1), y(2), ...) ∈ `p.

Definition 2.1.2. For a sequence (xj) in a normed linear space (X, ‖ · ‖), we
say that the series

∑∞
j=1 xj is absolutely convergent provided

∑∞
j=1 ‖xj‖ <∞.

Theorem 2.1.1. Let (X, ‖ · ‖) be a normed linear space. Then it is a Banach
space if and only if the absolute convergence of

∑∞
j=1 xj implies its convergence.

Proof. On the one hand, suppose that (X, ‖ · ‖) is a Banach space. Consider the

sequence of partial sums sk =
∑k
j=1 xj . Since

∑∞
j=1 xj is absolutely convergent,

we conclude that

‖sm − sk‖ ≤
m∑

j=k+1

‖xj‖ → 0 as m > k →∞.

It follows that (sm) is Cauchy; since X is complete this sequence converges, so∑∞
j=1 xj converges.
On the other hand, assume that (xj) is a Cauchy sequence in (X, ‖ ·‖). Then

for each k ∈ N there is a Nk ∈ N such that

i, j ≥ Nk ⇒ ‖xi − xj‖ < 2−k.

Without loss of generality, we may assume that Nk+1 ≥ Nk. This yields that
(xNk ) is a subsequence of (xk). Set y1 = xN1 and yk = xNk −xNk−1

when k ≥ 2.
Note that

l∑

k=1

‖yk‖ < ‖y1‖+

l∑

k=2

21−k ≤ ‖y1‖+ 1.

So (
∑l

k=1 ‖yk‖) is non-decreasing and bounded, and hence is convergent. By
hypothesis,

∑∞
k=1 yk is convergent. Since

∑n
k=1 yk = xNn , it follows that (xn+K)

is convergent in (X, ‖ ·‖). This, together with the fact that (xk) is Cauchy, infers
that (xk) is convergent. Therefore, (X, ‖ · ‖) is a Banach space.

Example 2.1.2. Theorem 2.1.1 is clearly not true for general normed linear
spaces. For example, if fj(x) = xj−1 − xj for j ∈ N, then fj ∈ C[0, 1],∑∞

j=1 ‖fj‖2 <∞, and

∞∑

j=1

fj(x) = lim
k→∞

(1− xk), x ∈ [0, 1],

is not an element of C[0, 1]. This is, of course, due to the fact that (C[0, 1], ‖ ·‖2)
is not complete.
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2.2 Contraction Mapping Theorem

In this section we prove the simplest of the many fixed-point theorems. Such
theorems are useful for solving equations, and with the formalism of function
spaces one uniform treatment may be given for equations like x = cosx, and
dy
dx = x+ tan(xy), y(0) = y0.

Definition 2.2.1. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be two normed linear
spaces. A map T : X → Y is called a contraction if there is α ∈ [0, 1) such that

‖T (x)− T (y)‖Y ≤ α‖x− y‖X , x, y ∈ X.

Here α is called the contraction constant.

Example 2.2.1. (i) Let X = Y = C[0, 1] be equipped with the sup-norm and set
T (f)(x) = α

∫ x
0
f(t)dt, α ≥ 0. Clearly, if α ∈ [0, 1) then T is a contraction since

‖T (f)− T (g)‖∞ ≤ α‖f − g‖∞.

(ii) If f(x) = 3−1(x+sinx) then f is a contraction mapping from R to itself.

A contraction mapping contracts or shrinks the distance between points by
the factor α. Clearly, any contraction map is uniformly continuous on X . A
mapping T : X → X has a fixed point if T (p) = p for some p ∈ X . We show the
following Banach’s theorem on contraction mapping and fixed point.

Theorem 2.2.1. Let X = (X, ‖ · ‖X) be a Banach space. If T : X → X is a
contraction mapping, then T has a unique fixed point.

Proof. Let p0 ∈ X . Define pk+1 = T (pk) for k ∈ N ∪ {0}. One claims that {pk}
is a Cauchy sequence in X . In fact,

‖p2 − p1‖X = ‖T (p1)− T (p0)‖X ≤ α‖p1 − p0‖X ,

and so

‖p3 − p2‖X = ‖T (p2)− T (p1)‖X ≤ α‖p2 − p1‖X ≤ α2‖p1 − p0‖X .

Generally, one has that if k > j then

‖pk − pj‖X ≤
k−1∑

i=j

‖pi+1 − pi‖X ≤
k−1∑

i=j

αi‖p1 − p0‖X ≤
αj

1− α‖p1 − p0‖X .

This, together with α ∈ [0, 1), implies {pk} is Cauchy and hence it converges to
a point p ∈ X : limk→∞ pk = p in X .

Since T is uniformly continuous,

T (p) = lim
k→∞

T (pk) = lim
k→∞

pk+1 = p.
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That is to say, p is a fixed point of T .
Regarding the uniqueness, suppose q is also a fixed point of T . Then

‖p− q‖X = ‖T (p)− T (q)‖X ≤ α‖p− q‖X

and hence ‖p− q‖X = 0 due to α ∈ [0, 1). This implies p = q.

It is worth remarking that the above proof is constructive in the sense that
the fixed point is the limit of the iterates given by

pk+1 = T (pk)

where the initial point or initial guess p0 is an arbitrary point in X . The previous
estimate gives the rapidity of the convergence of pk → p:

‖p− pj‖X ≤
αj

1− α‖T (p0)− p0‖X .

Corollary 2.2.1. If S is a closed subset of the Banach space X = (X, ‖ · ‖X),
and T : S → S is a contraction mapping, then T has a unique fixed point in S.

Proof. Simply notice that S is itself complete (since it is a closed subset of a
complete space), and the proof of the above theorem does not use the linear
space structure of X .

Corollary 2.2.2. Let S be a closed subset of the Banach space X = (X, ‖ · ‖X).
Suppose there is an n ∈ N such that the n-th composition

Tn(p) = T (T (T (· · · (T (p)))))︸ ︷︷ ︸
n

is a contraction mapping, then T has a unique fixed point.

Proof. Since Tn is a contraction mapping, it has a unique fixed point p. If α is
the contraction constant for Tn, then

‖T (p)− p‖X = ‖T (Tn(p)) − Tn(p)‖X = ‖Tn(T (p))− Tn(p)‖X ≤ α‖T (p)− p‖X

and hence T (p) = p.
If q is another fixed point of T then it is also a fixed point of Tn since

Tn(q) = Tn−1(T (q)) = Tn−1(q) = · · · = q.

By the uniqueness of the fixed point of Tn, it follows that q = p.

Example 2.2.2. (i) Each map defined in Example 2.2.1 has a unique fixed point.
(ii) Let X = Y = C[a, b] be equipped with the sup-norm, 0 < b− a <∞ and

T (f)(x) =

∫ x

a

f(t)dt, a ≤ x ≤ b.
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It is easy to see
‖T (f)− T (g)‖∞ ≤ (b− a)‖f − g‖∞.

If b− a ≥ 1 then T is not a contraction. However,

Tn(f)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt, n ∈ N

with the estimate

‖Tn(f)− Tn(g)‖∞ ≤
1

n!
(b− a)n‖f − g‖∞,

so that Tn is a contraction for n large enough.
(iii) If the contraction constant α = 1 then the theorem fails. For example,

let X = Y = R and f(x) = π
2 + x− arctanx, then

|f(x)− f(y)| = |f ′(ζ)||x − y| = ζ2

1 + ζ2
|x− y| < |x− y|

where ζ is a point lying between x and y. However, there is no x ∈ R such that
f(x) = x.

(iv) There is a discontinuous function f such that its iteration becomes a
contraction mapping. For instance, if

f(x) =

{
1
4 , if x ∈ [0, 1/2],
1
2 , if x ∈ (1/2, 1].

then f(f(x)) = 1/4 for x ∈ [0, 1].
(v) A basic linear problem is the following: let T : Rn → Rn be the affine

map defined by T (x) = Ax+ b where A = (aij) is an n×n matrix. Equivalently,
T (x) = y where yi =

∑n
j=1 aijxj + bi for i = 1, 2, ..., n. If T is a contraction

map, then we can use the above theorem to solve the equation T (x) = x. The
conditions under which T is a contraction depend on the choice of norm for Rn.
Three cases follow.

(1) ‖x‖∞ = maxi{|xi|}. In this case,

‖T (x)− T (y)‖∞ = max
i

∣∣∣
n∑

j=1

aij(xj − yj)
∣∣∣ ≤

(
max
i

n∑

j=1

|aij |
)
‖x− y‖∞.

Thus the contraction condition is

max
1≤i≤n

n∑

j=1

|aij | ≤ α < 1. (2.1)

(2) ‖x‖1 =
∑n

i=1 |xi|. In this case,

‖T (x)− T (y)‖1 =
∑

i

∣∣∣
n∑

j=1

aij(xj − yj)
∣∣∣ ≤

(
max
j

n∑

i=1

|aij |
)
‖x− y‖1.
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Thus the contraction condition is

max
1≤j≤n

n∑

i=1

|aij | ≤ α < 1. (2.2)

(3) ‖x‖2 =
(∑n

i=1 |xi|2
) 1

2 . In this case,

‖T (x)− T (y)‖22 =
n∑

i=1

( n∑

j=1

aij(xj − yj)
)2

≤
( n∑

i=1

n∑

j=1

|aij |2
)2

‖x− y‖22.

Thus the contraction condition is

n∑

i=1

n∑

j=1

|aij |2 ≤ α < 1. (2.3)

It follows that if any one of these three conditions holds, then there exists a
unique solution in Rn to the affine equation Ax+ b = x. Moreover, the solution
may be approximated using the iterative scheme x1 = T (x0), x2 = T (x1), ....
Note that each of these three conditions is sufficient for the method to work, but
none of them are necessary, since (2.1), (2.2) and (2.3) are not equivalent.

2.3 Applications to Differential and Integral Equations

As mentioned before, the most important applications of the contraction map-
ping method are to differential and integral Equations. The first result in this
direction is due to Picard.

Theorem 2.3.1. Let D ⊆ R2 be open and (x0, y0) ∈ D. Let f : D → R be a
continuous and satisfy a Lipschitz condition of the form:

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, (x, y1), (x, y2) ∈ D.

Consider the Initial Value Problem (IVP):

dy

dx
= f(x, y(x)), y(x0) = y0.

Then there exists a δ > 0 such that the IVP has a unique solution in the interval
[x0 − δ, x0 + δ].

Proof. Clearly, solving this IVP is equivalent to solving the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.

So, it is our wish to show that the last equation has a unique solution.



2.3 Applications to Differential and Integral Equations 23

Suppose R ⊂ D is a closed rectangle centered at (x0, y0). Then there isM > 0
such that

max
x,y∈R

|f(x, y)| ≤M.

Now choose δ > 0 such that Lδ < 1 and

[x0 − δ, x0 + δ]× [y0 −Mδ, y0 +Mδ] ⊆ R.

Set

S =
{
φ ∈ C[x0 − δ, x0 + δ] : φ([x0 − δ, x0 + δ]) ⊆ [y0 −Mδ, y0 +Mδ]

}
.

Note that S is a closed subset of C[x0 − δ, x0 + δ]. So S is complete.
Define a mapping T : S → S by

T (φ)(x) = y0 +

∫ x

x0

f(t, φ(t))dt.

Obviously, T (φ) is continuously differentiable and

|T (φ)(x) − y0| ≤M |x− x0| ≤Mδ.

This implies T (φ) ∈ S. Now, our problem is equivalent to showing that T has a
unique fixed point in S. Thus, it suffices to verify that T is a contraction. For
this, if x ∈ [x0 − δ, x0 + δ] and φ, ψ ∈ S, then

|T (φ)(x) − T (ψ)(x)| ≤
∫ x

x0

|f(t, φ(t))− f(t, ψ(t))|dt ≤ L|x− x0|‖φ− ψ‖∞,

and the result follows.

Example 2.3.1. (i) Note that any existence theorem for the IVP in the above
must be local in nature. For example,

dy

dx
= y2, y(1) = −1,

has the solution y(x) = −1/x, which is not defined at x = 0 even though
f(x, y) = y2 is continuous there.

(ii) If the Lipschitz condition is dropped, the IVP still has a solution, but
the solution may fail to be unique. For instance the IVP:

dy

dx
= y1/3, y(0) = 0,

has an infinite number of solutions

yc(x) =

{
0, if 0 ≤ x ≤ c,(

2(x−c)
3

)3/2

, if c < x ≤ 1.

where c ∈ [0, 1].
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The condition on the set D used in the last theorem arise very often so it is
useful to have a short description for them.

Definition 2.3.1. A domain in a normed linear space X is an open connected
set.

An example of a domain in R containing the point a is an interval (a−δ, a+δ)
for some δ > 0. Note that if D is a domain in (X, ‖ · ‖X) and a ∈ D then for
some r > 0 the open ball Br(a) = {x ∈ X : ‖x− a‖X < r} lies in D.

Picard’s theorem easily generalizes to systems of simultaneous differential
equations.

Theorem 2.3.2. Let D ⊂ Rn+1 be a domain containing (x0, y01, ..., y0n) and
let f1, ..., fn be continuous functions from D to R each satisfying a Lipschitz
condition

|fi(x, y1, ..., yn)− fi(x, z1, ..., zn)| ≤ L max
1≤i≤n

|yi − zi|

for (x, y1, ..., yn), (x, z1, ..., zn) ∈ D. Then there is an interval (x0 − δ, x0 + δ) on
which the system of simultaneous ordinary differential equations

dyi
dx

= fi(x, y1, ..., yn) for i = 1, ..., n

has a unique solution yi = φi(x), i = 1, ..., n satisfying the initial conditions
φi(x0) = y0i, i = 1, ..., n.

Proof. As in the proof of the last theorem, write the system in integral form

φi(x) = y0i +

∫ x

x0

fi(t, φ1(t), ..., φn(t))dt, i = 1, ..., n.

Since each of fi is continuous on D, there is a bound |fi(x, y1, ...yn)| ≤M in some
domain D′ ⊂ D with (x0, y01, ..., y0n) ∈ D′. Choose δ > 0 with the properties
that Mδ < 1 and

|x− x0| ≤ δ and max
i
|yi − y0i| ≤Mδ ⇒ (x, y1, ..., yn) ∈ D′.

Let now S be the set of n-tuples φ = (φ1, ..., φn) of continuous functions
defined on the interval [x0 − δ, x0 + δ] and such that |φi(x) − y0i| ≤ Mδ for all
i = 1, ..., n. The set S may be equipped with the norm

‖φ‖ = max
x,i
|φi(x)|.

It is easy to check that S is complete. The mapping T defined by the set of
integral operators

(T (φ))i(x) = y0i +

∫ x

x0

fi(t, φ1(t), ..., φn(t))dt, i = 1, ..., n.
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for |x − x0| ≤ δ is a contraction from S to itself. To see this, first note that if
φ ∈ S and |x− x0| ≤ δ,

‖φi(x)− y0i| =
∣∣∣∣
∫ x

x0

fi(t, φ1(t), ..., φn(t))dt

∣∣∣∣ ≤Mδ, i = 1, ..., n,

so that T (φ) = ((T (φ)1, ..., (T (φ))n) lies in S. It remains to check that T is a
contraction map:

|(T (φ))i(x)− (T (ψ))i(x)| ≤
∫ x

x0

|fi(t, φ1(t), ..., φn(t))− fi(t, ψ1(t), ..., ψn(t))|dt

≤ Mδmax
i
|φi(x)− ψi(x)|

≤ Mδ‖φi − ψi‖, i = 1, ..., n;

so T : S → S is a contraction. It follows that the equation has a unique solution.
so the system of differential equations has a unique solution.

Integral equations may be a little less familiar than differential equations
although we have seen already that the two are intimately connected, so we
begin with the following example.

Example 2.3.2. (i) Given problems in physics led to the need to “invert” the
integral equation

g(x) =
1√
2π

∫ ∞

−∞
eixyf(y)dy

for functions f and g of specific kinds. This was solved – formally at least – by
Fourier in 1811, who noted that this equation requires that

f(x) =
1√
2π

∫ ∞

−∞
e−ixyg(y)dy.

(ii) When studying generalizations of the tautochrone problem, Abel was led
to the integral equation

g(x) =

∫ x

a

f(y)

(x− y)b
dy, b ∈ (0, 1), g(a) = 0

for which he found the solution

f(y) =
sinπb

π

∫ y

a

g′(x)

(y − x)1−b dx.

Theorem 2.3.3. Let k : [a, b]× [a, b]→ R be continuous and φ ∈ C[a, b]. Then
the Fredholm Integral Equation (FIE):

f(x) = λ

∫ b

a

k(x, y)f(y)dy + φ(x), λ ∈ R

has a unique solution f ∈ C[a, b] for certain λ.
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Proof. Define a mapping K : C[a, b]→ C[a, b] by

K(f)(x) = λ

∫ b

a

k(x, y)f(y)dy + φ(x), λ ∈ R.

And recall the sup-norm on C[a, b]:

‖f‖∞ = max
x∈[a,b]

|f(x)|.

Solving the FIE is equivalent to showing that K has a fixed point. Now

‖K(f)−K(g)‖∞ ≤ |λ| sup
x,y∈[a,b]

|k(x, y)|(b− a)‖f − g‖∞.

Thus, if
|λ| sup

x,y∈[a,b]

|k(x, y)|(b− a) < 1,

then K is contraction and, therefore, has a unique fixed point.

More is true.

Theorem 2.3.4. Let k : [a, b]× [a, b]→ R be continuous and φ ∈ C[a, b]. Then
the Volterra Integral Equation (VIE):

f(x) = λ

∫ x

a

k(x, y)f(y)dy + φ(x)

has a unique solution in C[a, b].

Proof. To see this, it is enough to show that K : C[a, b]→ C[a, b] defined by

K(f)(x) = λ

∫ x

a

k(x, y)f(y)dy + φ(x),

has a unique fixed point. A simple calculation implies that if f1, f2 ∈ C[a, b] and
M = supx,y∈[a,b] |k(x, y)| then

|K(f1)(x) −K(f2)(x)| ≤ |λ|M‖f1 − f2‖∞(x− a),

|K(K(f1))(x) −K(K(f2))(x)| ≤
(
|λ|M

)2‖f1 − f2‖∞
(x− a)2

2
,

and

|Kn(f1)(x) −Kn(f2)(x)| ≤
(
|λ|M

)n‖f1 − f2‖∞
(x− a)n

n!
.

Hence

‖Kn(f1)−Kn(f2)‖∞ ≤
(
|λ|(b− a)M

)n

n!
‖f1 − f2‖∞.

Because (
|λ|(b− a)M

)n

n!
→ 0 as n→∞,

it follows that Kn is a contraction mapping for large n and, therefore, has a
unique fixed point for any value of the parameter λ.
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Exercises

2.1 Prove that if Cn[0, 1], n ∈ N, is equipped with

‖f‖ = sup
0≤k≤n

sup
t∈[0,1]

|f (k)(t)|,

then it is a Banach space under this norm ‖ · ‖.
2.2 Let c0 denote the set of all infinite sequence (xj) of complex numbers such
that xj → 0 as j → ∞. Explain why c0 is a Banach space under the norm
‖(xj)‖∞ = supj |xj |.
2.3 Define T : C[0, 1]→ C[0, 1] by T (f)(x) =

∫ x
0
f(t)dt. Prove that

i) T is not a contraction;
ii) T has a unique fixed point;
iii) T (T ) is a contraction.

2.4 Let f : R → R be differentiable with |f ′(x)| ≤ α, where α ∈ [0, 1). Prove
that f is a contraction mapping.

2.5 Show that there is a unique continuous function f : [0, 1]→ R such that

f(x) = sinx+

∫ 1

0

f(y) exp
(
− (x+ y + 1)

)
dy.
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3. Linear Operators

Given two linear spaces X and Y over a field F, a linear operator T : X → Y is
a map T from X to Y such that

T (α1x1 + α2x2) = α1T (x1) + α2T (x2), ∀x1, x2 ∈ X ; ∀α1, α2 ∈ F.

From this definition it follows that T (0) = T (2 · 0) = 2T (0), so that T (0) = 0.
Also, we write T (X) = {Tx : x ∈ X}. If T (x1) = T (x2) implies x1 = x2 then
we say that T is a one-to-one map. Clearly, if T is linear then T is one-to-one if
and only if T (x) = 0 implies x = 0.

In this chapter, we discuss bounded operators, inverse operators, and four
classical theorems in functional analysis: uniform bounded principle, open map-
ping theorem, closed graph theorem and Hahn-Banach theorem.

3.1 Bounded Operators

To begin with, we give the definition of a bounded operator.

Definition 3.1.1. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be normed linear
spaces over F. We say that a linear operator T : X → Y is bounded provided
there exists a constant C ≥ 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X. Define

‖T‖ = ‖T‖X→Y = sup
x∈X,x6=0

{‖Tx‖Y
‖x‖X

}
.

Example 3.1.1. (i) ‖T‖ = sup‖x‖X=1 ‖Tx‖Y follows from

∥∥∥x‖x‖−1
X

∥∥∥
X

= 1 ∀x 6= 0.

(ii) Equip `2 with 2-norm, and let T : `2 → `2 be given by Tx = (0, x1, x2, ...)
when x = (x1, x2, ...). Then it is easy to check that T is a bounded linear operator
with ‖T‖ = 1.

(iii) Choose for both X and Y the space C[0, 1] with the sup-norm. Define
T : X → Y by (Tf)(x) = exf(x), x ∈ [0, 1]. Then T is bounded with ‖T‖ = e.
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Recall Theorem 1.5.1 that a continuous linear transformation T from X to
Y is a linear transformation with the property:

‖xn − x‖X → 0⇒ ‖Txn − Tx‖Y = 0.

The following result tells us that the boundedness of a linear operator is equiv-
alent to its continuity.

Theorem 3.1.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces and
T : X → Y be a linear operator. Then the following are equivalent:

(i) T is continuous in X.
(ii) T is continuous at 0.
(iii) T is bounded.
(iv) T maps bounded subsets of X to bounded subsets of Y .

Proof. (i)⇔ (ii). The direction (i)⇒ (ii) is trivial. Regarding (ii)⇒ (i), we suppose
that T is continuous at 0 ∈ X . If xn → x then xn − x→ 0. Hence T (xn − x)→
T (0), so that T (xn)→ T (x).

(iii)⇔ (ii). If T is bounded and xn → 0, then Txn → 0 also. It follows that T
is continuous at 0, so by (i)⇔ (ii) T is continuous in X . Conversely, assume that
T is continuous in X . If T is not bounded, then for any n ∈ N there exists a point
xn ∈ X with ‖Txn‖Y ≥ n‖xn‖X . Let yn = xn

n‖xn‖X , so that ‖yn‖X = n−1 → 0.

However, ‖Tyn‖Y > 1 and T (0) = 0, contradicting the assumption that T is
continuous at 0.

(iv)⇔ (ii). Suppose (ii) is true. So T is bounded with ‖T‖ ≤ C for some
constant C > 0 due to (iii)⇔ (ii). If S is a bounded subset of X , then there is a
constant M > 0 such that ‖x‖X ≤M ∀x ∈ S and hence

‖Tx‖Y ≤ C‖x‖X ≤ CM ∀x ∈ X.

That is to say, T (S) is a bounded subset of Y . Conversely, assume that (iv) is
true. Given an open ball BYε (0) = {y ∈ Y : ‖y‖Y < ε} in Y , let BX1 (0) = {x ∈
X : ‖x‖X < 1} denote the open unit ball in X . By (iv) it follows that T (B1) is
bounded in Y . Thus, there is a λ > 0 such that

T (BX1 ) ⊂ λBYε (0) = {y ∈ Y : ‖y‖Y < λε}.

This implies T (BXλ−1) ⊂ BYε since T is linear, and so T is continuous at 0.

Example 3.1.2. Suppose X = Rn with 2-norm, and ej = (0, ..., 1, ..., 0) are a ba-
sis of Rn. Then any x ∈ Rn has the form x =

∑n
j=1 xjej and ‖x‖22 =

∑n
j=1 |xj |2.

If T : Rn → Y is a linear transformation, where Y = (Y, ‖ · ‖Y ) is a normed
linear space over F. The Cauchy-Schwarz inequality implies

‖T (x)‖Y ≤ ‖x‖2




n∑

j=1

‖T (ej)‖2Y




1
2

.

So, T is bounded with ‖T‖ ≤
(∑n

j=1 ‖T (ej)‖2Y
) 1

2

.
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Indeed, the last example is a special case of the following result.

Theorem 3.1.2. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be two noremd linear
spaces over F. If X is finite dimensional, then any linear transformation T :
X → Y is bounded.

Proof. Note that any two norms on a finite dimensional linear space X over F
are equivalent. So, we construct a new norm ‖ · ‖ via ‖ · ‖X and ‖ · ‖Y as follows.

‖x‖ = ‖x‖X + ‖Tx‖Y , x ∈ X.

Of course, ‖ · ‖ is a norm on X and so it is equivalent to ‖ · ‖X . This implies a
constant C > 0 with ‖ · ‖ ≤ C‖ · ‖X . It follows that ‖Tx‖Y ≤ ‖x‖ ≤ C‖x‖X for
all x ∈ X . In other words, T : X → Y is bounded.

Next, we consider the space of linear operators.

Definition 3.1.2. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be two noremd linear
spaces over F. Denote by B(X,Y ) the set of all bounded linear operators from
X to Y . In particular, B(X) = B(X,X).

Theorem 3.1.3. (i) B(X,Y ) is a linear space over F with respect to operations:

(T + S)(x) = T (x) + S(x); (αT )(x) = αT (x), x ∈ X ; α ∈ F.

(ii) The function ‖ · ‖ : B(X,Y )→ R, defined for every T ∈ B(X,Y ) by

‖T‖ = sup
x∈X,‖x‖X 6=0

‖T (x)‖Y
‖x‖X

,

is a norm on B(X,Y ).
(iii) If Y is a Banach space, then B(X,Y ) is a Banach space.

Proof. (i). Check those conditions for a linear space with B(X,Y ).
(ii) We have to verify three conditions required for a norm. First, it is clear

that ‖T‖ ≥ 0. If ‖T‖ = 0 then ‖Tx‖Y = 0 for all x ∈ X , and hence Tx = 0 for
all x ∈ X . This gives T = 0. Conversely, T = 0 implies ‖T‖ = 0.

Next,

‖αT‖ = sup
x∈X,‖x‖X 6=0

‖αT (x)‖Y
‖x‖X

= |α|‖T‖.

Finally,

‖T + S‖ = sup
x∈X,‖x‖X 6=0

‖T (x) + S(x)‖Y
‖x‖X

≤ sup
x∈X,‖x‖X 6=0

‖T (x)‖Y
‖x‖X

+ sup
x∈X,‖x‖X 6=0

‖S(x)‖Y
‖x‖X

= ‖T‖+ ‖S‖.
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(iii) Let Y be a Banach space. If (Tj) is a Cauchy sequence in B(X,Y ), then
it is bounded and so there is a constant C > 0 such that ‖Tjx‖Y ≤ C‖x‖X for
all x ∈ X and j ∈ N. Since

‖Tjx− Tkx‖Y ≤ ‖Tj − Tk‖‖x‖X → 0 as j ≥ k →∞,

the sequence (Tjx) is a Cauchy sequence in Y . Nevertheless, Y is a Banach
space, so Tjx converges to y ∈ Y : y = limj→∞ Tjx = Tx. Clearly, T is linear,
and ‖Tx‖Y ≤ C‖x‖X for all x ∈ X . This means T ∈ B(X,Y ).

Note that we have not yet proved that Tj → T in ‖ · ‖. But, since (Tj) is
Cauchy, for every ε > 0 there is N ∈ N such that

j > k > N ⇒ ‖Tj − Tk‖ < ε.

Consequently,

j > k > N ⇒ ‖Tjx− Tkx‖Y ≤ ε‖x‖X ∀x ∈ X.

If j →∞ then
k > N ⇒ ‖Tx− Tkx‖Y ≤ ε‖x‖X .

That is to say, ‖Tk − T‖ ≤ ε as k > N . Thus, ‖Tk − T‖ → 0 as k →∞.

In many situations it makes sense to multiply elements of a normed linear
space together.

Definition 3.1.3. Let (X, ‖ · ‖X) be a Banach space over F. If there is a mul-
tiplication (x, y) 7→ xy from X × X → X such that for any x, y, z ∈ X and
α ∈ F,

(i) x(yz) = (xy)z;
(ii) x(y + z) = xy + xz;
(iii) (x + y)z = xz + yz;
(iv) α(xy) = (αx)y = x(αy);
(v) ‖xy‖X ≤ ‖x‖X‖y‖X,

then X is called a Banach algebra.

Example 3.1.3. (i) (C[0, 1], ‖ · ‖∞) is a Banach algebra with (fg)(x) = f(x)g(x).
(ii) If X = Rn then by choosing a basis for Rn we may identify B(Rn) with

the space of n× n real matrices.
(iii) If X is a Banach space over F, then (B(X), ‖ · ‖) is a Banach algebra

with ST = S ◦ T since

‖ST (x)‖X = ‖S(T (x))‖X ≤ ‖S‖‖T (x)‖X ≤ ‖S‖‖T‖‖x‖X ∀x ∈ X.

In the rest of this section, we focus on composition of linear transformations.
We start with the following simple result.

Theorem 3.1.4. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) be normed linear
spaces over F. If T ∈ B(X,Y ) and S ∈ B(Y, Z) then ST = S ◦ T ∈ B(X,Z)
with ‖ST‖ ≤ ‖S‖‖T‖.
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Proof. Clearly, ST is a linear transformation from X to Z. Since T and S are
continuous, we conclude that

‖(ST )x‖Z = ‖S(T (x))‖Z ≤ ‖S‖‖T (x)‖Y ≤ ‖S‖‖T‖‖x‖X, ∀x ∈ X.

This yields that ST is continuous and so in B(X,Z) with ‖ST‖ ≤ ‖S‖‖T‖, as
desired.

In fact, the composition defines a multiplication of two operators. Using this,
we are now able to study inverses.

Definition 3.1.4. Let X = (X, ‖ · ‖X) and Y = (Y, ‖ · ‖Y ) be normed linear
spaces over F. We say that T is invertible if there exists a linear transformation
S : Y → X such that TS = IY and ST = IX , where IX and IY are identity
elements in X and Y respectively. In particular, T ∈ B(X) is called invertible if
there exists a linear operator S ∈ B(X) with ST = I = TS, where I ∈ B(X) is
the identity operator. In this case, we write S = T−1.

Example 3.1.4. Define T : `2 → `2 by T (x1, x2, ...) = (0, x1, x2, ...). This map
is continuous but not invertible, since it is clearly not onto. If S : `2 → `2 is
given by S(x1, x2, ...) = (x2, x3, ...), then it is continuous but also not invertible,
because it is clearly not one to one. Note that ST = I 6= TS.

Theorem 3.1.5. Let (X, ‖ · ‖X) be a normed linear space over F.
(i) If T, S ∈ B(X) are invertible, then ST ∈ B(X) is invertible and

(ST )−1 = T−1S−1.

(ii) If (X, ‖ · ‖X) is a Banach space and T ∈ B(X) satisfies ‖T‖ < 1 then
I − T ∈ B(X) is invertible and

(I − T )−1 = lim
n→∞

(1 + T + T 2 + · · ·+ Tn) in
(
B(X), ‖ · ‖

)
.

(iii) If (X, ‖·‖X) is a Banach space and I stands for the class of all invertible
operators in B(X), then I is an open set in B(X).

Proof. (i) This follows from

(ST )T−1S−1 = I = T−1S−1(ST ).

(ii) If x ∈ X then
(
(I + T + T 2 + · · ·+ Tn)(x)

)
n

is a Cauchy sequence in X .
This is because: m > n implies

‖ · · · − · · · ‖ = ‖(I + T + T 2 + · · ·+ Tm)(x) − (I + T + T 2 + · · ·+ Tn)(x)‖X
= ‖Tn+1(x) + · · ·+ Tm(x)‖X
≤ ‖Tn+1(x)‖X + · · ·+ ‖Tm(x)‖X
≤
(
‖Tn+1‖+ · · ·+ ‖Tm‖

)
‖x‖X
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≤
( ∞∑

i=n+1

‖T‖i
)
‖x‖X

=
‖T‖n+1

1− ‖T‖‖x‖X
→ 0 as n→∞.

Note that X is a Banach space. So the sequence converges to a limit y ∈ X .
Let y = Ax. It is not hard to show that A : X → X is a linear operator on X .
Furthermore, letting m→∞, we have

‖A(x)− (I + T + T 2 + · · ·+ Tn)(x)‖X ≤
‖T‖n+1

1− ‖T‖‖x‖X ∀x ∈ X,

so that A− (I + T + T 2 + · · ·+ Tn) ∈ B(X), and thus A ∈ B(X). It is evident
that

‖A− (I + T + T 2 + · · ·+ Tn)‖ ≤ ‖T‖
n+1

1− ‖T‖ → 0 as n→∞,

and so that I + T + T 2 + · · · + Tn → A as n → ∞. It remains to verify that
A = (I − T )−1. For any x ∈ X we have

(
(I − T )A

)
(x) =

(
(I − T ) lim

n→∞
(I + T + T 2 + · · ·+ Tn)

)
(x)

=
(
(I − T ) lim

n→∞
(Ix+ Tx+ T 2x+ · · ·+ Tnx)

)

= lim
n→∞

(
x− Tn+1(x)

)
.

But
‖Tn+1(x)‖X ≤ ‖T‖n+1‖x‖X → 0 as n→∞,

so that Tn+1(x) → 0 as n → ∞, and so ((I − T )A(x)) = x. Similarly, we have
(A(I − T ))(x) = x for any x ∈ X . Therefore A = (I − T )−1.

(iii) If T ∈ I, then ‖T−1‖ 6= 0. We prove that the open ball

B =
{
S ∈ B(X) : ‖T − S‖ < ‖T−1‖−1

}

is a subset of I. To do so, it suffices to show that every element S ∈ B is
invertible. Because of

‖(T − S)T−1‖ ≤ ‖T − S‖‖T−1‖ < 1,

we obtain that
ST−1 = I − (T − S)T−1

is invertible by (ii) above, and so that S = (ST−1)T is invertible due to (i)
above.

Example 3.1.5. If X is a Banach space and T ∈ B(X), then we may define an
operator
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eT = I + T +
1

2!
T 2 +

1

3!
T 3 + · · · ,

which makes sense since

‖eT ‖ ≤ 1 + ‖T‖+
1

2!
‖T‖2 +

1

3!
‖T‖3 + · · · = exp(‖T‖).

This is particularly useful in linear systems theory and control theory; if x(t) ∈
Rn then dx/dt = Ax(t), x(0) = x0, where A is an n × n matrix, has a solution
x(t) = eAtx0.

3.2 Uniform Boundedness, Open Mapping and Closed
Graph

In this section, we proceed to discuss the uniform boundedness principle or the
Banach-Steinhaus theorem, open mapping theorem and closed graph theorem.

The first is the so-called uniform boundedness principle.

Theorem 3.2.1. Let (X, ‖ · ‖X) be a Banach space and (Y, ‖ · ‖Y ) be a normed
linear space. Let {Tα} be a family of bounded linear operators from X to Y . If
supα ‖Tαx‖Y <∞ for each x ∈ X, then supα ‖Tα‖ <∞.

Proof. Suppose that there are two constants C, δ > 0 and a point x0 ∈ X such
that

sup
α;‖x−x0‖X<δ

‖Tαx‖Y ≤ C. (3.1)

Then it is possible to find a uniform bound on {‖Tα‖}. In fact, for any y ∈ X
with y 6= 0, define

z =
δ

2‖y‖X
y + x0.

Then ‖z−x0‖X < δ and hence by (3.1) one gets ‖Tαz‖Y ≤ C. Furthermore, the
linearity of Tα and the triangle inequality of norm yield

δ

2‖y‖X
‖Tαy‖Y − ‖Tαx0‖Y ≤

∥∥∥∥
δ

2‖y‖X
Tαy + Tαx0

∥∥∥∥
Y

= ‖Tαz‖Y ≤ C,

which gives

‖Tαy‖Y ≤
2(C + ‖Tαx0‖Y )

δ
‖y‖X ≤

4C‖y‖X
δ

,

Of course, it follows that ‖Tα‖ ≤ 4C
δ , as desired.

To end the argument we have to verify that (3.1) holds. This can be done
by a contradiction argument. As a matter of fact, assume that (3.1) fails. Fix
an arbitrary ball B0 ⊂ X . By assumption there is a point x1 ∈ B0 such that
‖Tα1x1‖Y > 1 for some index α1. Since each Tα is bounded and hence continuous,
there exists a ball Bδ1(x1) ⊂ B0 such that 0 < δ1 < 1 and ‖Tα1(x)‖Y > 1 for
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x ∈ Bδ1(x1). By assumption, {Tαx} is not bounded on Bδ1(x1), so there exists
a point x2 ∈ Bδ1(x1) with ‖Tα2x2‖Y > 2 for some index α2 6= α1. Continue in
the same way: by continuity of Tα2 there is a ball Bδ2(x2) ⊂ Bδ1(x1) such that
0 < δ2 < 2−1 and ‖Tα2x‖Y > 2 when x ∈ Bδ2(x2).

Repeating this process produces points x3, x4, ..., different indices α3, α4, ...,
and positive numbers δ3, δ4, ... such that

Bδn(xn) ⊂ Bδn−1(xn−1), 0 < δn <
1

n
and ‖Tαnx‖Y > n ∀x ∈ Bδn(xn).

Consequently,
m > n =⇒ Bδm(xm) ⊂ · · · ⊂ Bδn(xn).

This gives that the sequence (xn) is a Cauchy sequence and thus converges to
some point z ∈ X since X is a Banach space. The continuity of Tαn implies
‖Tαnz‖Y ≥ n which contradicts the hypothesis that {Tαz} is bounded.

Definition 3.2.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces.
(i) A sequence (Tn) in B(X,Y ) is uniformly convergent if there is a T ∈

B(X,Y ) such that limn→∞ ‖Tn − T‖ = 0.
(ii) A sequence (Tn) in B(X,Y ) is strongly convergent if for any x ∈ X, the

sequence (Tnx) is convergent in Y . Moreover, if there is a T ∈ B(X,Y ) such
that limn→∞ ‖Tnx − Tx‖Y = 0 for all x ∈ X, then (Tn) is strongly convergent
to T .

Example 3.2.1. Clearly, the uniform convergence implies the strong convergence,
but not conversely. Consider `p, p ∈ [1,∞). For each n ∈ N define

Tnx = (xn, xn+1, ...), x = (x1, x2, ...) ∈ `p.

Then Tn is in B(`p) with ‖Tn‖ ≤ 1. Note that if x = (x1, x2, ...) ∈ `p then

‖Tnx‖p =



∞∑

j=n

|xj |p



1
p

→ 0 as n→∞.

So (Tn) is strongly convergent to 0. On the other hand, if en = (0, ..., 0, 1, 0, ...)
then ‖en‖p = 1 and Tnen = (1, 0, 0, ...) and hence ‖Tn‖ ≥ ‖Tnen‖p = 1. This
shows that (Tn) is not uniformly convergent to 0.

A special consequence of the uniform bounded principle that is quite useful
is the following.

Theorem 3.2.2. Let (X, ‖ · ‖X) be a Banach space and (Y, ‖ · ‖Y ) be a normed
linear space. If a sequence (Tn) in B(X,Y ) is strongly convergent, then there
exists T ∈ B(X,Y ) such that (Tn) is strongly convergent to T .
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Proof. Let (Tn) in B(X,Y ) be strongly convergent. Then for each x ∈ X the
sequence (Tnx) is convergent in Y and hence defines a linear operator T on X :
Tx = limn→∞ Tnx. The key is to show that T ∈ B(X,Y ). Note that (Tnx) is
bounded in Y . So, from the uniform bounded principle it turns out that there
is a constant C > 0 such that supn ‖Tn‖ ≤ C. Hence ‖Tnx‖Y ≤ C‖x‖X for all
x ∈ X . This implies ‖Tx‖Y ≤ C‖x‖X for all x ∈ X , showing that T is bounded.
The definition of T means that (Tn) converges strongly to T .

The second is to establish the open mapping theorem. To do so, we need the
Baire category theorem.

Definition 3.2.2. Let (X, ‖ · ‖X) be a normed linear space.
(i) A subset S ⊂ X is nowhere dense if Bε(x)∩ (X \ S̄) 6= ∅ for every point x

in S̄-the closure of S, and for every open ball Bε(x) = {y ∈ X : ‖y − x‖X < ε}.
(ii) The diameter of S ⊂ X is defined by diam(S) = supx,y∈S ‖x− y‖X .

Theorem 3.2.3. Let (X, ‖ · ‖X) be a Banach space.
(i) If {Fn} be a decreasing sequence of non-empty closed sets; that is, X ⊃

Fn ⊃ Fn+1 ∀n ∈ N, and if limn→∞ diam(Fn) = 0, then there exists uniquely
one point in

⋂∞
n=1 Fn.

(ii) X cannot be written as a countable union of nowhere dense sets.

Proof. (i) If x, y ∈ ⋂∞n=1 Fn, then ‖x−y‖X ≤ diam(Fn)→ 0 as n→∞ and hence
x = y. It follows that there can be no more than one point in the intersection.

Now choose a point xn ∈ Fn for each n ∈ N. Then ‖xn−xm‖X ≤ diam(Fn)→
0 as m ≥ n → ∞. Thus (xn) is Cauchy, so has a limit x say by completeness.
Each Fn is closed and contains xm with m ≥ n, so x ∈ Fn. It follows that
x ∈ ⋂∞n=1 Fn.

(ii) Suppose X =
⋃∞
j=1 Xj , where Xj is nowhere dense; that is, X̄j has empty

interior. Fix a ball B1(x0). Since X̄1 does not contain B1(x0), there must be a
point x1 ∈ B1(x0) with x1 /∈ X̄1. It follows that there is a ball Br1(x1) such that
Br1(x1) ⊂ B1(x0) and Br1(x1)

⋂
X̄1 = ∅. Assume without loss of generality that

r1 < 1/2.
Similarly, there is a point x2 and a radius r2 such that Br2(x2) ⊂ Br1(x1)

and Br2(x2) ∩ X̄2 = ∅, and without loss of generality r2 < 1/3. Note that
Br2(x2) ∩ X̄1 = ∅ automatically since Br2(x2) ⊂ Br1(x1).

Inductively, we obtain a sequence of decreasing closed balls Brn(xn) such
that Brn(xn) ∩ X̄j = ∅ for 1 ≤ j ≤ n and rn → 0 as n→∞.

Now by (i), there must be a point x in ∩∞n=1Brn(xn), so x /∈ X̄j for all j ≥ 1.
This yields that x /∈ ∪∞j=1X̄j = X , a contradiction.

Recall that a continuous map between normed linear spaces has the property
that the pre-image of any open set is open, but in general the image of an open
set is not open. Bounded linear operators between Banach spaces cannot do this.
This is the content of the open mapping theorem as follows.

Theorem 3.2.4. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. If T is a
bounded linear operator from X onto Y , then T (U) is open in Y whenever U is
open in X.
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Proof. We split the proof of the theorem into three steps. In what follows, denote
by BXr (x) and BYr (y) the balls of radius r > 0 centered at x ∈ X and y ∈ Y ,
respectively.

Step 1. We prove that for any ε > 0 there is a δ > 0 such that

T (BX2ε) ⊃ BYδ .

To see this, note that

X =

∞⋃

n=1

nBXε =

∞⋃

n=1

{nx : x ∈ BXε },

and T ∈ B(X,Y ) is surjective. So we have

Y = T (X) =

∞⋃

n=1

nT (BXε ) =

∞⋃

n=1

{ny : y ∈ T (BXε )}.

Since (Y, ‖ · ‖Y ) is a Banach space, we conclude that from Theorem 3.2.3 (ii)
that some nT (BXε ) is nowhere dense in Y , and so that

nT (BXε ) = {ny : y ∈ T (BXε )} ⊃ BYr (z) = {y ∈ Y : ‖y − z‖Y < r}

for some z ∈ Y and r > 0. Thus T (BXε ) must contain the ball BYδ (y0) where
y0 = z

n and δ = r
n . It follows that the set

V = {y1 − y2 : y1, y2 ∈ BYδ (y0)}

is contained in T (Ū), where

U = {x1 − x2 : x1, x2 ∈ BXε } ⊂ BX2ε.

Thus, T (BX2ε) ⊃ V . Any point y ∈ BYδ can be written as y = (y + y0) − y0, so
BYδ ⊂ V , as desired.

Step 2. We further prove that for any ε > 0 there is a δ > 0 such that

T (BX2ε) ⊃ BYδ .

To do so, choose (εn) with εn > 0 and
∑∞
n=1 εn < ε. By Step 1 there is a sequence

(δn) such that T (BX2εn) ⊃ BYδn . Without loss of generality, we may assume that
limn→∞ δn = 0.

Let y ∈ BYδ1 . Then there is a point x1 ∈ BX2ε1 with ‖y − Tx1‖Y < δ2. Since

y−Tx1 ∈ BYδ2 , we conclude that there is a point x2 ∈ BX2ε2 such that ‖y−Tx1−
Tx2‖Y < δ3. Continuing, we obtain a sequence (xn) such that xn ∈ BX2εn and

∥∥∥y − T
( n∑

k=1

xk
)∥∥∥
Y
< δn+1.
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Since ‖xn‖X < 2εn, we conclude that
∑∞

n=1 xn is absolutely convergent and
hence convergent to x =

∑∞
n=1 xn. This implies

‖x‖X ≤
∞∑

n=1

‖xn‖X < 2
∞∑

n=1

εn < 2ε.

The map T is continuous, so y = Tx since δn → 0. In other words, for any
y ∈ BYδ (δ = δ1) we have found a point x ∈ BX2ε such that Tx = y, implying the
desired inclusion.

Step 3. We prove that if G is open in X then for any point x ∈ G, there
exists a δ > 0 such that

BYδ
(
Tx
)
⊂ T (G).

In fact, if x ∈ G, then there exists an ε > 0 such that BX
2ε(x) ⊂ G. By Step 2,

we have T (BX2ε) ⊃ BYδ for some δ > 0. Hence

T (G) ⊃ T (x+BX2ε) = T (x) + T (BX2ε) ⊃ Tx+BYδ = BYδ (Tx).

Of course, this step completes the proof of the theorem.

As an application of the open mapping theorem we establish a general prop-
erty of inverse maps.

Definition 3.2.3. Let T : X → Y be an injective linear operator. Define the
inverse of T , T−1 by requiring that T−1y = x if and only if Tx = y. Then the
domain of T−1 is a linear subspace of Y and T−1 is a linear operator. Moreover,
T−1Tx = x ∀x ∈ X and TT−1y = y for all y in the domain of T−1.

Lemma 3.2.1. Let X and Y be Banach spaces, and let T be an injective bounded
linear map from X to Y . Then T−1 is a bounded linear map.

Proof. It suffices to prove the continuity of T−1. Since T = (T−1)−1 maps Ba-
nach space X to Banach space Y , we conclude from Theorem 3.2.4 that T maps
open sets in X to open sets in Y . This amounts to saying that T−1 is continuous.

Corollary 3.2.1. Let ‖ · ‖(1) and ‖ · ‖(1) be two norms defined on a Banach
space X. If there is a constant C1 > 0 such that ‖x‖(1) ≤ C1‖x‖(2) ∀x ∈ X,
then there exists another constant C2 > 0 such that ‖x‖(2) ≤ C2‖x‖(1) ∀x ∈ X.
Consequently, both norms are equivalent.

Proof. Consider the identity operator: I : (X, ‖·‖(2))→ (X, ‖·‖(1)); Ix = x ∀x ∈
X . Clearly, I is bounded. By Lemma 3.2.1 I−1 is also bounded, giving the norm
inequality in the other direction.

Definition 3.2.4. Given two normed linear spaces X and Y , let T : X → Y be
a linear operator. Then we define the graph of T to be

G(T ) = {(x, y) ∈ X × Y : y = Tx}.

Moreover we say that G(T ) is closed if G(T ) is a closed subset of X × Y .
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The forthcoming result is called the closed graph theorem.

Theorem 3.2.5. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Then a linear
operator T : X → Y is bounded if and only if G(T ) is closed.

Proof. We initially observe that X ×Y is a Banach space under (among others)
the norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y for x ∈ X and y ∈ Y . Addition and scalar
multiplication are defined in the expected manner:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and α(x, y) = (αx, αy).

The completeness of (X × Y, ‖ · ‖) follows readily from the hypothesis.
On the one hand, suppose that T : X → Y is bounded. To prove that G(T )

is closed subset of X×Y it is enough to show that G(T ) is (sequentially) closed.
Accordingly, assume that xn → x in X and Txn → y in Y . The boundedness
of T implies Txn → Tx in Y . Note that Y is Banach space. So Tx = y. This
means (x, y) ∈ G(T ). Thus G(T ) is closed.

On the other hand, suppose that G(T ) is closed. To verify that T is bounded,
we consider the projection map P from G(T ) onto X via: P (x, Tx) = x. Clearly,
P is linear, bijective and bounded. From Lemma 3.2.1 it turns out that P−1 is
bounded linear map from X to G(T ), so there is a constant C > 0 such that

‖x‖X + ‖Tx‖Y = ‖(x, Tx)‖ = ‖P−1x‖ ≤ C‖x‖X ∀x ∈ X.

Consequently, T is bounded.

3.3 Hahn-Banach Theorem

Definition 3.3.1. Let X be a linear space over F. A linear map from X to F is
called a linear functional on X. If X is a normed linear space, then B(X,F) =
X∗ is called the dual space of X.

The question is whether or not X∗ consists only of zero functional for a
given normed linear space X . This is answered in great generality using the
Hahn-Banach theorem. First, let us give the following Hahn-Banach lemma.

Lemma 3.3.1. Let X be a real linear space, and p : X → R a continuous
function with

p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) ∀λ ≥ 0, x, y ∈ X.

If Y is a subspace of X and f is a real-valued linear functional on Y with
f(x) ≤ p(x) ∀x ∈ Y , then there is a real-valued linear functional F on X such
that F (x) = f(x) ∀x ∈ Y and F (x) ≤ p(x) ∀x ∈ X.
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Proof. Assume that K is the set of all pairs (Yα, gα) in which Yα is a linear
subspace of X containing Y , and gα is a real linear functional on Yα with

gα(x) = f(x) ∀x ∈ Y, gα(x) ≤ p(x) ∀x ∈ Yα.

Make K into a partially ordered set by defining the relation (Yα, gα) � (Yβ , gβ)
if Yα ⊂ Yβ and gα = gβ on Yα. Clearly, any totally ordered subset {(Yλ, gλ)} (for
which at least one of (Yα, gα) � (Yβ , gβ) and (Yβ , gβ) � (Yα, gα) holds) has an
upper bound

⋃
λ Yλ on which the functional is given by gλ on each Yλ. By Zorn’s

lemma – if S is a partially ordered set in which every totally ordered subset has
an upper bound then S has a maximal element, we find that there is a maximal
element (Y0, g0) in K. The proof will be completed if Y0 = X and hence F = g0.

If Y0 6= X , then there is y1 ∈ X \ Y0. Let Y1 be the linear space spanned by
Y0 and y1; that is,

Y1 = {x = y + λy1 : y ∈ Y0, λ ∈ R}.

Note that if x, y ∈ Y0 then

g0(y)− g0(x) = g0(y − x) ≤ p(y − x) ≤ p(y + y1) + p(−y1 − x)

and hence
−p(−y1 − x)− g0(x) ≤ p(y + y1)− g0(y).

It follows that

A = sup
x∈Y0

{
− p(−y1 − x)− g0(x)

}
≤ inf
y∈Y0

{
p(y + y1)− g0(y)

}
= B.

Now for any number c ∈ [A,B] define g1(y+λy1) = g0(y)+λc. Then g1 is clearly
linear, and g1(y) = g0(y) ≤ p(y) when y ∈ Y0. Moreover, if λ > 0 and y ∈ Y0,
then

g1(y + λy1) = λ
(
g0(

y

λ
) + c

)

≤ λ
(
g0(

y

λ
) + p

( y
λ

+ y1

)
− g0(

y

λ
)
)

= λp(
y

λ
+ y1)

= p(y + λy1),

whereas if λ < 0, then

g1(y + λy1) = |λ|
(
g0(

y

|λ| )− c
)

≤ |λ|
(
g0(

y

|λ| )− g0(
y

|λ| ) + p(−y1 +
y

|λ| )
)

= |λ|p
(
− y1 +

y1

|λ|
)

= p(y + λy1).
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Consequently,

g1(y + λy1) = g0(y) + λc ≤ p(y + λy1) ∀λ ∈ R, y ∈ Y0.

This to say, (Y1, g1) ∈ K and (Y0, g0) � (Y1, g1) with Y0 6= Y1. This contradicts
the maximality of (Y0, g0).

The following is the Hahn-Banach theorem over R.

Theorem 3.3.1. Let (X, ‖·‖X) be a real normed space, and Y a linear subspace
of X. Then to any f ∈ B(Y,R) there corresponds an F ∈ B(X,R) such that

‖F‖ = ‖f‖ and F (y) = f(y) ∀y ∈ Y.

Proof. Given f ∈ B(Y,R), let p(x) = ‖f‖‖x‖X ∀x ∈ X . Then

f(x) ≤ ‖f‖‖x‖X = p(x) ∀x ∈ Y.

And hence from Lemma 3.3.1 it turns out that there is an extension F ∈ B(X,R)
with F = f on Y and F ≤ p on X . It is clear that

‖f‖ = sup
y∈Y, ‖y‖X=1

|f(y)| = sup
y∈Y, ‖y‖X=1

|F (y)| ≤ ‖F‖.

In order to verify the reverse inequality, we write F (x) = θ|F (x)| for θ = ±1.
Then

|F (x)| = θF (x) = F (θx) ≤ p(θx) = ‖f‖‖θx‖X = ‖f‖‖x‖ ∀x ∈ X ;

that is, ‖F‖ ≤ ‖f‖. Therefore ‖F‖ = ‖f‖. The proof is complete.

As one of the most important results in functional analysis, the Hahn-Banach
theorem has many useful consequences of which some are given below.

Corollary 3.3.1. Let (X, ‖ · ‖X) be a real normed linear space. Then
(i) If Y is a linear subspace of X and x0 ∈ X satisfies infy∈Y ‖y − x0‖X =

d > 0, then there is an F ∈ B(X,R) such that

F (x0) = 1, ‖F‖ = d−1, F (y) = 0 ∀y ∈ Y.

(ii) If Y is a linear subspace of X and is not dense in X, then there is a
nonzero F ∈ B(X,R) such that F (y) = 0 ∀y ∈ Y .

(iii) If x 6= 0 in X then there is an F ∈ B(X,R) such that ‖F‖ = 1 and
F (x) = ‖x‖X .

(iv) If y, z ∈ X and y 6= z, then there is an F ∈ B(X,R) such that F (y) 6=
F (z).

(v) ‖x‖X = supF 6=0
|F (x)|
‖F‖ = sup‖F‖=1 |F (x)|.

(vi) If NF = {x ∈ X : F (x) = 0}, then there exists a one-dimensional
subspace Y of X such that X = NF + Y and NF ∩ Y = {0}.
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Proof. (i) Let Y1 be the linear space spanned by Y and x0. Since x0 /∈ Y , every
point x ∈ Y1 may be written uniquely as x = y + λx0, with y ∈ Y , λ ∈ R.
Define a linear functional f ∈ B(Y1,R) by f(y + λx0) = λ. Then f(y) = 0 and
f(x0) = 1. If λ 6= 0 and x = y + λx0, then

‖x‖X = ‖y + λx0‖X = |λ|
∥∥λ−1y + x0

∥∥
X
≥ |λ|d = |f(x)|d,

and hence ‖f‖ ≤ d−1. Pick a sequence (yn) in Y with ‖x0−yn‖X → d as n→∞.
Then

1 = f(x0 − yn) ≤ ‖f‖‖x0 − yn‖X → d‖f‖,
so ‖f‖ ≥ d−1. Therefore ‖f‖ = d−1. Accordingly, a direct application of the
Hahn-Banach theorem produces an F ∈ B(X,R) such that F (x) = f(x) as
x ∈ Y1 and ‖F‖ = ‖f‖, as desired.

(ii) Since Y is not dense in X , we conclude that there is an x0 ∈ X such that
infy∈Y ‖y − x0‖X = d > 0. An application of (i) produces the conclusion in (ii).

(iii) Just apply (i) with Y = {0} to get f ∈ B(X,R) such that ‖f‖ = ‖x‖−1
X ,

f(x) = 1. We may then take F = ‖x‖Xf .
(iv) Apply (iii) to x = y − z.
(v) Clearly, we have sup‖F‖=1 |F (x)| ≤ ‖x‖X . By (iii), for x 6= 0 there is an

f such that f = ‖x‖X and ‖f‖ = 1, so sup‖F‖=1 |F (x)| = ‖x‖X .
(vi) If F 6= 0 then there is a point x0 6= 0 such that F (x0) = 1. Note that

any element x ∈ X can then be written as x = x − λx0 + λx0 with λ = F (x).
So, if Y = {λx0 : λ ∈ R} then the desired decomposition follows right away.
It is clear that Y is the one-dimensional space spanned by x0. If x ∈ NF ∩ Y ,
then x = λx0 and 0 = F (x) = λF (x0) = λ and hence x = 0. This completes the
proof.

Of course, Lemma 3.3.1, Theorem 3.3.1 and Corollary 3.3.1 are valid for C.

Exercises

3.1 Prove that if C[0, 1] is equipped with the sup-norm and T : C[0, 1] → R is
given by T (f) = f(0), then T is bounded with ‖T‖ = 1.

3.2 (i) Suppose the infinite matrix (ai,j) satisfies supi∈N

∑∞
j=1 |ai,j | <∞. Define

an operator

T : x = (x1, x2, ...) 7→ y = Tx =



∞∑

j=1

a1,jxj ,

∞∑

j=1

a2,jxj , ...


 .

Prove that T : `∞ → `∞ is bounded and ‖T‖ = supi∈N

∑∞
j=1 |ai,j |.

(ii) Let T : `2 → `2 be defined by T (x) = (0, x1, x2, ...) for x = (x1, x2, ...) ∈
`2. Prove that ‖Tx‖2 = ‖x‖2.

(iii) Let R1[a, b] be the space of all Riemann integrable functions f on [a, b]

with ‖f‖1 =
∫ b
a
|f(x)|dx <∞. Define Tf(x) =

∫ x
a
f(t)dt. Prove T is a bounded

linear operator from R1[a, b] to itself with ‖T‖ = b− a.
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3.3 Let C(0, 1) be the space of all real-valued continuous functions on (0, 1).

Equip C(0, 1) with 2-norm: ‖f‖2 =
( ∫ 1

0 |f(t)|2dt
) 1

2 . Define T : C(0, 1)→ C(0, 1)
by T (f)(t) = tf(t) for t ∈ (0, 1). Prove that T is bounded but not invertible.

3.4 Show by an example that the uniform bounded principle does not hold once
the completeness is dropped.

3.5 (i) Prove limn→∞
∫ 2π

0 | sin(n+ 1
2 )x|| sin x

2 |−1dx =∞.
(ii) Given a Riemann-integrable function f : (0, 2π) → R, let its Fourier

series be

s(x) =

∞∑

m=−∞
ame

imx, where am =
1

2π

∫ 2π

0

f(y)e−imydy.

Extend the definition of f to make it 2πperiodic. Define the n-th partial sum of
the Fourier series to be sn(x) =

∑n
m=−n ame

imx. Prove

sn(x) =
1

2π

∫ 2π

0

f(x+ y)
sin(n+ 1

2 )y

sin y
2

dy ∀x ∈ (0, 2π).

(iii) Let X be the Banach space of continuous functions f : [0, 2π]→ R with
f(0) = f(2π), with the sup-norm. Prove that the linear operator Tn : X → R
defined by

Tn(f) =
1

2π

∫ 2π

0

f(x)
sin(n+ 1

2 )x

sin x
2

dx

is bounded, and

‖Tn‖ =
1

2π

∫ 2π

0

∣∣∣∣
sin(n+ 1

2 )x

sin x
2

∣∣∣∣ dx.

(iv) Prove that there exists a continuous function f : [0, 2π] → R with
f(0) = f(2π) such that its Fourier series diverges at x = 0.

3.6 Let T : R2 → R2 be given by T (x, y) = (x, 0). Prove that T is linear,
bounded, but not onto, and cannot map open sets to open sets in R2.

3.7 Let X = C1[0, 1] and Y = C[0, 1], both equipped with the sup-norm. Prove:
(i) X is not complete.
(ii) The map (d/dx) : X → Y is closed but not bounded.

3.8 Let (X, ‖ · ‖) be normed linear space over C. Prove:
(i) If f is a complex linear functional and u = <f then u is a real linear

functional and f(x) = u(x)− iu(ix) for all x ∈ X . Conversely, if u is a real linear
functional and f(x) = u(x) − iu(ix), then f is a complex linear functional. In
this case, ‖u‖ = ‖f‖.

(ii) If Y a linear subspace, p is a seminorm on X (i.e., a nonnegative function
on X with properties: p(x+y) ≤ p(x)+p(y) and p(αx) = |α|p(x) for all x, y ∈ X
and α ∈ C) and f is a complex linear functional on Y such that |f(x)| ≤ p(x)
for x ∈ Y , then there is a linear functional F on X such that |F (x)| ≤ p(x)
∀x ∈ X and F (x) = f(x) ∀x ∈ Y .
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In this chapter, we set forth the basic concepts of Lebesgue measure and its
integration, but also deal with Lp spaces – an interesting and important class
of Banach spaces of functions whose norm are defined in terms of Lebesgue
integrals.

4.1 Measurable Sets and Functions

We begin with the notion of a σ-algebra.

Definition 4.1.1. A non-empty collection A of subsets of a set X is called a
σ-algebra provided:

(i) ∅, X belong to A;
(ii) S ∈ A implies Sc = X \ S ∈ A;
(iii) If (Sj) is a sequence of sets in A, then

⋃∞
j=1 Sj belongs to A.

Note that these assumptions imply that if (Sj) is a sequence of sets in A,
then

⋂∞
j=1 Sj ∈ A, and if S1, S2 ∈ A then S1 \ S2 = S1 ∩ Sc2 ∈ A.

It is easy to see that any family F of subsets of X can be extended to a sigma-
algebra just taking the sigma-algebra consisting of all subsets of X . Among all
these extensions there is a special one. Consider all the sigma-algebras that
contain F and take their intersection, denoted Σ, i.e., a subset S ⊂ X is in Σ
if and only if S is in every sigma-algebra containing F . Clearly, Σ is indeed a
sigma-algebra. Actually, it is the smallest sigma-algebra containing F–the sigma-
algebra generated by F . An important example is the sigma-algebra B of Borel
sets of Rn which is generated by the open subsets of Rn. Alternatively, it is
generated by the open balls in Rn. But, it has been proved that B does not
contain all subsets of Rn.

Definition 4.1.2. Given a σ-algebra A, a measure µ on A is a function from
A to [0,∞] such that

(i) µ(∅) = 0;
(ii) µ(S) ≥ 0 for any S ∈ A;
(iii) µ is countably additive in the sense that if (Sj) is any sequence of disjoint

sets in A, then

µ
( ∞⋃

j=1

Sj

)
=

∞∑

j=1

µ(Sj).
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Because µ is allowed to take ∞,
∑∞

j=1 µ(Sj) may be a divergent series. If a
measure does not take∞, then it is called a finite measure. In addition, if A = B
then µ is called a Borel measure.

Lemma 4.1.1. Let µ be a measure defined on a σ-algebra A.
(i) If S1, S2 ∈ A and S1 ⊂ S2, then µ(S1) ≤ µ(S2) and hence µ(S2 \ S1) =

µ(S2)− µ(S1) whenever µ(S1) <∞;
(ii) If (Sj) is an increasing sequence in A, then

µ
( ∞⋃

j=1

Sj

)
= lim
j→∞

µ(Sj);

(iii) If (Sj) is an decreasing sequence in A and if µ(S1) <∞, then

µ
( ∞⋂

j=1

Sj

)
= lim
j→∞

µ(Sj).

Proof. (i) Since S2 = (S2 \ S1) ∪ S1 and S2 \ S1 = S2 ∩ Sc1, we conclude that if
µ(S1) = ∞ then µ(S2) = ∞ and hence µ(S1) ≤ µ(S2). If otherwise µ(S1) < ∞
then

µ(S2) = µ(S1) + µ(S2 \ S1) ≥ µ(S1)

and so µ(S2 \ S1) = µ(S2)− µ(S1).
(ii) Since (Sj) is an increasing sequence in A, we have

∞⋃

j=1

Sj = S1 ∪ (S2 \ S1) ∪ (S3 \ S2) ∪ · · ·

and accordingly, if letting S0 = ∅ then

µ
( ∞⋃

j=1

Sj

)
=

∞∑

j=0

µ(Sj+1 \ Sj) = lim
n→∞

n∑

j=0

µ(Sj+1 \ Sj) = lim
n→∞

µ(Sn+1).

(iii) Note that 

∞⋂

j=1

Sj



c

=

∞⋃

j=1

Scj

and that (Scj ) is increasing when (Sj) is decreasing. This, together with (ii) and
(i), yields the desired formula.

Definition 4.1.3. (i) An ordered pair (X,A) consisting of a set X and a σ-
algebra A of subsets of X is called a measurable space. Any set in A is called a
measurable set; more exactly, A-measurable set. (ii) A measure space is a triple
(X,A, µ) consisting of a set X, a σ-algebra A of subsets of X, and a measure
µ defined on A.

(iii) Given a measure space (X,A, µ), two functions are said to be equal µ-
almost everywhere, denoted f = g, µ-a.e. provided µ({x ∈ X : f(x) 6= g(x)}) =
0. Similarly, f = limn→∞ fn, µ-a.e., if there is a set S such that µ(S) = 0 and
fn(x)→ f(x) for each x ∈ X \ S.
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Example 4.1.1. Given a non-empty set X , let 2X be the set of all subsets of X .
Then 2X is a σ-algebra and hence (X, 2X) is a measurable space. Moreover, let
P be a fixed element in X . Define a function µ on 2X as follows:

µ(S) =

{
0, if P /∈ S
1, if P ∈ S

Then µ is a finite measure which is called the unit measure concentrated at P .
By definition, (X, 2X , µ) is a measure space.

Definition 4.1.4. Given two points (a1, ..., an), (b1, ..., bn) ∈ Rn with aj ≤ bj
for j = 1, ..., n. Then

I = (a1, b1)× · · · (an, bn) = {(x1, ..., xn) : aj < xj < bj , j = 1, ..., n}

is called an open interval in Rn. Any or all of the < signs may be replaced by ≤,
with corresponding changes made in the interval notation. Such subsets of Rn are
called the intervals of Rn. In particular, {(x1, ..., xn) : aj < xj ≤ bj , j = 1, ..., n}
or {(x1, ..., xn) : aj ≤ xj < bj , j = 1, ..., n} is called a half-open intervals, and
{(x1, ..., xn) : aj ≤ xj ≤ bj , j = 1, ..., n} is called a closed interval. For an
interval I, let m(I) = (b1 − a1) · · · (bn − an). It is clear that if n = 1, 2, 3 then
m(I) is the length, area, volume of I. If S is an arbitrary subset of Rn, then the
Lebesgue outer measure of S is defined by

m∗(S) = inf

∞∑

j=1

m(Ij),

where the infimum is taken over all countable collections {Ij} of open intervals
such that S ⊂ ⋃nj=1 Ij .

To see whether or not m∗ is a measure on 2Rn

, we first establish the following
result.

Theorem 4.1.1. The set function m∗ on 2Rn

satisfies:
(i) m∗(∅) = 0;
(ii) 0 ≤ m∗(S) ≤ m∗(T ) ∀S ⊂ T ⊂ Rn;
(iii) For any sequence (Sj) of subsets of Rn,

m∗
( ∞⋃

j=1

Sj

)
≤
∞∑

j=1

m∗(Sj).

Proof. (i) It is obvious since ∅ is a subset of any open interval Ij−1 with
m(Ij−1 ) = j−n → 0.

(ii) 0 ≤ m∗(S) follows right away from the definition. If S ⊂ T , then any
open covering (Ij) of T must cover S, and so

m∗(S) ≤
∞∑

j=1

m(Ij),
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giving the desired inequality.
(iii) Given ε > 0, for each j ∈ N there is a sequence of open intervals (Ii,j)

such that

Sj ⊂
∞⋃

i=1

Ii,j and
∞∑

i=1

m(Ii,j) ≤ m∗(Sj) + 2−jε.

Then ∞⋃

j=1

Sj ⊂
∞⋃

i,j=1

Ii,j

and

∞∑

i,j=1

m(Ii,j) =

∞∑

j=1

∞∑

i=1

m(Ii,j)

≤
∞∑

j=1

m∗(Sj) +

∞∑

j=1

2−jε

=

∞∑

j=1

m∗(Sj) + ε.

Thus by (ii) it follows that

m∗
( ∞⋃

j=1

Sj

)
≤

∞∑

i,j=1

m(Ii,j) ≤
∞∑

j=1

m∗(Sj) + ε.

Since ε > 0 is arbitrary, we conclude that (iii) is true.

Example 4.1.2. (i) If E = Qn ∩ [0, 1]n then m∗E = 0. It suffices to verify the
case n = 1. Let E = {r1, r2, ....} and Ii = (ri − 2−(i+1)ε, ri + 2−(i+1)ε) for ε > 0.
Then

m∗(E) ≤
∞∑

i=1

m(Ii) = ε→ 0.

(ii) If S is an interval I ⊂ Rn, then m∗(S) = m(I). Clearly, m∗(S) ≤ m(I).
To see the converse inequality, let ε > 0 be arbitrary, there is a covering (Ij) such
that I ⊂ ∪∞j=1Ij with

∑∞
j=1 m(Ij) < m∗(I) + ε. A simple geometric argument

yields

m(I) = m
(
∪∞j=1 (I ∩ Ij)

)
≤
∞∑

j=1

m
(
I ∩ Ij

)
≤
∞∑

j=1

m(Ij) ≤ m∗(I) + ε,

yielding m(I) ≥ m∗(I).
(iii)m∗ does not satisfy (iii) of the definition of a measure – there is a sequence

of disjoint subsets Ej of Rn such that

m∗
( ∞⋃

j=1

Ej

)
6=
∞∑

j=1

m∗(Ej).
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For simplicity, let us consider n = 1 only. We say that x ∼ y if x − y ∈ Q.
For x ∈ [0, 1] let E(x) = {x + r ∈ [0, 1] : r ∈ Q}. It is clear that x ∈ E(x). If
E(x) 6= E(y), then we say that both E(x) and E(y) are different. Note that it
is possible to have E(x) = E(y) even if x 6= y. However, if E(x) 6= E(y), then
E(x) ∩ E(y) = ∅ – In fact, if E(x) ∩ E(y) 6= ∅ then there is z ∈ E(x) ∩ E(y)
and hence z = x + rx = y + ry where rx, ry ∈ Q. This yields y = x + rx − ry.
Whenever u ∈ E(y), we have u = y + ru = x+ rx − ry + ru where ru ∈ Q, and
so u ∈ E(x). Similarly, u ∈ E(x) ⇒ u ∈ E(y). Thus E(x) = E(y) contradicting
the given condition E(x) 6= E(y). This tells us that [0, 1] is decomposed into the
union of all disjoint sets E(x), and so there is a set S ⊂ [0, 1] which contains
exactly one point from each equivalence class determined by ∼. It is clear that

[0, 1] ⊂
⋃

r∈Q∩[−1,1]

(S + r) ⊂ [−1, 2]

as well as
(S + r) ∩ (S + s) = ∅ if r, s ∈ Q and r 6= s.

Note that m∗(S + r) = m∗(S) by definition. So if m∗ is countably subadditive
then it follows that

1 = m∗([0, 1]) ≤ m∗
( ⋃

r∈Q∩[−1,1]

(S + r)
)

=
∑

r∈Q∩[−1,1]

m∗(S) ≤ m∗([−1, 2]) = 3.

This is a contradiction. Thus

m∗
( ⋃

r∈Q∩[−1,1]

(S + r)
)
6=

∑

r∈Q∩[−1,1]

m∗(S + r).

Definition 4.1.5. A subset S of Rn is said to be m∗-measurable provided for
each subset T of Rn one has m∗(T ) = m∗(T ∩ S) +m∗(T ∩ Sc).

Theorem 4.1.2. Let S ⊂ Rn. Then the following statements are equivalent:
(i) S is m∗-measurable;
(ii) For any A ⊂ S and B ⊂ Sc one has m∗(A ∪B) = m∗(A) +m∗(B);
(iii) Sc is m∗-measurable.

Proof. (i)⇔(ii). Take T = A ∪ B. Then T ∩ S = A and T ∩ Sc = B. So, if (i)
holds, then

m∗(A ∪ B) = m∗(T ) = m∗(T ∩ S) +m∗(T ∩ Sc) = m∗(A) +m∗(B),

reaching (ii). Conversely, if (ii) holds, then A = T ∩ S and B = T ∩ Sc give
A ∪ B = T and

m∗(T ) = m∗(A ∪ B) = m∗(A) +m∗(B) = m∗(T ∩ S) +m∗(T ∩ Sc).

(i)⇔(iii). This follows from

m∗(T ∩ S) +m∗(T ∩ Sc) = m∗(T ∩ (Sc)c) +m∗(T ∩ Sc).
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Theorem 4.1.3. Let Mn be the class of all m∗-measurable subsets of Rn. Then
(i) If S1, S2 ∈M then S1∪S2, S1∩S2, S1 \S2 ∈M. Moreover, if S1∩S2 = ∅

then
m∗
(
T ∩ (S1 ∪ S2)

)
= m∗(T ∩ S1) +m∗(T ∩ S2) ∀T ∈ 2Rn

.

(ii) Mn is a σ-algebra.
(iii) m∗ is countably additive and hence a measure on Mn.

Proof. (i) Let S1, S2 ∈Mn. Then for any T ∈ 2Rn

we use Theorem 4.1.2 to get

m∗(T ) = m∗(T ∩ S1) +m∗(T ∩ Sc1)

= m∗(T ∩ S1) +m∗
(
(T ∩ Sc1) ∩ S2

)
+m∗

(
(T ∩ Sc1) ∩ Sc2

)

= m∗(T ∩ S1) +m∗
(
(T ∩ Sc1) ∩ S2

)
+m∗

(
T ∩ (S1 ∪ S2)c

)

= m∗(T ∩
(
S1 ∪ (Sc1 ∩ S2)

)
+m∗

(
T ∩ (S1 ∪ S2)c

)

= m∗
(
T ∩ (S1 ∪ S2)

)
+m∗

(
T ∩ (S1 ∪ S2)c

)
,

so that S1 ∪ S2 ∈Mn.
Since

S1 ∩ S2 =
(
(S1 ∩ S2)c

)c
=
(
Sc1 ∪ Sc2

)c
,

we conclude from Theorem 4.1.2 (iii) and the forgoing (i) that S1 ∩ S2 ∈ Mn.
This result implies S1 \ S2 = S1 ∩ Sc2 ∈Mn.

The last result of (i) follows immediately from Theorem 4.1.2 (ii).
(ii) To see that Mn is a σ-algebra, it suffices to check that if Sj ∈Mn, j ∈ N

are disjoint then ∪∞j=1Sj ∈Mn. This is because of

∞⋃

j=1

Sj = S1 ∪
(
S2 \ S1

)
∪
(
S3 \ (S1 ∪ S2)

)
∪
(
S4 \ (S1 ∪ S2 ∪ S3)

)
∪ · · · .

Now for any T ∈ 2Rn

and k ∈ N, one gets from (i) that for Ek =
⋃k
j=1 Sj

and E∞ =
⋃∞
j=1 Sj ,

m∗(T ) = m∗(T ∩ Ek) +m∗(T ∩ (Ek)c)

≥ m∗(T ∩ Ek) +m∗(T ∩ (E∞)c)

=

k∑

j=1

m∗(T ∩ Sj) +m∗(T ∩ (E∞)c).

Letting k →∞ and using the property (iii) of m∗, one obtains

m∗(T ) ≥
∞∑

j=1

m∗(T ∩ Sj) +m∗(T ∩ (E∞)c)

≥ m∗(T ∩E∞) +m∗(T ∩ (E∞)c).

On the other hand, note that
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T = (T ∩ E∞) ∪ (T ∩ (E∞)c).

So
m∗(T ) ≤ m∗(T ∩ E∞) +m∗(T ∩ (E∞)c).

Therefore E∞ is m∗-measurable.
(iii) As a product of the previous argument and the property of m∗ one finds

that m∗ is countably additive: m∗(E∞) =
∑∞

j=1 m
∗(Sj). Of course, here (Sj)

are assumed to be disjoint m∗-measurable subsets of Rn. This implies m∗ is a
measure on Mn.

Example 4.1.3. (i) If m∗(E) = 0 then E is m∗-measurable; Any subset of m∗-
zero set is m∗-measurable; countable union of m∗-zero sets is m∗-measurable.

(ii) Any interval in Rn is m∗-measurable.
(iii) Any open or closed subset of Rn is m∗-measurable.
(iv) The set S constructed in Example 4.1.2 is a non-m∗-measurable subset

of Rn.

We shall now take up the theory of extended real-valued measurable functions
with domains in Rn.

Definition 4.1.6. An extended real-valued function f defined on E ∈ Mn is
called Lebesgue measurable provided {x ∈ E : f(x) > a} belongs to Mn for any
a ∈ R.

Note that measurability does not require a measure at all. Moreover, if f is an
extended complex-valued function, then we say that f is Lebesgue measurable
provided its real and imaginary parts are Lebesgue measurable in the previous
sense.

Lemma 4.1.2. Let E ∈ Mn and f : E → [−∞,∞]. Then the following state-
ments are equivalent:

(i) The set {x ∈ E : f(x) > a} belongs to Mn for each a ∈ R;
(ii) The set {x ∈ E : f(x) ≥ a} belongs to Mn for each a ∈ R;
(iii) The set {x ∈ E : f(x) < a} belongs to Mn for each a ∈ R;
(iv) The set {x ∈ E : f(x) ≤ a} belongs to Mn for each a ∈ R.

Proof. Since Mn is a σ-algebra, we conclude that (i)⇔(iv) and (ii)⇔(iii) right
away. Note that

{x ∈ E : f(x) ≥ a} =

∞⋂

j=1

{x ∈ E : f(x) > a− j−1}.

So (i) implies (ii). Also

{x ∈ E : f(x) > a} =

∞⋃

j=1

{x ∈ E : f(x) ≥ a+ j−1}

Then (ii) yields (i).
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Example 4.1.4. Let E ∈ Mn and f : E → [−∞,∞] be Lebesgue measurable.
Then {x ∈ E : f(x) = a} ∈Mn for any a ∈ R ∪ {−∞,∞}, but not conversely.
The first part follows from the foregoing lemma and the following formulas:

{x ∈ E : f(x) = a} = {x ∈ E : f(x) ≤ a}
⋂
{x ∈ E : f(x) ≥ a} if a ∈ R,

{x ∈ E : f(x) =∞} =
∞⋂

j=1

{x ∈ E : f(x) > j}

and

{x ∈ E : f(x) = −∞} =

∞⋂

j=1

{x ∈ E : f(x) < −j}.

Regarding the second part, consider a non measurable set S ⊂ (0, 1) and define

f(x) =

{
x, if x ∈ S,
−x, if x /∈ S.

Clearly, this function is one-to-one and so {x ∈ (0, 1) : f(x) = a} ∈M1 for any
a ∈ [−∞,∞], but since {x ∈ (0, 1) : f(x) > 0} = S /∈ M1, f is not Lebesgue
measurable.

Theorem 4.1.4. (i) If f and g are real-valued Lebesgue measurable functions
on E ∈Mn and c is a real number, then so are f+g, fg, cf , |f |, f+ = max{f, 0}
and f− = max{−f, 0}.

(ii) If (fj) is a sequence of real-valued Lebesgue measurable functions on
E ∈Mn, then the following four functions:

(inf fj)(x) = inf
j∈N

fj(x), (sup fj)(x) = sup
j∈N

fj(x),

(lim inf fj)(x) = sup
j∈N

inf
k≥j

fk(x), (lim sup fj)(x) = inf
j∈N

sup
k≥j

fk(x),

are Lebesgue measurable on E ∈Mn.

Proof. Since (f+g)(x) < a is equivalent to f(x) < a−g(x), the density of rational
numbers in R implies, the equivalence amounts to the existence of a rational
number r such that f(x) < r < a−g(x). This yields that {x ∈ E : (f+g)(x) < a}
equals ⋃

r∈Q

({
x ∈ E : f(x) < r

}⋂{
x ∈ E : g(x) < a− r

})
.

Then f + g is Lebesgue measurable on E.
If c = 0 then {x ∈ E : cf(x) > a} is either ∅ or E, and hence Lebesgue

measurable on E. If c > 0 or c < 0 then

{x ∈ E : cf(x) > a} = {x ∈ E : f(x) > a/c} ∈Mn

or
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{x ∈ E : cf(x) > a} = {x ∈ E : f(x) < a/c} ∈Mn,

and hence cf is Lebesgue measurable on E.
In order to see that fg and |f | are Lebesgue measurable on E, we just observe

three equalities:

fg =
(f + g)2 − (f − g)2

4
,

{x ∈ E : f2(x) > |a|} = {x ∈ E : f(x) >
√
|a|} ∪ {x ∈ E : f(x) < −

√
|a|},

and

{x ∈ E : |f |(x) > a} = {x ∈ E : f(x) > a} ∪ {x ∈ E : f(x) < −a}.

To check that f+ and f− are Lebesgue measurable on E, we note that

f+ =
|f |+ f

2
and f− =

|f | − f
2

.

(ii) It suffices to verify that inf fj is Lebesgue measurable on E. In fact, for
a ∈ R, we have

{x ∈ E : inf fj(x) > a} =

∞⋂

j=1

{x ∈ E : fj(x) > a} ∈Mn,

as desired.

Definition 4.1.7. A real-valued function with only a finite number of elements
in its range is called a simple function. In particular, let

1E(x) =

{
1, if x ∈ E,
0, if x /∈ E.

be the characteristic function 1E of a set E ⊂ Rn.

Every simple function can be written as a finite linear combination of char-
acteristic functions. More precisely, if the range of the simple function s is
{c1, ..., ck}, then s(x) =

∑k
j=1 cj1Ej (x), where Ej = {x ∈ Rn : s(x) = cj}.

The function s is Lebesgue measurable if and only if E1, ..., Ek ∈Mn.

Theorem 4.1.5. Let E ∈ Mn and f : E → [−∞,∞]. Then f is Lebesgue
measurable on E if and only if there exists a sequence (sj) of simple functions
on E such that limj→∞ sj(x) = f(x) and |s1(x)| ≤ |s2(x)| ≤ ... for any x ∈ E

Proof. It is enough to verify the necessity.
Case 1: f ≥ 0. For any j ∈ N let

sj(x) =

{
k2−j , if k2−j ≤ f(x) < (k + 1)2−j , k = 0, 1, ..., j2j − 1,
j, if j ≤ f(x).
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Then sj is a simple function on E and is of monotone property: sj(x) ≤ sj+1(x)
for any x ∈ E.

If f(x) =∞ then sj(x) = j and hence limj→∞ sj(x) = f(x).
If f(x) < ∞ then there is an N ∈ N such that f(x) < N and so j ≥ N

implies that there is a k = 0, 1, ..., j2j − 1 such that f(x) ∈ [k2−j , (k + 1)2−j)
and then sj(x) = k2−j . Of course, we have

j ≥ N ⇒ |f(x)− sj(x)| < 2−j .

Consequently, limj→∞ sj(x) = f(x).
Case 2: f 6≥ 0. In this case, we know that f+, f− ≥ 0, f = f+− f− and |f | =

f+ +f−. By Case 1, we have simple functions (sj,+) and (sj,−) corresponding to
f+ and f− respectively. It is not hard to see that sj = sj,+− sj,− are the desired
simple functions.

4.2 Integrals and Their Convergence

We now have the machinery to develop Lebesgue integrals and three fundamen-
tal convergence results of integration theory: monotone convergence theorem,
Fatou’s lemma and Lebesgue dominated convergence theorem.

Definition 4.2.1. Let E ∈Mn and m = m∗ on Mn. Then
(i) The Lebesgue integral of a Lebesgue measurable simple function s(x) =∑k
j=1 cj1Ej (x) on E is defined by

∫

E

sdm =

k∑

j=1

cjm(E ∩Ej).

(ii) The Lebesgue integral of a Lebesgue measurable function f : E → [0,∞]
is defined by

∫

E

fdm = sup

{∫

E

sdm : s is simple and 0 ≤ s ≤ f
}
.

(iii) The Lebesgue integral of a Lebesgue measurable function f : E →
[−∞,∞] is defined by

∫

E

fdm =

∫

E

f+dm−
∫

E

f−dm.

If at least one of
∫
E f+dm and

∫
E f−dm is finite, then we say that f has Lebesgue

integral on E, and moreover if
∫
E
fdm is finite then f is Lebesgue integrable and

all such functions are denoted by L(E).
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Theorem 4.2.1. Let E ∈Mn.Then
(i) L(E) is a linear space over R.
(ii) f ∈ L(E) =⇒ |f | ∈ L(E) with

∣∣ ∫
E fdm

∣∣ ≤
∫
E |f |dm.

(iii) f ∈ L(E) and f(x) ≥ 0 ∀x ∈ E =⇒
∫
E fdm ≥ 0.

(iv) f ∈ L(E) =⇒
∫
S
fdm = 0 ∀S ⊂ E with m(S) = 0.

(v) S, T ∈M, T ⊂ S ⊂ E and m(S \ T ) = 0=⇒
∫
S fdm =

∫
T fdm.

Proof. (i) follows from the Lebesgue monotone convergence theorem which will
be discussed later on. The proof of (ii) deponds on (i). However, (iii), (iv) and
(v) just follow from Definition 4.2.1.

The following property shows that the Lebesgue integrals are countably ad-
ditive.

Theorem 4.2.2. Let E ∈Mn, 0 ≤ f ∈ L(E) and E1, E2, ... ⊂ E. If (Ej) ⊂Mn

are mutually disjoint, then

∫

∪∞
j=1

Ej

fdm =

∞∑

j=1

(∫

Ej

fdm
)
.

Proof. If f = 1E, then by the countable additivity of m,

∫

∪∞
j=1

Ej

fdm = m
( ∞⋃

j=1

Ej ∩ E
)

=

∞∑

j=1

(∫

Ej

fdm
)
.

Of course, if f is a simple function, then the result is still true.
Next, if f ≥ 0 is arbitrary Lebesgue integrable on E, then by definition, for

any ε > 0 we may choose a simple function s ≤ f so that
∫

∪∞
j=1

Ej

fdm ≤ ε+

∫

∪∞
j=1

Ej

sdm

= ε+

∞∑

j=1

∫

Ej

sdm

≤ ε+

∞∑

j=1

∫

Ej

fdm.

This yields ∫

∪∞
j=1

Ej

fdm ≤
∞∑

j=1

(∫

Ej

fdm
)
.

On the other hand, for any k ∈ N let sj , j = 1, ..., k be simple functions satisfying
0 ≤ sj ≤ f as well as ∫

Ej

sjdm ≥ −
ε

k
+

∫

Ej

fdm.

Let s = maxj=1,...,k sj . Then s is a simple function obeying 0 ≤ s ≤ f . Clearly,
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∫

Ej

sdm ≥ − ε
k

+

∫

Ej

fdm.

This, together with the definition of s and the first part, infers
∫

∪∞
j=1

Ej

fdm ≥
∫

∪k
j=1

Ej

sdm

=

∫

E1

sdm+ · · ·
∫

Ek

sdm

≥ −ε+

∫

E1

fdm+ · · ·+
∫

Ek

fdm.

Note that ε > 0 and k ∈ N are arbitrary. So

∫

∪∞
j=1

fdm ≥
∞∑

j=1

∫

Ej

fdm.

The desired equality follows right away.

The Lebesgue monotone convergence theorem reads as

Theorem 4.2.3. Let E ∈ Mn and (fj) be a sequence of Lebesgue measurable
functions from E to [0,∞] such that f1 ≤ f2 ≤ · · · on E. If f = limj→∞ fj on
E, then

lim
j→∞

∫

E

fjdm =

∫

E

fdm.

Proof. From monotonicity of (fj) it follows that
( ∫

E fjdm
)

is non-decreasing
and hence A = limj→∞

∫
E fjdm exists: note that A is allowed to be ∞. Since

fj ≤ f on E, we conclude that A ≤
∫
E
fdm. The proof will be concluded by

proving
∫
E fdm ≤ A. To do this we take a number η ∈ (0, 1) and a simple

function s obeying 0 ≤ s ≤ f on E. Let Ej = {x ∈ E : fj(x) ≥ ηs(x)}. Then
E1 ⊂ E2 ⊂ E3 ⊂ · · · and E = ∪∞j=1Ej . This implies

A ≥ lim
j→∞

∫

Ej

fjdm ≥ η lim
j→∞

∫

Ej

sdm.

By Theorem 4.2.2 we get that

∫

E

sdm =

∫

E1

sdm+
∞∑

j=2

∫

Ej\Ej−1

sdm

=

∫

E1

sdm+ lim
k→∞

k∑

j=2

∫

Ej\Ej−1

sdm

= lim
k→∞

∫

Ek

sdm.

and so that A ≥ η
∫
E
sdm. Letting η → 1, we obtain A ≥

∫
E
sdm. Taking the

supremum over all such simple functions gives A ≥
∫
E fdm. We are done.
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Proof of Theorem 4.2.1 (i). It is enough to prove

∫

E

(f + g)dm =

∫

E

fdm+

∫

E

gdm ∀f, g ∈ L(E), E ∈M.

Clearly, this is valid for simple functions. Also, we may assume f, g ≥ 0 on E.
In this case, we use Theorem 4.1.5 to obtain two non-decreasing sequences of
simple functions (sj) and (tj) such that

lim
j→∞

sj = f and lim
j→∞

tj = g on E.

An application of Theorem 4.2.3 implies

∫

E

(f + g)dm = lim
j→∞

∫

E

(sj + tj)dm

= lim
j→∞

∫

E

sjdm+ lim
j→∞

∫

E

tjdm

=

∫

E

fdm+

∫

E

gdm.

The following is the Fatou’s lemma.

Lemma 4.2.1. Given E ∈ Mn, let (fj) be a sequence of Lebesgue measurable
functions from E to [0,∞]. If f = lim infj→∞ fj on E, then

∫

E

fdm ≤ lim inf
j→∞

∫

E

fjdm.

Proof. For each k ∈ N let gk = infj≥k fj . Then by Theorem 4.1.4, we see that
gk is Lebesgue measurable, and (gk) is non-decreasing with f = limk→∞ gk =
supk∈N gk on E. By Theorem 4.2.3 and the fact that gk ≤ fj for each j ≥ k, we
obtain ∫

E

fdm = lim
k→∞

∫

E

gkdm ≤ lim inf
j→∞

∫

E

fjdm,

as desired.

The most useful general result about Lebesgue integration is the following
Lebesgue’s dominated convergence theorem.

Theorem 4.2.4. Given E ∈Mn, let (fj) be a sequence of Lebesgue measurable
functions from E to [−∞,∞] and limj→∞ fj = f a.e. on E. If there is a function
g ∈ L(E) such that |fj | ≤ g a.e. on E, then

lim
j→∞

∫

E

fjdm =

∫

E

fdm.



58 4. Lebesgue Measures, Integrals and Spaces

Proof. It is obvious that g ∈ L(E) and |fj | ≤ g a.e. on E imply fj ∈ L(E). From
Fatou’s lemma it follows that

∫

E

|f |dm =

∫

E

lim
j→∞

|fj |dm ≤ lim inf
j→∞

∫

E

|fj |dm ≤
∫

E

gdm.

Because of fj + g ≥ 0 a.e. on E, by Fatou’s lemma again it follows that
∫

E

fdm+

∫

E

gdm =

∫

E

lim inf
j→∞

(fj + g)dm

≤ lim inf
j→∞

∫

E

(fj + g)dm

= lim inf
j→∞

∫

E

fjdm+

∫

E

gdm.

This gives ∫

E

fdm ≤ lim inf
j→∞

∫

E

fjdm.

Also g − fj ≥ 0 a.e. on E, a similar argument yields

lim inf
j→∞

∫

E

fjdm ≤ lim sup
j→∞

∫

E

fjdm ≤
∫

E

fdm.

The last two lines of inequalities are combined to derive the desired result.

As a direct consequence of the Lebesgue’s dominated convergence theorem,
we have the following the bounded convergence theorem.

Corollary 4.2.1. Given E ∈ Mn with m(E) < ∞, let (fj) be a sequence of
Lebesgue measurable functions from E to [−∞,∞] and limj→∞ fj = f a.e. on
E. If there is a constant M > 0 such that |fj | ≤M a.e. on E, then

lim
j→∞

∫

E

fjdm =

∫

E

fdm.

Proof. Since m(E) < ∞, we conclude that
∫
EMdm < ∞. This, together with

Theorem 4.2.4, deduces the desired limit result.

4.3 Lp-Spaces and Their Completeness

After this discussion of Lebesgue measures and integrals we proceed to a survey
of the linear vector spaces formed by equivalence classes of Lebesgue integrable
functions.

Definition 4.3.1. Let E ∈ Mn. If p ∈ [1,∞) then Lp(E) is defined to be the
class of all Lebesgue measurable functions f : E → [−∞,∞] satisfying

‖f‖p =

(∫

E

|f |pdm
) 1
p

<∞.
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Note that

E =

∞⋃

j=1

{
x ∈ E : |f(x)| ≥ j−1

}
∪
{
x ∈ E : f(x) = 0

}
.

So, ‖f‖p = 0 is equivalent to f = 0 a.e. on E. This indicates that Lp(E)
really consists of equivalence classes of functions rather than of functions, via
the equivalence relation ∼: f ∼ g ⇔ f = g a.e on E. However, we conform
to standard malpractice by referring to these equivalence classes as functions.

In order to see more properties of Lp(E), we need the following Hölder’s
inequality and Minkowski’s inequality.

Theorem 4.3.1. Let E ∈Mn.
(i) Hölder’s inequality: If f ∈ Lp(E), g ∈ L

p
p−1 (E), p ∈ (1,∞), then fg ∈

L1(E) with
‖fg‖1 ≤ ‖f‖p‖g‖ p

p−1
.

(ii) Minkowski’s inequality: If f, g ∈ Lp(E), p ∈ [1,∞), then f + g ∈ Lp(E)
with

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
Proof. (i) Let q = p/(p−1) and φ(t) = t

1
p for t ≥ 0. Since p−1 ∈ (0, 1), φ′′(r) < 0

for all r > 0 and φ is concave. Hence φ(t) ≤ φ(1) + φ′(1)(t− 1), or

t
1
p ≤ 1 +

t− 1

p
=
t

p
+

1

q
.

Setting t = upv−q , where u ≥ 0 and v > 0, we find since 1− q = −q/p that

uv ≤ up

p
+
vq

q
.

Obviously, this inequality also holds when v = 0.
If ‖f‖p = 0 or ‖g‖q = 0 then the inequality is evident. So we may assume

that ‖f‖p > 0 and ‖g‖q > 0. The first paragraph shows that

|fg|
‖f‖p‖g‖q

≤ |f |p
p‖f‖pp

+
|g|q
q‖g‖qq

.

Taking Lebesgue integration on both sides of the estimate gives the desired
inequality.

(ii) It is enough to verify the case p > 1. Without loss of generality, we may
assume that ‖f + g‖p 6= 0. By Hölder inequality with |f | (or |g|) and |f + g|p−1,
we achieve

‖f + g‖pp =

∫

E

|f + g||f + g|p−1dm

≤
∫

E

|f ||f + g|p−1dm+

∫

E

|g||f + g|p−1dm

≤ ‖f‖p
∥∥|f + g|p−1

∥∥
q

+ ‖g‖p
∥∥|f + g|p−1

∥∥
q

= ‖f + g‖p−1
p (‖f‖p + ‖g‖p).
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Theorem 4.3.2. Let E ∈Mn and p ∈ [1,∞). Then (Lp(E), ‖ · ‖p) is a Banach
space.

Proof. Theorem 4.3.1 implies that (Lp(E), ‖ · ‖p) is linear.
Next, let’s verify that ‖ · ‖p is a norm on Lp(E). It is known that ‖f‖p ≥ 0

for which the equality holds if and only if f = 0 a.e. on E. Also it is trivial to
get ‖αf‖p = |α|‖f‖p for α ∈ R. The triangle inequality for ‖ · ‖p follows from
the Minkowski inequality.

The nontrivial part is to check the completeness. By Theorem 2.1.1 one
suffices to verify that if

∑∞
j=1 ‖fj‖p <∞ then

∑∞
j=1 fj converges in ‖ · ‖p. Now

for each k ∈ N let gk =
∑k

j=1 |fj |. Then the Minkowski’s inequality gives

‖gk‖p ≤
k∑

j=1

‖fj‖p ≤
∞∑

j=1

‖fj‖p <∞.

Since (gk) is non-decreasing, there is an extended real-valued function g such
that limk→∞ gk = g pointwise on E. Clearly, g is Lebesgue measurable, and
this, together with Fatou’s lemma, implies

(∫

E

gpdm

) 1
p

≤ lim inf
k→∞

(∫

E

gpkdm

) 1
p

≤
∞∑

j=1

‖fj‖p <∞.

In particular, this estimate shows that g is finite a.e. on E. For each x such that
g(x) is finite, the series

∑∞
j=1 fj(x) is absolutely convergent. Let

s(x) =

{
0, if g(x) is infinite∑∞

j=1 fj(x), if g(x) is finite.

This function equals to the limit of the partial sums sk(x) =
∑k
j=1 fj(x) a.e. on

E, and hence is itself Lebesgue measurable. Since |sk| ≤ g a.e. on E, we conclude
that |s| ≤ g a.e. on E. Of course, s ∈ Lp(E) and |sk − s|p ≤ 2pgp. We can now
use Lebesgue’s dominated convergence theorem to obtain

lim
k→∞

‖sk − s‖pp = lim
k→∞

∫

E

(sk − s)pdm = 0.

Definition 4.3.2. A simple function s =
∑k

j=1 cj1Ej is called a step function
if each of the sets Ej has finite Lebesgue measure.

In what follows, we show the density of all step functions in the Lebesgue
spaces.

Theorem 4.3.3. Let E ∈ Mn and p ∈ [1,∞). Then the step functions are
dense in (Lp(E), ‖ · ‖p).
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Proof. Let f ∈ Lp(E). Since f = f+− f−, it is enough to consider f ≥ 0 a.e. on
E. In this case, there is a sequence of simple functions: (sj) such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ f, lim sj = f a.e. on E.

Each of these simple functions is actually a step function. Moreover,

(f − s1)p ≥ (f − s2)p ≥ · · · ≥ 0, lim(f − sj)p = 0 a.e. on E.

Lebesgue’s dominated convergence theorem now tells us that

lim
j→∞

‖f − sj‖p = lim
j→∞

(∫

E

|f − sj |p
) 1
p

= 0.

We are done.

To complete the picture of Lp spaces, we consider a space corresponding to
the limiting case p =∞. For a Lebesgue measurable function f on E ∈Mn, let

‖f‖∞ = inf{a : m({x ∈ E : |f(x)| > a ≥ 0}) = 0},

with the convention inf ∅ =∞. Note that the infimum is actually attained since

{x ∈ E : |f(x)| > a} =

∞⋃

j=1

{x ∈ E : |f(x)| > a+ j−1 ≥ 0}

and if the sets on the right hand side are empty, so is the one on the left hand
side. ‖f‖∞ is sometimes called the essential supremum of f and written

‖f‖∞ = esssupx∈E |f(x)|.

However, this is not the same as supx∈E |f(x)|: for example, if

f(x) =

{
1, if x ∈ Q ∩ [0, 1],
0, if x ∈ Qc ∩ [0, 1].

then supx∈[0,1] |f(x)| = 1 and esssupx∈[0,1]|f(x)| = 0. Of course, f = 0 a.e. on
[0, 1], for m(Q ∩ [0, 1]) = 0.

Definition 4.3.3. Let E ∈ Mn. Then L∞(E) is defined to be the class of all
Lebesgue measurable functions f : E → [−∞,∞] with ‖f‖∞ < ∞, with the
usual convention that two functions are equal a.e. on E define the same element
of L∞(E).

The results and their proofs given above for 1 ≤ p < ∞ can readily extend
to the value p =∞.

Theorem 4.3.4. Let E ∈Mn.
(i) If f ∈ L1(E) and g ∈ L∞(E) then fg ∈ L1(E) with ‖fg‖1 ≤ ‖f‖1‖g‖∞;
(ii) (L∞(E), ‖ · ‖∞) is a Banach space;
(iii) The bounded step functions are dense in (L∞(E), ‖ · ‖∞).

Proof. It is left to the reader for an exercise.
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Exercises

4.1 Prove:
(i) Every half-open interval I in Rn is Lebesgue measurable and m∗(I) =

m(I).
(ii) Every open set in Rn is the union of a countable collection of disjoint

half-open intervals.
(iii) Every open set in in Rn is Lebesgue measurable and so is a closed set.

4.2 Let E ⊂ Rn be Lebesgue measurable. Prove:
(i) For any ε > 0, there is a sequence of open subsets (Gj) of Rn such that

E ⊂ G = ∩∞j=1Gj and m(G \E) < ε.
(ii) For any ε > 0, there is a sequence of closed subsets (Fj) of Rn such that

E ⊃ F = ∪∞j=1Fj and m(E \ F ) < ε.

4.3 We say that an extended real-valued function f on E ⊂ Rn is continuous
at x0 ∈ E if y0 = f(x0) is finite, and for any open ball V (y0) ⊂ R centered at y0

there is an open ball U(x0) ⊂ Rn centered at x0 such that f(U(x0)∩E) ⊂ V (y0).
If f is continuous at any point in E, we say that f is continuous on E. Now, let
f be an extended real-valued continuous on a Lebesgue measurable set E ⊂ Rn.
Prove that f is Lebesgue measurable on E; that is, for any a ∈ R, the set
E[f > a] = {x ∈ E : f(x) > a} is Lebesgue measurable.

4.4 Let f be an extended real-valued function on Rn. Prove that 1/f is Lebesgue
measurable if f is Lebesgue measurable.

4.5 Show that monotone convergence in the monotone convergence theorem
cannot be replaced by pointwise convergence in the monotone convergence the-
orem and that the dominating function g is needed in Lebesgue’s dominated
convergence theorem.

4.6 Prove by example that the strict inequality in the Fatou lemma can occur.

4.7 (i) Show that if f is Riemann integrable on [0, 1], then f is Lebesgue inte-

grable on [0, 1] and
∫

[0,1]
fdm =

∫ 1

0
f(x)dx.

(ii) Construct a function such that it is Lebesgue integrable on [0, 1] but not
Riemann integrable.



5. Hilbert Spaces

As a straightforward generalization of finite-dimensional Euclidean spaces and
the most important Banach spaces, the Hilbert spaces and the most refined
analysis on these spaces will be discussed in this chapter.

5.1 Definition and Basic Properties

Definition 5.1.1. Let X be a complex linear space.
(i) A inner product on X is a map (x, y) 7→ 〈x, y〉 from X × X to C such

that
(a) 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉 ∀x, y, z ∈ X and ∀α, β ∈ C;
(b) 〈y, x〉 = 〈x, y〉 ∀x, y ∈ X;
(c) 〈x, x〉 ≥ 0 ∀x ∈ X and 〈x, x〉 = 0 if and only if x = 0.
(ii) If X is equipped with an inner product, then X is said to be an inner

product space or a pre-Hilbert space.
(iii) A Hilbert space is a complete, complex, inner product space.

Example 5.1.1. (i) Cn is a Hilbert space under the inner product 〈x, y〉 =∑n
j=1 xj ȳj for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Cn.
(ii) Given E ∈Mn, let L2(E) be the set of all Lebesgue measurable functions

f : Rn → C such that ‖f‖2 =
( ∫

E |f |2dm
) 1

2 < ∞. It is easy to see that the
formula 〈f, g〉 =

∫
E
fḡdm defines an inner product on L2(E). In fact, L2(E) is

a Hilbert space.

This example motivates the following result.

Theorem 5.1.1. Let X be a complex linear space equipped with the inner prod-
uct 〈·, ·〉. If ‖x‖ =

√
〈x, x〉 ∀x ∈ X, then we have

(i) Schwarz’s Inequality: |〈x, y〉| ≤ ‖x‖‖y‖ ∀x, y ∈ X, with equality if and
only if x and y are linearly dependent.

(ii) Norm: ‖ · ‖ defines a norm on X;
(iii) Parallelogram Law: ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) ∀x, y ∈ X.

Proof. (i) If 〈x, y〉 = 0, then there is nothing to argue. If 〈x, y〉 6= 0, then x 6= 0
and y 6= 0 holds. Let α = 〈x, y〉 and z = αy. Then for t ∈ R we have

0 ≤ 〈x− tz, x− tz〉 = ‖x‖2 − 2t|〈x, y〉|2 + t2|〈x, y〉|2‖y‖2.
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The last expression is a quadratic function of t whose absolute minimum occurs
at t = ‖y‖−2. Substituting this value for t, we get

0 ≤ ‖x− tz‖2 = ‖x‖2 − ‖y‖−2|〈x, y〉|2

with equality if and only if x− tz = x− αty = 0, from which the desired result
is immediate.

(ii) It is obvious that ‖x‖ = 0 if and only if x = 0 and that ‖λx‖ = |λ|‖x‖.
As for the triangle inequality, (i) is applied to imply that

‖x+ y‖2 = ‖x‖2 + 2<〈x, y〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2.

(iii) This follows directly from expanding the inner products defining ‖x+y‖2
and ‖x− y‖2.

Remark 5.1.1. If a norm ‖ · ‖ on X satisfies the parallelogram law above, then

〈x, y〉 = 4−1
4∑

n=1

in‖x+ iny‖2 (i2 = −1),

defines an inner product on X . As a matter of fact, this 〈·, ·〉 yields

〈x, x〉 = ‖x‖2 +
i|1 + i|2

4
‖x‖2 − i|1− i|2

4
‖x‖2 = ‖x‖2 ∀x ∈ X.

To verify that 〈·, ·〉 is actually an inner product, one suffices to prove that Defi-
nition 5.1.1 (i) (a) holds for α = β = 1 and 〈λ·, ·〉 = λ〈·, ·〉 for any λ ∈ C. To the
former, we use the parallelogram law to achieve

‖u+ v + w‖2 + ‖u+ v − w‖2 = 2‖u+ v‖2 + 2‖w‖2

and
‖u− v + w‖2 + ‖u− v − w‖2 = 2‖u− v‖2 + 2‖w‖2.

Hence

(‖u+v+w‖2−‖u−v+w‖2)+(‖u+v−w‖2−‖u−v−w‖2) = 2‖u+v‖2−2‖u−v‖2.

This infers
<〈u+ w, v〉+ <〈u− w, v〉 = 2<〈u, v〉.

The relation with < replaced by = is proved similarly. So

〈u+ w, v〉+ 〈u− w, v〉 = 2〈u, v〉.

When u = w, one has 〈2u, v〉 = 2〈u, v〉. Taking u+w = x, u−w = y, v = z, one
gets

〈x, z〉+ 〈y, z〉 = 2〈x+ y

2
, z〉 = 〈x+ y, z〉.

To reach the latter, one notes that for any m ∈ N,
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〈mx, y〉 = 〈(m− 1)x+ x, y〉 = 〈(m− 1)x, y〉+ 〈x, y〉 = · · · = m〈x, y〉.

Thus for any k ∈ N,

k〈x
k
, y〉 = 〈x, y〉 and 〈x

k
, y〉 = k−1〈x, y〉.

Consequently, for any r = m/k,

r〈x, y〉 = m〈x
k
, y〉 = 〈m

k
, y〉 = 〈rx, y〉.

Since 〈x, y〉 is continuous functional in x, one concludes that λ〈x, y〉 = 〈λx, y〉
for any λ > 0. If λ < 0 then

λ〈x, y〉 − 〈λx, y〉 = λ〈x, y〉 − |λ|〈−x, y〉 = λ〈0, y〉 = 0.

Also, it is not hard to see that i〈x, y〉 = 〈ix, y〉. Finally, for any λ = µ+ iν ∈ C,

λ〈x, y〉 = µ〈x, y〉+ i〈νx, y〉 = 〈(µ+ iν)x, y〉,

as desired.

5.2 Orthogonality, Orthogonal Complement and
Conjugate Spaces

First of all, let us consider orthogonality.

Definition 5.2.1. Given a Hilbert space X. Let x, y ∈ X.
(i) The angle between x and y is defined by

θx,y =

{
0, if x or y = 0,

arccos <〈x,y〉‖x‖‖y‖ , otherwise.

(ii) x and y are called orthogonal provided 〈x, y〉 = 0.
(iii) For any subset S of X, S⊥ = {x ∈ X : 〈x, y〉 = 0 ∀y ∈ S} is called

the orthogonal complement of S.

The following result has natural geometric and finite-dimensional antecedents.

Theorem 5.2.1. A closed convex subset M of a Hilbert space X contains a
unique element of smallest norm; that is, there exists exactly one x ∈ M such
that ‖x‖ = infy∈M ‖y‖.

Proof. Let δ = infy∈M ‖y‖ and let (xj) be any sequence in M such that
limj→∞ ‖xj‖ = δ. It is clear that such sequences exist. Using the parallelogram
law we may write

‖xk + xj‖2 + ‖xk − xj‖2 = 2(‖xk‖2 + ‖xj‖2).
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Since M is convex, we conclude that 2−1(xj + xk) ∈M and hence

‖xk + xj‖2 = 4‖2−1(xk + xj)‖2 ≥ 4δ2.

The above statements imply ‖xj−xk‖ → 0 as j, k →∞. Namely, (xj) is a Cauchy
sequence and so there is a point x ∈M such that xj → x in X . The continuity of
the norm leads to ‖x‖ = δ. Finally, x is unique since given y ∈M with ‖y‖ = δ,
the forgoing argument can be applied to the sequence x, y, x, y, x, y, .... to show
that it is Cauchy, which can only be the case if x = y.

Next, we recall the definition of the direct sum.

Definition 5.2.2. Given a linear space Z and subspaces X and Y , Z is said to
be the direct sum of X and Y , denoted Z = X ⊕ Y , provided every z ∈ Z can be
expressed uniquely in the form z = x+ y, x ∈ X and y ∈ Y and X ∩ Y = {0}.

We are about to prove a theorem about decomposing Hilbert space into a
direct sum of mutually orthogonal closed subspaces. Before doing so, we need
the following result.

Lemma 5.2.1. Let M be a proper closed subspace of a Hilbert space X. Then
there exists a (clearly not unique) nonzero z ∈ X such that 〈z, y〉 = 0 for all
y ∈M .

Proof. Given any x ∈ X , the set x+M is a closed convex set. Thus by Theorem
5.2.1 there exists a unique z ∈ X such that z ∈ x+M and ‖z‖ = infy∈M ‖x+y‖.
We shall show that 〈z, y〉 = 0 for all y ∈M and if we choose x /∈M then z 6= 0.
In fact, given any y ∈M and any α ∈ C, we have z+αy ∈ x+M . By our choice
of z we then have ‖z + αy‖2 ≥ ‖z‖2 and, expanding,

|α|2‖y‖2 + 2<(ᾱ〈z, y〉) ≥ 0 ∀α ∈ C.

Choose θ ∈ [0, 2π) with
e−iθ〈z, y〉 = |〈z, y〉|

and let α = teiθ, t ∈ R. The inequality obtained by substituting for α is then

t2‖y‖2 + 2t|〈z, y〉| ≥ 0 ∀t ∈ R.

By choosing t negative and letting t approach 0 we get 〈z, y〉 = 0 since otherwise
the negative term would eventually dominate the positive term and contradict
the inequality. Since y ∈M was arbitrary, we thus have 〈z, y〉 = 0 for all y ∈M .

Theorem 5.2.2. If M is a closed subspace of a Hilbert space X, then X =
M ⊕M⊥.

Proof. Given x ∈ X , apply the procedure in the proof of Lemma 5.2.1 to obtain
z ∈ X such that z ∈ x + M and 〈z, y〉 = 0 for all y ∈ M . Then z ∈ M⊥ and
z = x − y for some y ∈M . Hence x = y + z, y ∈M , and z ∈M⊥. Noting that
M ∩M⊥ = {0} since
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x ∈M ∩M⊥ ⇒ 〈x, x〉 = 0⇒ x = 0,

we thus have X = M ⊕M⊥. Observe that M⊥ is closed. Indeed, if xj ∈ M⊥
and xj → x in X , then for any y ∈M we have by Schwarz’s inequality,

|〈y, x〉| ≤ |〈y, xj − x〉|+ |〈y, xj〉| ≤ ‖y‖‖xj − x‖ → 0

as j →∞. So x ∈M⊥.

Finally, we consider the conjugate space of a Hilbert space. Below is the
classical Riesz representation theorem.

Theorem 5.2.3. Given a Hilbert space X and y ∈ X, define Ly : X → C by
Ly(x) = 〈x, y〉. Then Ly ∈ X∗ and ‖Ly‖ = ‖y‖. Conversely, for every f ∈ X∗
there exists a unique y ∈ X such that f = Ly.

Proof. Clearly, Ly ∈ X∗ with ‖Ly‖ ≤ ‖y‖. Note that ‖y‖2 = Ly(y) ≤ ‖Ly‖‖y‖.
So ‖Ly‖ = ‖y‖. Conversely, let f ∈ X∗ be given. If f = 0, then f = Ly where
y = 0. If f 6= 0, then we may assume without loss of generality that ‖f‖ = 1
since f/‖f‖ = Ly ⇒ f = L‖f‖y. For such an f , let

M = {x ∈ X : f(x) = 0}.
Then it is closed subspace of X . If M = X then f = 0 and hence f(x) = 〈x, 0〉 =
L0(x). If M 6= X then by Lemma 5.2.1 we can obtain a unique nonzero y ∈M⊥
such that f(y) 6= 0. Now for any x ∈ X , we have

x− f(x)

f(y)
y ∈M and 〈x− f(x)

f(y)
y, y〉 = 0.

Accordingly,

〈x, y〉 = f(x)〈 y

f(y)
, y〉.

By taking z = ¯f(y)‖y‖−2y, we further get f(x) = 〈x, z〉, and then f = Lz. To
see the uniqueness, assume that there is another point w ∈ X such that f = Lw.
Then 〈x,w − z〉 = 0 for all x ∈ X , and hence

‖w − z‖2 = 〈w − z, w − z〉 = 0 and w = z.

We are done.

Corollary 5.2.1. Let X be a Hilbert space. Then the map σ : X → X∗ given
by (σx)(y) = 〈y, x〉 is an isometric embedding from X onto X∗.Moreover, X∗ is
also a Hilbert space.

Proof. The first part has just been proved in Theorem 5.2.3. Furthermore it is
easily seen that σ(x1 + x2) = σ(x1) + σ(x2) so the isometry is additive. Since

σ(αx)(y) = 〈y, αx〉 = ᾱ〈y, x〉 = ᾱσ(x)(y),

we conclude that σ(αx) = ᾱσ(x). Note that the inherited inner product on X∗

must be defined by 〈σ(x), σ(y)〉 = 〈y, x〉 so that its action on the second variable
will be conjugate linear. Of course, this yields that X∗ is a Hilbert space.
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5.3 Orthonormal Bases

Definition 5.3.1. Let X be a Hilbert space. A set S ⊂ X is called orthogonal
if any two different elements in S are orthogonal. An orthonormal set is an
orthogonal set consisting entirely of elements of norm 1.

A well-known and constructive result about orthonormal sets is the Gram-
Schmidt orthonormalization as follows.

Theorem 5.3.1. Given any countable linearly independent set {xj} of a Hilbert
space X, an orthonormal set {ej} can be constructed so that

span({ej}nj=1) = span({xj}nj=1 ∀n ∈ N.

Proof. Define e1 = x1/‖x1‖, and, proceeding inductively, if {ej}nj=1 are success-
fully defined, let en+1 = yn+1/‖yn+1‖ where

yn+1 = xn+1 −
n∑

j=1

〈xn+1, ej〉ej .

Then ‖yn+1‖ 6= 0 since otherwise we would have

xn+1 ∈ span({ej}nj=1) = span({xj}nj=1,

contradicting the linear independence of {xj}. It is clear that

span({ej}n+1
j=1 ) = span({xj}n+1

j=1 )

since this is true for {ej}nj=1 and {xj}nj=1. Finally, for j ≤ n,

〈en+1, ej〉 =
〈xn+1, ej〉 − 〈xn+1, ej〉〈ej , ej〉

‖yn+1‖
= 0,

so the set {ej} obtained by this inductive construction is an orthonormal set
with the desired property.

Example 5.3.1. Given a < b, a, b ∈ [−∞,∞] and a function ω : (a, b) → (0,∞)

with the property that the Riemann integral
∫ b
a t

nω(t)dt is finite for all n ∈ N,
define the Hilbert space Lωp (a, b) to be the linear space of Lebesgue measurable

functions f on (a, b) with ‖f‖ω = 〈f, f〉
1
2
ω where

〈f, g〉ω =

∫

(a,b)

fḡωdm.

It may be verified that the linearly independent set {1, t, t2, ...} has a linear
span dense in Lω2 (a, b). The Gram-Schmidt orthonormalization process may be
applied to this set to produce various families of classical orthonormal functions:
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(i) If ω = 1 and a = −1, b = 1, then the process generates the Legendre
polynomials;

(ii) If ω(t) = (1 − t2)−
1
2 and a = −1, b = 1, then the process generates the

Tchebychev polynomials;
(iii) If ω(t) = tq−1(1− t)p−q (with q > 0 and p− q > −1) and a = 0, b = 1,

then the process generates the Jacobi polynomials;
(iv) If ω(t) = e−t

2

and a = −∞, b = ∞, then the process generates the
Hermite polynomials;

(v) If ω(t) = e−t and a = 0, b =∞, then the process generates the Laguerre
polynomials;

Lemma 5.3.1. Let {ej}nj=1 be a finite orthonormal set of a Hilbert space X.
Then

(i)
∑n

j=1 |〈x, ej〉|2 ≤ ‖x‖2 ∀x ∈ X;

(ii) 〈x−∑n
j=1〈x, ej〉ej , ek〉 = 0 ∀x ∈ X and k = 1, 2, ..., n.

Proof. (i) This follows from

0 ≤ ‖x−
n∑

j=1

〈x, ej〉ej‖2 = ‖x‖2 −
n∑

j=1

|〈x, ej〉|2,

where the last equality is obtained by expanding in the usual fashion and using
orthonormality of {ej}nj=1.

(ii) This follows from

〈x−
n∑

j=1

〈x, ej〉ej , ek〉 = 〈x, ek〉 − 〈x, ek〉〈ek, ek〉 = 0.

Corollary 5.3.1. Let I be any index set and {ej}j∈I be an orthonormal set of
a Hilbert space X. Then S = {ej : 〈x, ej〉 6= 0} is countable for any x ∈ X .

Proof. For each n ∈ N, define

Sn = {ej : |〈x, ej〉|2 > ‖x‖2/n}.

By Lemma 5.3.1 each Sn contains at most n− 1 members. Since S =
⋃∞
n=1 Sn,

we conclude that S is countable.

Given an arbitrary orthonormal set {ej}j∈I , we would like to extend the
results of the last lemma. Using this lemma and its corollary, we denote by∑

j |〈x, ej〉|2 and
∑

j〈x, ej〉ej the series
∑∞

k=1 |〈x, ejk 〉|2 and
∑
jk
〈x, ejk 〉ejk re-

spectively, where we restrict ourselves to the countable number of ejk for which
〈x, ejk 〉 6= 0. The following result assures that both series are well defined.

Theorem 5.3.2. Let {xk}∞k=1 be an orthonormal sequence in a Hilbert space X,
and let {cj} be any sequence of scalars. Then

∑∞
k=1 ckxk is convergent in X if

and only if
∑∞
k=1 |ck|2 <∞, and if so
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∥∥∥∥∥
∞∑

k=1

ckxk

∥∥∥∥∥

2

=

∞∑

k=1

|ck|2.

Moreover,
∑∞

k=1 ckxk is independent of the order in which its terms are arranged.

Proof. From the orthonormality of {xk}∞k=1 it follows that for m > n,
∥∥∥∥∥
m∑

k=n

ckxk

∥∥∥∥∥

2

=

m∑

k=n

|ck|2.

This, together with the completeness of X , implies the ‘iff’ part of the theorem.
If n = 1 and m→∞, then the desired equality follows.

To complete the proof, we assume that
∑∞

k=1 |ck|2 < ∞ and let y =∑∞
l=1 cklxkl be a rearrangement of x =

∑∞
k=1 ckxk . Then

‖x− y‖2 = 〈x, x〉 + 〈y, y〉 − 〈x, y〉 − 〈y, x〉,
and 〈x, x〉 = 〈y, y〉 =

∑∞
k=1 |ck|2. If

sm =
m∑

k=1

ckxk and tm =
m∑

l=1

cklxkl ,

then

〈x, y〉 = lim
m→∞

〈sm, tm〉 =
∞∑

k=1

|ck|2.

Note that 〈y, x〉 = 〈x, y〉 = 〈x, y〉. So it follows that ‖x−y‖ = 0 and hence x = y.
We are done.

Theorem 5.3.3. Let I be any index set and {ej}j∈I be an orthonormal set of
a Hilbert space X.

(i) (Bessel’s inequality)
∑
j∈I |〈x, ej〉|2 ≤ ‖x‖2 ∀x ∈ X

(ii) 〈x−∑j∈I 〈x, ej〉ej , ek〉 = 0 ∀x ∈ X and k ∈ I.

Proof. (i) This follows from

∑

j∈I
|〈x, ej〉|2 = lim

n→∞

n∑

k=1

|〈x, ejk 〉|2 ≤ ‖x‖2.

(ii) By using continuity of the inner product in its left-hand variable (which
follows from Schwarz’s inequality) we obtain

〈x−
∑

j∈I
〈x, ej〉ej , ek〉 = 〈x, ek〉 − 〈

∑

j∈I
〈x, ej〉ej , ek〉

= 〈x, ek〉 − 〈 lim
n→∞

n∑

m=1

〈x, ejm〉ej , ek〉

= 〈x, ek〉 − lim
n→∞

〈
n∑

m=1

〈x, ejm〉ej , ek〉

= 〈x, ek〉 − 〈x, ek〉 = 0.
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Definition 5.3.2. An orthonormal set {ej} of a Hilbert space X is called an
orthonormal basis for X provided

〈x, ej〉 = 0 ∀ej ⇒ x = 0.

Less formally, this definition says that an orthonormal set is an orthonormal
basis if it is impossible to adjoin an additional nonzero element to the set while
still preserving its orthonormality.

Theorem 5.3.4. Let {ej} be an orthonormal set in a Hilbert space X. Then
the following are equivalent:

(i) {ej} is an orthonormal basis;
(ii) The closed linear span of {ej} is X;
(iii) (Parseval’s identity) ‖x‖2 =

∑
j |〈x, ej〉|2 ∀x ∈ X.

Proof. First, we prove that (i) implies (ii) and (iii). If (i) is true, then Definition
5.3.2 and Theorem 5.3.3 (ii) yield

x =
∑

j

〈x, ej〉ej ∀x ∈ X.

Clearly, (iii) follows from Theorem 5.3.2.
Next, we prove that each of (ii) and (iii) implies (i).
(ii)⇒(i). Suppose that y ∈ X satisfies 〈y, ej〉 = 0 ∀ej . To prove y = 0,

consider S = {x ∈ X : 〈y, x〉 = 0}. It is easy to see that S is linear subspace
of X . Since ej ∈ S, it follows that S must contain the linear span of {ej}. On
the other hand, S is closed in view of the continuity of the inner product, and
so S must contain the closure of the linear span of {ej}. Hence S = X by (ii).
In particular, we have y ∈ S and so 〈y, y〉 = 0, whence y = 0 as required.

(iii)⇒(i). Suppose on the contrary that {ej} does not form an orthonormal
basis of X . Then there exists a nonzero x ∈ X such that 〈x, ej〉 = 0 ∀ej . Then

0 6= ‖x‖2 =
∑

j

|〈x, ej〉|2 = 0.

This is a contradiction.

Example 5.3.2. {eint}n∈Z} is an orthonormal basis for L2[0, 2π]. This leads to
the classical Fourier analysis.

Theorem 5.3.5. Every Hilbert space has an orthonormal basis. Any orthonor-
mal basis in a separable Hilbert space is countable.

Proof. Let X be a Hilbert space, and consider the collection E of orthonormal
subsets of X . From Theorem 5.3.1 it is seen that E is nonempty and can be
partially ordered under inclusion. If F is any totally ordered subcollection of
E, the set U =

⋃
S∈F S is member of E and an upper bound for F . By Zorn’s

lemma there is a maximal orthonormal set M . Since M is maximal, we conclude
from Definition 5.3.2 that M is an orthonormal basis.
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If X is separable, and if {ej} is an uncountable orthonormal basis, then for
j 6= k, we have

‖ej − ek‖2 = ‖ej‖2 + ‖ek‖2 = 2,

and so the open balls B1/2(ej) (with center ej and radius 1/2) are mutually
disjoint. If {xj}∞j=1 is a dense countable sequence in X , because {ej} is uncount-
able, there is a ball B1/2(ej0) that does not contain any of the points xj . Hence
ej0 is not in the closure of {xj}. This contradicts the density of {xj} in X . We
are done.

Corollary 5.3.2. Any two infinite dimensional separable Hilbert spaces are iso-
metrically isomorphic.

Proof. Suppose X and Y are two such spaces. Theorem 5.3.5 tells us that there
are sequences {xj} and {yj} that form orthonormal bases for X and Y respec-
tively. If x ∈ X and y ∈ Y , then

x =

∞∑

j=1

〈x, xj〉xj and y =

∞∑

j=1

〈y, yj〉yj .

Define a map T : X → Y by Tx = y if 〈x, xj〉 = 〈y, yj〉. It is clear that T is
linear and one-to-one, and it maps X onto Y since (〈x, xj 〉)∞j=1 and (〈y, yj〉)∞j=1

run through all of `2. Also

‖Tx‖2 =

∞∑

j=1

|〈y, yj〉|2 =

∞∑

j=1

|〈x, xj〉|2 = ‖x‖2,

so T is isometrically isomorphic. The proof is complete.

5.4 Adjoint Operators

Definition 5.4.1. Let X be a Hilbert space. Then the adjoint operator T ∗ of a
T ∈ B(X) is defined by

〈Tx, y〉 = 〈x, T ∗y〉 ∀x, y ∈ X.

Of course, this adjoint operator is unique since for each fixed y ∈ X , 〈Tx, y〉
is a continuous linear functional on X . Thus by the Riesz theorem there exists
a unique z ∈ X such that 〈Tx, y〉 = Lz(x) = 〈x, z〉, and we define T ∗y = z. The
linearity of T ∗ follows from the following calculation:

〈x, T ∗(αy1 + βy2)〉 = 〈Tx, αy1 + βy2〉
= ᾱ〈Tx, y1〉+ β̄〈Tx, y2〉
= 〈x, αT ∗y1 + βT ∗y2〉
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Theorem 5.4.1. Let X be a Hilbert space. Then the operator ∗ maps B(X) to
itself, and has the following properties for all T, S ∈ B(X) and α, β ∈ C:

(i) (αT + βS)∗ = ᾱT ∗ + β̄S∗;
(ii) (TS)∗ = S∗T ∗;
(iii) T ∗∗ = T ;
(iv) ‖T ∗‖ = ‖T‖;
(v) ‖T ∗T‖ = ‖T‖2.

Proof. First of all, we verify that ∗ maps B(X) to B(X). The linearity of T ∗

follows from the following calculation:

〈x, T ∗(αy1 + βy2)〉 = 〈Tx, αy1 + βy2〉
= ᾱ〈Tx, y1〉+ β̄〈Tx, y2〉
= 〈x, αT ∗y1 + βT ∗y2〉

By the definition of the operator norm, we have

‖T ∗‖ = sup
‖y‖=1

‖T ∗y‖

≤ sup
‖x‖=1,‖y‖=1

|〈x, T ∗y〉|

= sup
‖x‖=1,‖y‖=1

|〈Tx, y〉|

≤ sup
‖x‖=1

‖Tx‖

= ‖T‖.
This implies ∗ is bounded on B(X).

Next, we check those five properties.
(i) For any x, y ∈ X , we have

〈x, (αT + βS)∗y〉 = α〈Tx, y〉+ β〈Sx, y〉 = 〈x, (ᾱT ∗ + β̄S∗)y〉.
(ii) This follows from

〈x, (TS)∗y〉 = 〈TSx, y〉 = 〈Sx, T ∗y〉 = 〈x, S∗T ∗y〉.
(iii) This follows from

〈x, T ∗∗y〉 = 〈T ∗x, y〉 = 〈y, T ∗x〉 = 〈Ty, x〉 = 〈x, Ty〉.
(iv) It is known that ‖T ∗‖ ≤ ‖T‖ and T ∗∗ = T . So ‖T‖ ≤ ‖T ∗‖. This gives

‖T‖ = ‖T ∗‖.
(v) By (iv), we get

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.
For the reverse inequality, we note that

‖Tx‖2 = 〈T ∗Tx, x〉 ≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖‖x‖2.
So, ‖T‖2 ≤ ‖T ∗T‖, which completes the proof.
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Example 5.4.1. Let `2 be the Hilbert space of square summable complex-valued
sequences. If T is the operator on `2 defined by T (x1, x2, ...) = (0, x1, x2, ...),
then T ∗(x1, x2, ...) = (x2, x3, ...). Clearly, ‖T‖ = ‖T ∗‖ = 1.

5.5 Self-adjoint, Normal, Unitary, and Projective
Operators

Definition 5.5.1. Let X be a Hilbert space. An operator T ∈ B(X) is said to
be self-adjoint provided T = T ∗.

Theorem 5.5.1. Let X be a Hilbert space. Then T ∈ B(X) is self-adjoint if
and only if 〈Tx, x〉 is real for all x ∈ X.

Proof. If T ∈ B(X) is self-adjoint, then 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉 for any
x ∈ X . Hence 〈Tx, x〉 is real for all x ∈ X .

Conversely, If f(x) = 〈Tx, x〉, then

f(x+ y) = f(x) + f(y) + 〈Ty, x〉+ 〈Tx, y〉

and
f(x+ iy) = f(x) + f(y) + i〈Ty, x〉 − i〈Tx, y〉.

Since f(x) is real-valued, we conclude from the last two identities that there are
r, s ∈ R such that

〈Ty, x〉+ 〈Tx, y〉 = r and 〈Ty, x〉 − 〈Tx, y〉 = is.

This yields

〈Ty, x〉 =
r + is

2
and 〈Tx, y〉 =

r − is
2

,

and thus
〈Ty, x〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈T ∗y, x〉.

Of course, T = T ∗. We are done.

Example 5.5.1. Given a Hilbert space X , let T ∈ B(X) be such that 〈Tx, x〉 =
0 ∀x ∈ X . Then for x, y ∈ X and α ∈ C we have

0 = 〈T (αx+ y, αx+ y〉 = α〈Tx, y〉+ ᾱ〈Ty, x〉.

Taking α = i, 1 respectively, we get

〈Tx, y〉 − 〈Ty, x〉 = 0 and 〈Tx, y〉+ 〈Ty, x〉 = 0,

which implies 〈Tx, y〉 = 0 and so 〈Tx, Tx〉 = 0. Thus T = 0.

Definition 5.5.2. Let X be a Hilbert space. An operator T ∈ B(X) is said to
be:

(i) Normal if TT ∗ = T ∗T .
(ii) Positive if 〈Tx, x〉 ≥ 0 ∀x ∈ X;
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The following result shows that the normal operators correspond to complex
numbers.

Theorem 5.5.2. Given a Hilbert space X, let T ∈ B(X). Then the following
are equivalent:

(i) T is normal;
(ii) T = T1 + iT2 where T1 and T2 are self-adjoint and T1T2 = T2T1;
(iii) ‖Tx‖ = ‖T ∗x‖ ∀x ∈ X.

Proof. (i)⇒(ii). Put

T1 =
T + T ∗

2
and T2 =

T − T ∗
2i

.

It is easy to see that T1 and T2 are self-adjoint and commute.
(ii)⇒(iii). Using the given decomposition of T together with T1T2 = T2T1,

we have

‖Tx‖2 = 〈x, T ∗Tx〉
= 〈x, (T1 − iT2)(T1 + iT2)x〉
= 〈x, (T1T1 + T2T2)x〉
= 〈x, (T1 + iT2)(T1 − iT2)x〉
= 〈x, TT ∗x〉
= ‖T ∗x‖2.

(iii)⇒(i). For any x ∈ X , we have

〈(TT ∗ − T ∗T )x, x〉 = 〈TT ∗x, x〉 − 〈T ∗Tx, x〉 = ‖T ∗x‖2 − ‖Tx‖2 = 0.

So, TT ∗ − T ∗T = 0 and T is normal.

Below is the basic structure of a positive operator.

Theorem 5.5.3. Given a Hilbert space X, let I ∈ B(X) be the identity opera-
tor. If T ∈ B(X) is a positive operator, then

(i) T + I is invertible;
(ii) No negative real number can belong to the spectrum of T :

σ(T ) = {λ ∈ C : T − λI is not invertible}.

Proof. (i) Since T ∈ B(X) is a positive operator, we conclude that

(T + I)x = 0⇒ 〈(T + I)x, x〉 = 0⇒ 0 ≤ 〈Tx, x〉 = −‖x‖2 ⇒ x = 0

and injectivity of T + I follows.
Surjectivity will follows if we can prove that M = range(T + I) is both dense

and closed. The argument used for injectivity applies to x ∈ M⊥ to infer that
〈(T + I)x, x〉 = 0 ∀x ∈M⊥ and so M⊥ = 0. On the other hand, for any x ∈ X ,
we have
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‖(T + I)x‖2 = ‖Tx‖2 + 2〈Tx, x〉+ ‖x‖2

and hence
‖x‖ ≤ ‖(T + I)x‖.

Consequently, if
(
(T + I)xj

)
is a Cauchy sequence in M , then (xj) is a Cauchy

sequence in X and hence it is convergent. This shows that M is complete and
thereby closed in X . From Theorem 5.2.2 it turns out that X = M ⊕M⊥ = M ;
that is, T + I is surjective.

(ii) Assume r ∈ σ(T ), r < 0. Then −r−1T + I = −r−1(T − rI) is not
invertible. Since −r−1T is a positive operator, we conclude from (i) that T − rI
is invertible, a contradiction.

Definition 5.5.3. Let X be a Hilbert spaces. Then T ∈ B(X) is called unitary
provided T is an isometric (‖Tx‖ = ‖x‖) isomorphism of X onto itself.

Example 5.5.2. The operator T defined by Tx = (x2, x1, ...) for any x =
(x1, x2, ...) ∈ `2 is a unitary operator on `2.

We have a characterization of the unitary operators as follows.

Theorem 5.5.4. Let X be a Hilbert spaces. For T ∈ B(X) the following are
equivalent:

(i) T is unitary;
(ii) TT ∗ = T ∗T = I;
(iii) 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ X, and T is surjective.

Proof. (i)⇒(iii). If T is unitary, then ‖Tx‖ = ‖x‖ and hence

〈Tx, Ty〉 = 4−1
4∑

n=1

in‖Tx+ inTy‖2

= 4−1
4∑

n=1

in‖T (x+ iny)‖2

= 4−1
4∑

n=1

in‖x+ iny‖2

= 〈x, y〉.
Surjectivity of T follows the definition of a unitary operator.

(iii)⇒(ii). Clearly, (iii) implies that T is injective. Moreover

〈T ∗Tx, x〉 = 〈Tx, Tx〉 = 〈x, x〉.
This, along with Example 5.5.1, yields

〈(T ∗T − I)x, x〉 = 0 =⇒ T ∗T = I ⇒ TT ∗ = I.

(ii)⇒(i). If (ii) is true, then T is surjective and

‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 〈x, x〉 = ‖x‖2.
This implies that T is injective, and thereby T is unitary.
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Example 5.5.3. Let T = 2iI on a given Hilbert space X , where I is the identity
operator on X . Then T ∗ = −2iI and TT ∗ = T ∗T = 4I . Thus, T is normal
operator but not unitary nor self-adjoint.

The final class of operators that we consider is the important class of projec-
tion operators.

Definition 5.5.4. Let X be a Hilbert space. Then an operator T ∈ B(X) is
called a projection provided T 2 = T .

Example 5.5.4. Let M be a closed subspace of a Hilbert space X . Then X =
M ⊕M⊥; that is, any x ∈ X there are unique y ∈ M and z ∈ M⊥ such that
x = y + z. If PM (x) = y then PM is a projection. In fact,

P 2
M (x) = PM (y) = y = PM (x)⇒ P 2

M = PM .

The fact that PM ∈ B(X) follows from

‖x‖2 = ‖y + z‖2 = ‖y‖2 + ‖z‖2 ≥ ‖y‖2 = ‖PM (x)‖2 ⇒ ‖PM‖ ≤ 1.

Traditionally, PM is called the orthogonal projection of X onto M . Moreover, if
M 6= {0} then PM 6= 0 and hence for any x ∈ M \ {0} we have x = x + 0 and
PMx = x, giving ‖PM‖ = 1.

The following theorem singles out the above orthogonal projections as a very
important subclass.

Theorem 5.5.5. Let X be a Hilbert space. If T ∈ B(X) is a projection, then
the following are equivalent:

(i) T is positive;
(ii) T is self-adjoint;
(iii) T is normal;
(iv) T is the orthogonal projection on its range T (X).

Proof. Since (i)⇒(ii)⇒(iii) are straightforward, we only verify (iii)⇒(iv)⇒(i).
(iii)⇒(iv). Assume that (iii) holds. To reach (iv), let M = range(T ).
We first prove that M is closed. Given (yj)

∞
j=1 in M with yj → y, we have

yj = Txj , xj ∈ X . Since T is a projection, we can conclude from yj → y that

yj = Txj = T 2xj = Tyj → Ty⇒ y = Ty ∈M

and hence M is closed.
Next, given x ∈ X write x = y+ z, y ∈M and z ∈M⊥. We must verify that

Tx = y. Because Tx = Ty + Tz, it suffices to prove that Ty = y and Tz = 0.
Since y ∈M , there is w ∈ X such that y = Tw and so

Ty = T 2w = Tw = y.

By definition of M we have Tz ∈ M , and if we can also prove that Tz ∈ M⊥,
then we can conclude that Tz = 0. Accordingly, given any u ∈M , then there is
v ∈ X such that u = Tv and
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〈Tz, u〉 = 〈Tz, Tv〉 = 〈z, T ∗Tv〉 = 〈z, TT ∗v〉 = 0

due to z ∈M⊥ and TT ∗v ∈M . That is to say, Tz ∈M⊥.
(iv)⇒(i). For any x ∈ X , let

x = y + z, y ∈M = T (X) and z ∈M⊥.

Then
〈Tx, x〉 = 〈y, y + z〉 = 〈y, y〉+ 〈y, z〉 = 〈y, y〉 ≥ 0.

Hence T is positive and the proof is complete.

Last of all, it is worth pointing out that there is a natural one-to-one cor-
respondence between projection operators T and direct sum decompositions
X = M ⊕ N , M and N closed. As a matter of fact, if T is a projection, then
X = M ⊕N where M = T (X) and N = (I−T )(X). Conversely, if X = M ⊕N ,
then we define T as was done for the orthogonal projection but using N instead
of M⊥. The orthogonal projections are precisely those that arise when N = M⊥,
and these are generally the projections of interest in Hilbert space theory.

5.6 Compact Operators

In this section, we consider compact operators on Banach spaces which are
stronger than boundedness, in particular, prove the spectral theorem for compact
self-adjoint operators on Hilbert spaces.

First of all, we need the definition of spectrum of a linear operator on Banach
space.

Definition 5.6.1. Let X be a Banach space and T ∈ B(X). Then (i)

σ(T ) = {λ ∈ C : λI − T is not invertible}

is called the spectrum of T , where I ∈ B(X) is the identity operator.
(ii) If Tx = λx, then x and λ are called an eigenvector and eigenvalue of T

respectively.

Example 5.6.1. (i) It is clear that σ(I) = {1} since λI − I is invertible if and
only if λ 6= 1.

(ii) If X is a finite dimensional normed vector space, then we can identify
every continuous linear operator T onX with a square matrixA and hence λI−T
is invertible if and only if λI −A is invertible, where the second I stands for the
identity matrix. This yields that σ(T ) consists exactly of all the eigenvalues of
T , and these are precisely the eigenvalues of A.

(iii) If Tx = (0, x1, x2, ...) for x ∈ `2 then T has no eigenvalues.

Theorem 5.6.1. Let X be a Banach space and T ∈ B(X). Then
(i) Every eigenvalue of T belongs to σ(T ).
(ii) If |λ| > ‖T‖ then λ /∈ σ(T ); that is, σ(T ) ⊆ {λ ∈ C : |λ| ≤ ‖T‖}.
(iii) σ(T ) is closed in C.
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Proof. (i) (λI − T )x = 0 implies λI − T has non-trivial kernel and cannot thus
be invertible.

(ii) |λ| > ‖T‖ yields ‖λ−1Y ‖ < 1. This, together with Theorem 3.1.5 (ii),
infers that I − λ−1T is invertible, and so λI − T is invertible, whence λ 6∈ σ(T ).

(iii) Suppose f(λ) = λI − T . This is a map from C to B(X). It is clear that

‖f(λ1)− f(λ2)‖ = |λ1 − λ2| ∀λ1, λ2 ∈ C,

and so that f is continuous. By Theorem 3.1.5 (iii), we have that S, the set of
all non-invertible linear operators in B(X), is closed. Therefore, σ(T ) = f−1(S)
is closed due to the continuity of f .

To see the existence that points of σ(T ) lie on the unit circle centered at
origin, we need to consider the compact operators.

Definition 5.6.2. Let (X, ‖ · ‖X) be a Banach space. Then a linear operator T
on X is called compact provide that for every bounded sequence (xj)

i
j=1nfty in

X, the sequence
(
T (xj)

)∞
j=1

has a convergent subsequence.

Example 5.6.2. (i) A compact linear operator T on X must be continuous.
For otherwise, there exists a bounded sequence (xj)

i
j=1nfty in X such that

limj→∞ ‖Txj‖ =∞, so
(
T (xj)

)∞
j=1

cannot have any convergent subsequence.

(ii) If T has finite rank; that is, dim
(
T (X)

)
<∞, then T is compact.

Lemma 5.6.1. Let X be a Banach space. If Tj ∈ B(X) is compact and
limj→∞ ‖Tj − T‖ = 0 then T is a compact operator on X.

Proof. Suppose (xj)
∞
j=1 is a bounded sequence in X . Since T1 is compact, there

is a subsequence (x1,m)∞m=1 out of (xj)
∞
j=1 such that (T1x1,m)∞m=1 is convergent.

Also since T2 is compact, there is a subsequence (x2,m)∞m=1 out of (x1,m)∞m=1

such that (T2x2,m)∞m=1 is convergent. Continuing this process, we can obtain
subsequence (xn+1,m)∞m=1 out of (xn,m)∞m=1 such that (Tn+1xn+1,m)∞m=1 is con-
vergent. It follows that (Tnxm,m)∞m=1 is convergent for any n ∈ N.

Note that (xm,m)∞m=1 is bounded in X . So there is a constant c > 0 such that
supm∈N ‖xm,m‖X ≤ c. Given ε > 0, limj→∞ ‖Tj − T‖ = 0 implies that there is
an N ∈ N such that ‖TN − T‖ < ε

3c . Since (TNxm,m)∞m=1 is convergent in X ,
there is an N1 ∈ N such that

k, l > N1 =⇒ ‖TNxk,k − TNxl,l‖ <
ε

3
.

With this, we achieve

‖Txk,k − Txl,l‖X
≤ ‖Txk,k − TNxk,k‖X + ‖TNxk,k − TNxl,l‖X + ‖TNxl,l − Txl,l‖X
≤ ‖T − TN‖‖xk,k‖X +

ε

3
+ ‖T − TN‖‖xl,l‖X

<
εc

3c
+
ε

3
+

ε

3c
= ε,
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and so (Txm,m)∞m=1 is convergent in X owing to the fact that X is a Banach
space under the norm ‖ · ‖X .

Example 5.6.3. (i) Suppose X is a Hilbert space with orthonormal basis {ej}∞j=1

and T ∈ B(X) is defined by Tej = λjej . Then T is compact on X if and only if
limj→∞ λj = 0. To see this, if limj→∞ λj = 0, then for each n ∈ N let Tnej = Tej
if j ≤ n and Tnej = 0 if j > n. Then Tn has finite rank and hence is compact,
and it is straightforward to see that

‖T − Tn‖ = sup
j>n
|λj |.

Thus T is compact due to Lemma 5.6.1. Conversely, if there is some ε > 0 with
{j : |λj | > ε} being infinite, then

‖Tej − Tek‖2 = |λj |2 + ||λk |2 ≥ 2ε2.

Therefore {Tej}∞j=1 has no convergent subsequence, giving that T is not com-
pact.

(ii) Suppose X is a Hilbert space with orthonormal basis {ej}∞j=1. If T ∈
B(X), then T is called a Hilbert-Schmidt operator provided

∑∞
j,k=1 |〈Tej , ek〉|2 <

∞. Then T is compact. To see this, just define Tnej = ej if j ≤ n and Tnej = 0
if j > n and prove limn→∞ ‖T − Tn‖ = 0.

Before reaching the spectral theorem for compact operators, we also need
one more auxiliary result on self-adjoint operators.

Lemma 5.6.2. Let X be a Hilbert space and T ∈ B(X).
(i) If T is self-adjoint and TM ⊂M , then TM⊥ ⊂M⊥.
(ii) ‖T‖ = sup{|〈Tx, y〉| : ‖x‖, ‖y‖ ≤ 1}.
(iii) If T is self-adjoint, then ‖T‖ = sup{|〈Tx, x〉| : ‖x‖ ≤ 1}

Proof. (i) If y ∈M⊥ then for any x ∈M one has Tx ∈M and hence 〈x, Ty〉 =
〈Tx, y〉 = 0.

(ii) It is clear that the Schwarz inequality implies

‖T‖ ≥ sup{|〈Tx, y〉| : ‖x‖, ‖y‖ ≤ 1}.

For the reverse inequality, we may just consider the case T 6= 0. Regarding any
y with Ty 6= 0, we have ∣∣∣

〈
Ty,

Ty

‖Ty‖
〉∣∣∣ = ‖Ty‖.

Taking the supremum over all y with ‖y‖ = 1 yields ‖T‖ and then

‖T‖ ≤ sup{|〈Tx, y〉| : ‖x‖, ‖y‖ ≤ 1}.

(iii) Let κ = sup{|〈Tx, x〉| : ‖x‖ ≤ 1}. It is easy to see that κ ≤ ‖T‖. By
(ii), we suffice to verify |〈Tx, y〉| ≤ κ‖x‖‖y‖ for all x, y ∈ X . As this estimate is
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unchanged if we multiply y by a complex number of modulus 1, we may assume
〈Tx, y〉 ∈ R. Since T = T ∗, we can conclude that

〈T (x+ y), (x+ y)〉 = 〈Tx, x〉+ 2〈Tx, y〉+ 〈Ty, y〉

and
〈T (x− y), (x− y)〉 = 〈Tx, x〉 − 2〈Tx, y〉+ 〈Ty, y〉

Subtracting the last equation from the one preceding it, we obtain

4〈Tx, y〉 = 〈T (x+ y), (x+ y)〉 − 〈T (x− y), (x − y)〉.

This, together with the definition of κ and the parallelogram law, derives

|〈Tx, y〉| ≤ κ

4
(‖x+ y‖2 + ‖x− y‖2) ≤ κ

2
(‖x‖2 + ‖y‖2).

For any λ > 0, we apply the inequality to
√
λx, y/

√
λ, and thus have

|〈Tx, y〉| ≤ κ

2
(λ‖x‖2 + λ−1‖y‖2) ∀x, y ∈ X.

In particular, λ = ‖y‖‖x‖−1 (of course, x 6= 0 is assumed, otherwise, there is
nothing to argue) produces |〈Tx, y〉| ≤ κ, as desired.

Now, it is time to state the spectral theorem for compact operators.

Theorem 5.6.2. Let X be a Hilbert space and T ∈ B(X) be compact self-
adjoint. Then

(i) At least one of ±‖T‖ is an eigenvalue of T , and so belongs to σ(T ).
(ii) X has an orthonormal basis consisting of eigenvectors of T .

Proof. (i) The assertion is obviously true whenever T = 0. So, we just consider
the case T 6= 0. Noticing Lemma 5.6.2 (iii), we get a sequence (xj)

∞
j=1 in X such

that ‖xj‖ = 1 and limj→∞ |〈Txj , xj〉| = ‖T‖. Since T is self-adjoint, we conclude
that 〈Txj , xj〉 is real. Replacing (xj)

∞
j=1 by a subsequence if necessary, we may

therefore assume that limj→∞〈Txj , xj〉 = λ, where λ = ±‖T‖. Then a simple
calculation gives

‖Txj − λxj‖2 ≤ ‖T‖2‖xj‖2 − 2λ〈Txj , xj〉+ λ2‖xj‖2 = 2λ2 − 2λ〈Txj , xj〉 → 0

as j → ∞. It follows that Txj − λxj → 0 in X . However, since T is compact
too, we conclude that there is a subsequence (xjk )∞k=1 out of (xj)

∞
j=1 such that

(Txjk )∞k=1 is convergent to y in X . This implies λxjk → y as k → ∞. The
continuity of T further infers λTxjk → Ty as k →∞. Thus T (y) = λy with

‖y‖ = lim
k→∞

‖λxjk‖ = |λ| = ‖T‖ 6= 0.

Namely, λ and y are eigenvalue and eigenvector of T .
(ii) By Zorn’s lemma we can choose an orthonormal set of eigenvectors of

T which is maximal among all orthonormal sets of eigenvectors. Let M be the
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closure of the span of these vectors. It suffices to prove M = X . It is clear that
TM ⊆ M , and so TM⊥ ⊆ M⊥ by Lemma 5.6.2 (i). Then the restriction of T
on M⊥ belongs to B(M⊥) and is self-adjoint. Since X = M ⊕M⊥, the proof
will be complete if one shows M⊥ = {0}. Suppose now M⊥ 6= {0}. Then by
the preceding argument for (i), there is an eigenvector of T in M⊥. This clearly
contradicts the maximality property of the orthonormal set generating M .

Exercises

5.1 Let C[−1, 1] be the space of all continuous complex-valued functions on

[−1, 1] with the 2-norm and the inner product 〈f, g〉 =
∫ 1

−1 f(x)g(x)dx. Prove
that C[−1, 1] is an inner product space but not a Hilbert space.

5.2 Suppose `p, 1 ≤ p < ∞, is the space of all complex-valued sequences with
p-norm. Prove that `2 is a Hilbert space under the inner product 〈x, y〉 =∑∞

j=1 xj ȳj for x = (xj)
∞
j=1 and y = (yj)

∞
j=1, but `p is not a Hilbert space

according to p-norm ‖x‖p =
(∑∞

j=1 |xj |p
) 1
p if p 6= 2.

5.3 Let X be a Hilbert space and M be a closed subspace of X . Prove (M⊥)⊥ =
M .

5.4 Let L2[−1, 1] be the class of all Lebesgue measurable complex-valued
functions that are square integrable on [−1, 1] with inner product 〈f, g〉 =∫

[−1,1] fḡdm.

(i) Let M = {f ∈ L2[−1, 1] : f(x) = 0 ∀x ∈ [−1, 0]}. Find M⊥;
(ii) Let Modd = {f ∈ L2[−1, 1] : f(−x) = −f(x) ∀x ∈ [−1, 1]} and

Meven = {f ∈ L2[−1, 1] : f(−x) = f(x) ∀x ∈ [−1, 1]}. Prove L2[−1, 1] =
Modd ⊕Meven.

5.5 Let L2[−π, π] be the Hilbert space of all Lebesgue measurable complex-
valued functions that are square integrable on [−π, π] with inner product 〈f, g〉 =∫

[−π,π]
fḡdm. Prove

(i)
(
(2π)−

1
2 einx

)
n∈Z

is an orthonormal sequence.

(ii) (
(2π)−

1
2 , π−

1
2 cos t, π−

1
2 sin t, π−

1
2 cos 2t, π−

1
2 sin 2t, ...)

is an orthonormal basis of L2[−π, π].

5.6 Given φ ∈ C[−π, π], let T : L2[−π, π]→ L2[−π, π] be given by T (f) = φf .
(i) Calculate T ∗ using the inner product defined above.
(ii) Prove that if φ is real-valued then T is self-adjoint.
(iii) Find a condition on φ such that T is respectively unitary, positive, or a

projection.

5.7 Suppose X = C[0, 1] and T ∈ B(X) is given by Tx(t) = tx(t). Prove
σ(T ) = [0, 1].
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5.8 Suppose that X is a Hilbert space, and that T ∈ B(X). Prove σ(T ∗) = {λ̄ :
λ ∈ σ(T )}.
5.9 Suppose that X is a Banach space, and that T ∈ B(X) is a compact oper-
ator. Prove that TS and ST are compact for any S ∈ B(X).
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Solutions to Exercises

1. Normed Linear Spaces

Ex.1.1. It suffices to verify the inequality for continuous functions. Let φ(t) = t
1
p

for t ≥ 0. Since p−1 ∈ (0, 1), φ′′(s) < 0 for all s > 0 and φ is concave. Hence
φ(t) ≤ φ(1) + φ′(1)(t− 1), or

t
1
p ≤ 1 +

t− 1

p
=
t

p
+

1

q
.

Setting t = upv−q, where u ≥ 0 and v > 0, we find since 1− q = −q/p that

uv ≤ up

p
+
vq

q
. (5.1)

Obviously, this inequality also holds when v = 0.
If ‖f‖p = 0 then f = 0 on [0, 1] (since f is continuous) and both sides of Hölder’s
inequality are 0. Similarly both sides are 0 if ‖g‖q = 0. Suppose ‖f‖p > 0, ‖g‖q > 0,
and let f1 = ‖f‖−1

p f , g1 = ‖g‖−1
q q. Then ‖f1‖p = 1 = ‖g1‖q , and setting u = |f1|

and v = |g1| in (1) one has

‖fg‖1
‖f‖p‖g‖q =

∫ 1

0

|f1||g1| ≤ 1

p
+

1

q
= 1.

This proves Hölder’s inequality.
For vectors:

( n∑

j=1

|xj + yj |p
) 1
p ≤

( n∑

j=1

|xj |p
) 1
p

+
( n∑

j=1

|yj |p
) 1
p

.

For sequences (xj) and (yj) with
∑

j
|xj |p <∞ and

∑
j
|yj |p <∞:

(∑

j

|xj + yj |p
) 1
p ≤

(∑

j

|xj |p
) 1
p

+
(∑

j

|yj |p
) 1
p

.

For continuous functions f, g with
∫ 1

0
|f |p <∞,

∫ 1

0
|g|p <∞:

(∫ 1

0

|f + g|p
) 1
p ≤

(∫ 1

0

|f |p
) 1
p

+
(∫ 1

0

|g|p
) 1
p

.

Ex.1.2. It suffices to verify the inequality for continuous functions. Note that
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∫ 1

0

|f + g|p ≤
∫ 1

0

|f ||f + g|p−1 +

∫ 1

0

|g||f + g|p−1. (5.2)

However, by Hölder’s inequality,

∫ 1

0

|f ||f + g|p−1 ≤
(∫ 1

0

|f |p
) 1
p
(∫ 1

0

|f + g|(p−1)q
) 1
q

.

Since (p − 1)q = p, one concludes from estimating similarly the last term in (2)
that ∫ 1

0

|f + g|p ≤ (‖f‖p + ‖g‖p)
(∫ 1

0

|f + g|p
) 1
q

.

If ‖f+g‖p = 0, then both sides are 0. Otherwise one divides both sides by
(∫ 1

0
|f+

g|p
) 1
q

. This yields Minkowski’s inequality.

Ex.1.3. (i) n−1, since the following n−1 vectors (1,−1, 0, ...0), (0, 1,−1, 0, ..., 0),...,
(0, 0, 0, ..., 1,−1) are linearly independent; (ii) ∞, since 1, t, t2, ..., tn are linearly
independent for any n ∈ N; (iii) ∞, since 1, t, t2, ..., tn are linearly independent for
any n ∈ N; (iii) ∞.

Ex.1.4. Let {x1,x2, ...,xn} be a basis of X. Given x ∈ X, x has a representation as
x =

∑n

j=1
ajxj , aj ∈ R. Since the set of coefficients a1, ..., an are the only ones

that will give us x, by the linear independence of {x1,x2, ...,xn}, we can use them
to define a map T : X → Rn by

Tx =




a1

·
·
·
an


 .

Clearly, T maps X onto Rn and it is linear:

T (x + y) = Tx + Ty and T (λx) = λTx.

To verify that T is 1− 1, we suffice to prove that Tx = 0⇒ x = 0, but this follows
from the definition of T . Suppose ‖ · ‖X is any norm on X. Now define another
norm ‖·‖X as follows: |||x|||X = ‖Tx‖Rn-any given norm on Rn. By Theorem 1.3.1
we see that ‖ · ‖X and |||x|||X are equivalent and so that ‖ · ‖X is equivalent to
‖Tx‖Rn . Therefore, X and Rn are topologically isomorphic.

Ex.1.5. Obviously, ‖f‖p ≤ ‖f‖∞ when p ∈ [1,∞) and f ∈ C[0, 1], but there is no
such a constant κ > 0 that ‖f‖∞ ≤ κ‖f‖p, ∀f ∈ C[0, 1]. For k − 2 ∈ N let

f(t) =





k
2
p t

1
p , 0 ≤ t ≤ 1

k
,

k
2
p ( 2

k
− t) 1

p , 1
k
≤ t ≤ 2

k
,

0, 2
k
≤ t ≤ 1

It is easy to see that ‖f‖∞ = k
1
p →∞ (as k→∞) and ‖f‖p = 1. This verifies the

nonexistence of the above constant κ > 0.

Ex.1.6. Note that |‖x‖ − ‖a‖| ≤ ‖x − a‖. So ‖ · ‖ : V → R is continuous. Also,
regarding the continuity of the vector addition and the scalar multiplication, we
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naturally assume that the norm defined on X × Y is given by ‖ · ‖X + ‖ · ‖Y .
Therefore, the desired continuity follows from:

‖(x+ y)− (x0 + y0)‖ ≤ ‖x− x0‖+ ‖y − y0‖
and

‖λx− λ0x0‖ ≤ |λ|‖x− x0‖ + |λ − λ0|‖x0‖.

Ex.1.7. It is clear that `0 is a linear subspace of `∞. Note that a = (1, 1
2
, 1

3
, ...) ∈ `∞.

For every n ∈ N, let xn = (1, 1
2
, 1

3
, ..., 1

n
, 0, 0, ...) ∈ `0. Then

‖xn − a‖∞ =
∥∥∥
(

0, ..., 0,
1

n+ 1
,

1

n + 2
, ....
)∥∥∥ =

1

n+ 1
→ 0

as n→∞. It follows that (xn) converges in `∞, but the limit a does not belong to
`0. Hence `0 is not closed in `∞.

Ex.1.8. (i) follows from the definition right away.
(ii) By a neighborhood of a point, one means an open ball centered at this point.
So, f : X → Y between two normed linear spaces is continuous at p ∈ X iff for
every neighborhood V of f(p) there is a neighborhood U of p such that f(U) ⊂ V .
Let f : X → Y be continuous and U ⊂ Y be open. Let p be any point of f−1(U)
and V be a neighborhood of f(p) such that V ⊂ U . Since f is continuous, there
is a neighborhood B of p such that f(B) ⊂ V . Then B ⊂ f−1(U) which shows
that f−1(U) is open. Conversely, let f−1(U) be open for each open set U . Let p
be any point of X, and V be any neighborhood of f(p). Since V is open, f−1(V )
is open and contains p. If U is a neighborhood of p such that U ⊂ f−1(V ). Then
f(U) ⊂ V which shows that f is continuous at p. Since this is true for every p ∈ X,
f is continuous on X.
Let f(x) = 1

1+x2 . Then f
(
(−1, 1)

)
= ( 1

2
, 1] which is not open even though (−1, 1)

is open.
(iii) Let U be an open ball in X, namely, U = {x ∈ X : ‖x − x0‖X < r} for
some x0 ∈ X and r > 0. If x1, x2 ∈ U and x = tx1 + (1 − t)x2 for t ∈ [0, 1], then
‖xk − x0‖X < r, k = 1, 2 and hence

‖x−x0‖X = ‖t(x1−x0)+(1−t)(x2−x0)‖X ≤ t‖x1−x0‖X +(1−t)‖x2−x0‖X < r.

That is to say, x ∈ U and U is convex. Similarly, any closed ball in X is convex.

Ex.1.9. The ’if’ part has been proved in the text. So it suffices to verify the ’only-if’
part. Now assume that Y is not closed and let x be a point that is not in Y but is
in the closure of Y . If (yj) is a sequence of points of Y that converges to x then

‖x+ Y ‖ = inf
z∈x+Y

‖z‖X ≤ inf
j∈N
‖x− yj‖X

Since the right side infimum is zero, ‖x + Y ‖ = 0 and consequently x ∈ Y – a
contradiction. Therefore ‖ · ‖ could not be a norm on X/Y . We are done.

2. Banach Spaces

Ex.2.1. If (fj) is Cauchy in Cn[0, 1], then for any ε > 0 there exists N ∈ N such
that

m,n ≥ N ⇒ |f (k)
m (x)− f (k)

n (x)| ≤ ‖fm − fn‖∞ < ε for all x ∈ [0, 1].

So for each integer k ∈ [0, n], one has that (f
(k)
j (x)) is Cauchy sequence in R.

Therefore it converges to some real number gk(x) for every x ∈ [0, 1]; this defines a
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new function gk such that f
(k)
j → gk pointwise on [0, 1]. Moreover, (f

(k)
j ) converges

to gk uniformly on [0, 1], and that gk ∈ C[0, 1] – this follows readily from the last
estimate when letting m → ∞. In particular, k = 0 implies that (fj) converges
uniformly on [0, 1] to g0 = f , and f is differentiable with f ′ = g1. Furthermore, the

same reasoning yields f (k) = gk on [0, 1]. So, f ∈ Cn[0, 1].

Ex.2.2. Suppose (x(j) = (x
(j)
1 , x

(j)
2 , ...) is Cauchy in c0. Then for any ε > 0 there

exists N ∈ N such that

m,n ≥ N ⇒ |x(m)
j − x(n)

j | ≤ ‖x(m) − x(n)‖∞ < ε for any j ∈ N.

So, for each j, (x
(m)
j ) is Cauchy in C. By the completeness of C, there is cj ∈ C

such that (x
(m)
j ) converges to cj as m→∞. It turns out from the above estimates

that c = (cj) belongs to the space c0. Thus, c0 is complete and a Banach space.

Ex.2.3. i) Taking f = 1 and g = 0 one has ‖T (f)− T (g)‖∞ = 1 = ‖f − g‖∞;
ii) If T (f) = f , then

∫ x
0
f = f(x) and hence f = 0 which gives the uniqueness;

iii) If 1E denotes the characteristic function of the set E, then

T (T (f(x))) =

∫ x

0

(∫ y

0

f(t)dt
)
dy =

∫ x

0

(x− t)f(t)dt

and hence

‖T (T (f))− T (T (g))‖∞ ≤ 1

2
‖f − g‖∞.

Ex.2.4. It follows from Theorem 2.2.1 with |f(b)− f(a)| = |f ′(c)(b− a)| ≤ α|b− a|
for some c ∈ [a, b].

Ex.2.5. Define the operator T on C[0, 1] by

T (f)(x) = sinx+

∫ 1

0

f(y) exp
(
− (x+ y + 1)

)
dy.

Let f, g ∈ C[0, 1]. We have

‖T (f)− T (g)‖∞ ≤ sup
x∈[0,1]

∫ 1

0

|f(y)− g(y)| exp
(
− (x+ y + 1)

)
dy

≤ sup
x∈[0,1]

|f(x)− g(x)| exp(−x)

∫ 1

0

exp(−(y + 1))dy

≤ ‖f − g‖∞(e−1 − e−2),

where e−1−e−2 ∈ (0, 1). Hence T is a contraction mapping. Therefore, by Theorem
2.2.1, there is a unique f ∈ C[0, 1] with T (f) = f .

3. Linear Operators

Ex.3.1. It is clear that T is linear. Furthermore, if f ∈ C[0, 1] then

|T (f)| = |f(0)| ≤ ‖f‖∞,

giving the boundedness of T with ‖T‖ ≤ 1. If f(x) = 1 then

‖f‖∞ = 1 and Tf = 1.
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This yields ‖T‖ = 1.

Ex.3.2. (i) Clearly,

‖Tx‖∞ ≤ sup
1≤i≤n

n∑

j=1

|ai,j ||xj | ≤ ‖x‖∞ sup
1≤i≤n

∞∑

j=1

|ai,j |

and so

‖T‖ ≤ sup
1≤i≤n

n∑

j=1

|ai,j .

To get the equality, just take xj = sgnai0,j where

n∑

j=1

|ai0,j | = sup
1≤i≤n

n∑

j=1

|ai,j |.

Then ‖x‖∞ = 1 and yi =
∑

j=1
|ai0,j |. So

‖T‖ ≥ ‖Tx‖∞ = sup
1≤i≤n

∣∣∣
n∑

j=1

ai,jsgnai0,j

∣∣∣ ≥
∣∣∣
n∑

j=1

ai0,jsgnai0,j

∣∣∣ = sup
1≤i≤n

n∑

j=1

|ai,j |,

giving the desired equality.
(ii) It follows from the definition of ‖ · ‖2.
(iii) It is clear that for f ∈ R1[a, b],

‖Tf‖1 =

∫ b

a

∣∣∣
∫ x

a

f(t)dt
∣∣∣dx

≤
∫ b

a

∫ x

a

|f(t)|dtdx

≤
∫ b

a

∫ b

a

|f(t)|dtdx

= (b− a)‖f‖1,

and so that T is bounded with ‖T‖ ≤ b − a. To see the equality, for any n ∈ N
with a+ n−1 < b let

fn(x) =

{
n, if t ∈ [a, a+ n−1]
0, if t ∈ (a+ n−1, b].

It is easy to check ‖fn‖1 = 1 and

‖Tfn‖1 =

∫ a+n−1

a

n(x− a)dx+

∫ b

a+n−1

dx = (b− a)− (2n)−1.

So ‖T‖ ≥ supn∈N ‖Tfn‖1 = b− a. Therefore ‖T‖ = b− a.

Ex.3.3. The boundedness is obvious. Since tf(t) = tg(t) (for t ∈ (0, 1)) implies
f(t) = g(t), we conclude that T is 1-1. But, T is not onto. In fact, if Tf = 1 on
(0, 1) then the only possible candidate for f is f(t) = t−1. It is clear that f ∈ C(0, 1)
with ‖f‖2 =∞. From this it turns out that T is not invertible.
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Ex.3.4. Take X = Y = E∞ and equip it with 2-norm: ‖x‖2 =
(∑∞

j=1
|xj |2

) 1
2 ). Here

x ∈ E∞ if and only if x ∈ `∞ and it has only finitely many nonzero entries. Then X
and Y are not complete. Now define Tnx = (0, ..., 0, nxn, 0, ...) for x = (x1, x2, ...).
Then Tn is bounded with ‖Tn‖ = n → ∞. On the other hand, if x ∈ E∞ then
there is an N ∈ N such that n > N , xn = 0 and hence ‖Tnx‖2 = n|xn| = 0 and
if n ≤ N then ‖Tnx‖2 = n|xn| ≤ n‖x‖2 ≤ N‖x‖2. Hence for each x ∈ X we have
supn ‖Tnx‖2 <∞. Clearly, the uniform bounded principle fails.

Ex.3.5. (i) Since | sinx| ≤ |x|, we conclude that the integral is not less than

∫ 2π

0

2

x
| sin(n+

1

2
)x|dx.

Note that

kπ +
π

6
≤ (n+

1

2
)x ≤ kπ +

π

3
⇒ | sin(n +

1

2
)x| ≥ 1

2
, k ∈ N.

So ∫ 2π

0

2

x
| sin(n+

1

2
)x|dx ≥

2n∑

k=0

(
π(k + 1

3
)

n+ 1
2

)−1

→∞ as n→∞.

(ii) It follows from the change of variable that

sn(x) =
1

2π

∫ 2π−x

−x
f(x+ z)

( n∑

m=−n
e−imz

)
dz.

This yields that sn(x) = sn(x) and hence sn(x) is real-valued. Note that eix =
cos x+ i sinx and f is 2π-periodic. So

sn(x) =
1

2π

∫ 2π−x

−x
f(x+ z)

( n∑

m=−n

cosmz
)
dz

=
1

2π

∫ 2π−x

−x
f(x+ z)

(
1 + 2

n∑

m=1

cosmz
)
dz

=
1

2π

∫ 2π−x

−x
f(x+ z)

sin(n+ 2−1)z

sin 2−1z
dz

=
1

2π

∫ 2π

0

f(x+ y)
sin(n + 2−1)y

sin 2−1y
dy.

(iii) For any f ∈ X, we have

|Tn(f)| ≤ 1

2π
‖f‖∞

∫ 2π

0

∣∣∣∣
sin(n+ 1

2
)x

sin x
2

∣∣∣∣ dx,

and then

‖Tn‖ ≤ 1

2π

∫ 2π

0

∣∣∣∣
sin(n + 1

2
)x

sin x
2

∣∣∣∣ dx.

To prove the equality actually holds, we may assume

qn(x) =
sin(n+ 2−1)x

sin 2−1x
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and gn(x) = sgnqn(x), that is,

gn(x) =

{
1, gn(x) > 0,
0, gn(x) = 0,
−1, gn(x) < 0.

Then |gn(x)| = gn(x)qn(x). Though gn is not continuous, for any ε > 0, there is a
continuous function fn such that

1

2π

∣∣∣∣
∫ 2π

0

(
fn(x)− gn(x)

)
qn(x)dx

∣∣∣∣ < ε.

This can be easily realized since qn is continuous on [0, 2π]. In fact, it is enough to
use piecewise-defined segments to connect the discontinuous points of gn so that
fn is sufficiently close to gn. Then ‖fn‖∞ = maxx∈[0,2π] |fn(x)| = 1, but

|Tnfn| =
1

2π

∫ 2π

0

fn(x)qn(x)dx

=
1

2π

∫ 2π

0

(
fn(x)− gn(x)

)
qn(x)dx+

1

2π

∫ 2π

0

gn(x)qn(x)dx

≥ 1

2π

∣∣∣∣
∫ 2π

0

gn(x)qn(x)dx

∣∣∣∣−
1

2π

∣∣∣∣
∫ 2π

0

(
fn(x)− gn(x)

)
qn(x)dx

∣∣∣∣

≥
∫ 2π

0

|qn(x)|dx− ε.

Obviously, this implies

‖Tn‖ ≥ 1

2π

∫ 2π

0

∣∣∣∣
sin(n + 1

2
)x

sin x
2

∣∣∣∣ dx,

and so

‖Tn‖ =
1

2π

∫ 2π

0

∣∣∣∣
sin(n + 1

2
)x

sin x
2

∣∣∣∣ dx.

(iv) It is clear that Tn(f) = sn(0) for all f ∈ X. Moreover, for fixed f ∈ X, if the
Fourier series of f converges at 0, then {Tnf} is bounded as n varies since each
element is just a partial sum of a convergent series. Thus if the Fourier series of f
converges at 0 for all f ∈ X, then for each f ∈ X the set {Tnf} is bounded. By the
uniform bounded principle, this implies that {‖Tn‖} is bounded, which contradicts
(i) and (iii).

Ex.3.6. Here, suppose that the norm on R2 is 2-norm.
Linear: T

(
α(x1, y1) + β(x2, y2)

)
= (αx1 + βx2, 0) = αT (x1, y1) + βT (x2, y2).

Bounded: ‖T (x, y)‖2 = |x| ≤ ‖(x, y)‖2.
Not onto: (x, 1) has no preimage under T .
An example: S = (0, 1)× (0, 1) is an open set of R2, but TS = {(x, 0) : x ∈ (0, 1)}
is not open set of R2.

Ex.3.7. (i) Consider fn(x) =
√

(x− 2−1)2 + n−2. Then (fn) is convergent to f(x) =

|x− 2−1| uniformly on [0, 1]; that is,

∣∣fn(x)− |x− 2−1|
∣∣ =

n−2

√
(x− 2−1)2 + n−2 +

√
(x− 2−1)2

≤ n−1 → 0.
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So,
lim
n→∞

‖fn − f‖∞ = 0.

However, f is not in C1[0, 1]. Namely, X is not complete under the sup-norm.
(ii) To prove that d/dx is closed, let (xn) be a sequence in C1[0, 1] such that
xn → x, Txn → y. Since the convergence in C[0, 1] means the uniform convergence,
we conclude that Txn converges to y uniformly on [0, 1] and y ∈ C[0, 1]. Of course,
x ∈ C[0, 1] and y(t) = x′(t); that is, T is closed. But, it is not bounded since if
xn(t) = sinnπt then

‖Txn‖ = max
t∈[0,1]

| cosnπt|nπ = nπ →∞.

Ex.3.8. (i) Let u = Ref . Then u is clearly real linear and Imf(x) = −Re(if(x)) =
−u(ix), so f(x) = u(x)− iu(ix). If u is real linear and f(x) = u(x)− iu(ix), then f
is clearly linear over R, and f(ix) = u(ix)− iu(−x) = u(ix) + iu(x) = if(x), so f
is also linear over C. Finally, since |u(x)| = |Ref(x)| ≤ |f(x)| we have ‖u‖ ≤ ‖f‖.
On the other hand, if f(x) 6= 0, let α = sgnf(x), where

sgnf(x) =

{
exp
(
− i arg f(x)

)
, if f(x) 6= 0,

0, if f(x) = 0.

Then
|f(x)| = αf(x) = f(αx) = u(αx)

because f(αx) is real, so

|f(x)| ≤ ‖u‖‖αx‖ = ‖u‖‖x‖,

whence ‖f‖ ≤ ‖u‖.
(ii) Let u = Ref . Then by the real Hahn-Banach theorem there is a real extension
U of u to X such that |U(x)| ≤ p(x) for all x ∈ X. Set F (x) = U(x) − iU(ix)
as in (i). Then F is a complex linear extension of f , and as in the proof of (i), if

α = sgnf(x), then we have

|F (x)| = αF (x) = F (αx) ≤ p(αx) = p(x).

4. Lebesgue Measures, Integrals and Spaces

Ex.4.1. (i) Let H = {x = (x1, ..., xn) ∈ Rn : xj > c} or {x = (x1, ..., xn) ∈ Rn :
xj < c}. Then we have to prove that for any T ⊂ Rn one has

m∗(T ) = m∗(T ∩H) +m∗(T \H) = m∗(T ∩H) +m∗(T ∩Hc),

it suffices to verify that

m∗(T ) ≥ m∗(T ∩H) +m∗(T ∩Hc)

since m∗ is subadditive. If m∗(T ) =∞, then there is nothing to prove. We assume
m∗(T ) < ∞. In case (Ij) is a sequence of open intervals such that T ⊂

⋃∞
j=1

Ij ,

then

T ∩H ⊂
∞⋃

j=1

Ij ∩H and T ∩Hc ⊂
∞⋃

j=1

Ij ∩Hc.
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Hence, by monotonicity and countable sub-additivity of m∗,

m∗(T ∩H) +m∗(T ∩Hc) ≤
∞∑

j=1

m∗(Ij ∩H) +m∗(Ij ∩Hc).

If we show that for every open interval I ⊂ Rn one has

m∗(I) = m∗(I ∩H) +m∗(I ∩Hc), (5.3)

then

m∗(T ∩H) +m∗(T ∩Hc) ≤
∞∑

j=1

m∗(Ij)

and hence

m∗(T ∩H) +m∗(T ∩Hc) ≤ inf
T⊂
⋃
Ij

∞∑

j=1

m∗(Ij) = m∗(T ),

giving the desired inequality.
Suppose now I = {x = (x1, ..., xn) : aj < xj < bj , j = 1, ..., n}. Without loss of
generality, we may assume that H is given by {x = (x1, ..., xn) : x1 < c}. Since
(1) is obviously true if c < a1 or c ≥ b1, let us suppose a1 < c < b1. Consequently,
I ∩H is an open interval given by

{x = (x1, ..., xn) : a1 < x1 < c and aj < xj < bj , j = 2, ..., n}.

I ∩Hc is the set given by

{x = (x1, ..., xn) : c ≤ x1 < b1 and aj < xj < bj , j = 2, ..., n}.

It can be checked easily that

m∗(I ∩H) = (c− a1)(b2 − a2) · · · (bn − an),

m∗(I ∩Hc) = (b1 − c)(b2 − a2) · · · (bn − an),

and

m∗(I ∩H) +m∗(I ∩Hc) = (b1 − a1)(b2 − a2) · · · (bn − an) = m∗(I).

(ii) Let Hj = {x = (x1, ..., xn) ∈ Rn : cj < xj}. Then Hj is Lebesgue measurable
due to (i), and hence Hc

j is Lebesgue measurable too. Without loss of generality,
we may assume that the half-open interval is I = {x = (x1, ..., xn) ∈ Rn : bj <
xj ≤ cj , j = 1, ..., n}. Then

I =

n⋂

j=1

(Jj ∩Hc
j ) where Jj = {x = (x1, ..., xn) ∈ Rn : bj < xj}.

This implies that I is Lebesgue measurable since so are Jj and Hc
j .

(iii) Let O ⊂ Rn be an open set. For each k ∈ N, the hyperplanes

xj = l2−k, l ∈ Z; j = 1, ..., n, (5.4)

partition Rn into a countable collection of disjoint half-open intervals. Let
I1
1 , I

2
1 , I

3
1 , ... be a collection of such intervals generated by (2) for k = 1 that are

contained in O. We use recursion to define suitable I ik’s. For k > 1, let I1
k , I

2
k , I

3
k , ...



96 Solutions to Exercises

be the collection of half-open intervals generated by (2) which are contained in O
but not contained in any interval Ipq with 1 ≤ q < k. If x ∈ O, then x is an interior
point; so there is a partition of Rn given by (2) such that the interval containing
x is contained in O. Therefore

O ⊂
∞⋃

k=1

⋃

i

Iik.

Since Iik ⊂ O for each i, k, we have

O ⊃
∞⋃

k=1

⋃

i

Iik.

This is clearly a countable collection of half-open intervals, and we have constructed
them so they are disjoint. (iv) It follows from (iii) and (ii) right away.

Ex.4.2. (i) First, assume that E is bounded. Then m∗(E) = m(E) is finite. Given
ε > 0, then by definition of m∗, there is a countable collection of open intervals
(Ij) such that

E ⊂
⋃

Ij and

∞∑

j=1

m(Ij) < m(E) + ε.

Let V =
⋃
Ij . Then V is open set in Rn. Moreover, m(V ) ≤

∑∞
j=1

m(Ij) < m(E)+

ε. Since E ⊂ V and m(E) <∞, we conclude that m(V \ E) = m(V )−m(E) < ε.
Secondly, suppose that E is an unbounded Lebesgue measurable set in Rn. For
each k ∈ N, let

Jk = {x = (x1, ..., xn) ∈ Rn : |xj | < k, j = 1, ..., n}.
Of course, Jk is bounded but also Lebesgue measurable. Note that Rn =

⋃∞
k=1

Jk.

So E =
⋃∞
k=1

E ∩ Jk. The previous results now apply to the bounded Lebesgue
measurable set E ∩ Jk: For ε > 0 and k ∈ N, there is an open set Vk such that
Jk ∩ E ⊂ Vk and m

(
Vk \ (E ∩ Jk)

)
< 2−kε. If V =

⋃∞
k=1

Vk, then V is open and
E ⊂ V and

m(V \E) = m
( ∞⋃

k=1

Vk −
∞⋃

k=1

E ∩ Jk
)
≤ m

( ∞⋃

k=1

(
Vk \ (E ∩ Jk)

))
≤
∞∑

k=1

ε2−k = ε.

(ii) To establish this assertion, let F = Rn \ E, then F is Lebesgue measurable.
Hence for each ε > 0 there is an open set V in Rn such that F ⊂ V and m(V \
F ) < ε. Set U = Rn \ V . Then U is closed and U ⊂ E. Since F ∩ U = ∅ and
E \ U = (Rn \ U) \ F = V \ F , we conclude that m(E \ U) < ε.

Ex.4.3. Let a ∈ R and x ∈ E[f > a]. Since f is continuous on E, we conclude that
there is an open ball U(x) ⊂ Rn centered at x such that U(x)∩E ⊂ E[f > a]. Put
O =

⋃
x∈E[f>a]

U(x). Then

E[f > a] ⊂ O ∩ E[f > a] and henceE[f > a] = O ∩ E.
Since O is open, we get that O ∩E is Lebesgue measurable.

Ex.4.4. Note that

{x ∈ Rn : 1/f > a} =

{ {x ∈ Rn : f > 0} ∩ {x ∈ Rn : f < 1/a}, if a > 0,
{x ∈ Rn : f > 0} \ {x ∈ Rn : f =∞}, if a = 0,
{x ∈ Rn : f > 0} ∪ {x ∈ Rn : f < 1/a}, if a < 0.
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Then the desired result follows right away.

Ex.4.5. For k ∈ N let

fk(x) =

{
0, if 0 ≤ x < 1

2k
,

k, if 1
2k
≤ x ≤ 1

k
,

0, if 1
k
< x ≤ 1.

Since lim infk→∞ fk = 0, we conclude that
∫

[0,1]
lim infk→∞ fkdm = 0. But,

∫

[0,1]

fkdm =

∫

[0, 1
2k

)

0dm+

∫

[ 1
2k
, 1
k

]

kdm+

∫

( 1
k
,1]

0dm = 2−1

implies

lim inf
k→∞

∫

[0,1]

fkdm = 2−1 > 0 =

∫

[0,1]

lim inf
k→∞

fkdm = 0..

Ex.4.6. (i) For each k ∈ N, partition [0, 1] into k subintervals with the equal width
k−1. Let Pn denote this partition and 0 = x0 < x1 < · · · < xk = 1 denote the
points of Pk. Define

gk(x) =

k∑

j=1

mj1[xj−1,xj)(x) and hk(x) =

k∑

j=1

Mj1[xj−1,xj)(x).

Here and henceforth,

mj = inf{f(x) : x ∈ [xj−1, xj ]} and Mj = sup{f(x) : x ∈ [xj−1, xj ]}.
It is clear that (gk) and (hk) are nondecreasing and nonincreasing sequences re-
spectively. Put

g(x) = lim
k→∞

gk(x) and h(x) = lim
k→∞

hk(x).

Then g and h are Lebesgue integrable that satisfy

g(x) ≤ f(x) ≤ h(x) a.e. on[0, 1].

Note that
∫

[0,1]

gkdm =

k∑

j=1

mj(xj − xj−1) and

∫

[0,1]

hkdm =

k∑

j=1

Mj(xj − xj−1)

but also

hk − gk ≥ 0 a.e. on [0, 1] and lim
k→∞

(hk − gk) = h − g.

So, by Lebesgue’s monotone convergence theorem it follows that

0 ≤
∫

[0,1]

(h− g)dm

= lim
k→∞

∫

[0,1]

(hk − gk)dm

= lim
k→∞

∫

[0,1]

hkdm− lim
k→∞

∫

[0,1]

gkdm

= lim
k→∞

n∑

j=1

Mj(xj − xj−1)− lim
k→∞

n∑

j=1

mj(xj − xj−1)

= 0.
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Here, we have used the fact that f is Riemann integrable on [0, 1]. The above
estimates tell us that h − g = 0 a.e. on [0, 1] and so that f = g = h a.e. on [0, 1].
Consequently, f is Lebesgue measurable, and

∫

[0,1]

fdm = lim
k→∞

∫

[0,1]

gkdm

= lim
k→∞

n∑

j=1

Mj(xj − xj−1)

=

∫ 1

0

f(x)dx.

(ii) Consider 1Q where Q is the set of all rational numbers in [0, 1]. It is well-known
that this function is not Riemann integrable on [0, 1]. Since m(Q) = 0, we conclude
that this function is Lebesgue integrable with

∫
[0,1]

1Qdm = 0.

5. Hilbert Spaces

Ex.5.1. It is easy to check that the inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x)dx satisfies

(a), (b) and (c) of Definition 5.1.1, and so C[−1, 1] is an inner product space. Since

the norm equipped with C[−1, 1] is the 2-norm: ‖f‖2 =
∫ 1

−1
|f(x)|2dx, we can

conclude that this space is not complete. In fact, for each j ∈ N let

fj(x) =

{−1, if x ∈ [−1, 0),
jx, if x ∈ [−j−1, j−1],
1, if x ∈ [j−1, 1].

then fj ∈ C[−1, 1]. Observe that for each m,n ∈ N satisfying m > n, one has

‖fm − fn‖22 = 2

(∫ m−1

0

(mx− nx)2dx+

∫ n−1

m−1

(1 − nx)2dx

)

= 2

(
(m− n)2

3m3
+

1

3n
− 1

m
+

n

m2
− n2

3m3

)

<
6

m
+

1

n
<

7

n
→ 0 as n→∞.

This means that (fj) is a Cauchy sequence in C[−1, 1]. On the other hand, (fj)
converges pointwise to

f(x) =

{−1, if x ∈ [−1, 0),
0, if x = 0,
1, if x ∈ (0, 1].

which does not belong to C[−1, 1]. Therefore, C[−1, 1] is not a Hilbert space.

Ex.5.2. It is clear that 〈x, y〉 =
∑∞

j=1
xj ȳj is an inner product defined on `2. From

Example 2.1.1 (iii) we have seen that `2 is complete under the norm ‖x‖2 =
√
〈x, x〉.

So, `2 is a Hilbert space. To obtain that `p is not a Hilbert space, one takes x =

(1, 1, 0, 0, ...) and y = (1,−1, 0, 0, ...). Then x, y ∈ `p and ‖x‖p = ‖y‖p = 2
1
p but

‖x+ y‖p = ‖x− y‖p = 2. Hence the parallelogram law fails at p 6= 2; that is to say,
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if p 6= 2 then ‖ · ‖p does not induce an inner product, and hence `p is not a Hilbert
space.

Ex.5.3. Obviously, M ⊂ (M⊥)⊥. To get the reverse inclusion, let x ∈ (M⊥)⊥. Then

the projection theorem (Theorem 5.2.2) implies that there exist y ∈ M ⊂ (M⊥)⊥

and z ∈M⊥ such that x = y+z. Because x ∈ (M⊥)⊥ and (M⊥)⊥ is a linear space,
one has z = x− y ∈ (M⊥)⊥ and so z ∈M⊥ ∩ (M⊥)⊥ = {0}, i.e., z = 0 and x = y.

This gives (M⊥)⊥ ⊂M .

Ex.5.4. (i) Given g ∈M⊥. Then for any f ∈M one has

0 =

∫

[−1,1]

fḡdm =

∫

[0,1]

fḡdm.

If f is taken to respectively be 0 a.e. on [−1, 0] and g a.e. on (0, 1], then∫ 1

0
|g(x)|2dx = 0 and hence g = 0 a.e. on (0, 1]. It follows that M⊥ = {g ∈

L2[−1, 1] : g(x) = 0 a.e on (0, 1]}.
(ii) Any function f ∈ L2[−1, 1] can be written as feven + fodd where

feven(x) =
f(x) + f(−x)

2
and fodd(x) =

f(x)− f(−x)

2
.

Clearly, feven ∈ Meven and fodd ∈ Modd. Moreover, if f ∈ Meven ∩Modd, then
f(x) = −f(x) and hence f(x) = 0. In other words, Meven ∩ Modd = {0}. This
implies the desired direct sum decomposition.

Ex.5.5. (i) This follows from

1

2π

∫ π

−π
ei(n−m)xdx =

{
1 if n = m
0 if n 6= m.

(ii) First of all, a calculation gives

∫ π

−π
1dx = 2π,

∫ π

−π
cos2 nxdx =

∫ π

−π
sin2 nxdx = π ∀n ∈ N;

∫ π

−π
cos nxdx =

∫ π

−π
sinnxdx = 0 ∀n ∈ N;

∫ π

−π
cosmx cosnxdx =

∫ π

−π
sinmx sinnxdx = 0 ∀m 6= n,m, n ∈ N;

and ∫ π

−π
sinmx cos nxdx = 0 ∀m,n ∈ N.

Now, let {ej}∞j=1 be this orthonormal set. According to the definition of orthonormal
basis, we must prove that

〈f, ej〉 = 0 ⇒ f = 0 a.e. on [−π, π].

To do so, let us first consider the case that f is continuous and real-valued. If f 6= 0
a.e. on [−π, π], then there is an x0 ∈ [−π, π] at which |f | achieves a maximum, and
we may assume f(x0) > 0. Thus, there is a δ > 0 such that

f(x) >
f(x0)

2
∀x ∈ (x0 − δ, x0 + δ).
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If
g(x) = 1 + cos(x0 − x)− cos δ,

then

1 < g(x) ∀x ∈ (x0 − δ, x0 + δ) and|g(x)| ≤ 1 ∀x ∈ [−π, π] \ (x0 − δ, x0 + δ).

Note that 〈f, ej〉 = 0. So for any n ∈ N,

0 = 〈f, gn〉 =

∫ π

−π
f(x)gn(x)dx

=

∫ x0−δ

−π
f(x)gn(x)dx+

∫ x0+δ

x0−δ
f(x)gn(x)dx+

∫ π

x0+δ

f(x)gn(x)dx.

Using the properties of g above, we see that

∣∣∣∣
∫ x0−δ

−π
f(x)gn(x)dx

∣∣∣∣ ,
∣∣∣∣
∫ π

x0+δ

f(x)gn(x)dx

∣∣∣∣ ≤ 2πf(x0)

and
∫ x0+δ

x0−δ
f(x)gn(x)dx ≥

∫ b

a

f(x)gn(x)dx ∀[a, b] ⊂ (x0 − δ, x0 + δ).

Since g is continuous on [a, b], we can conclude that g achieves a minimum value,
κ > 1, there. This implies

4πf(x0) ≥
∫ b

a

f(x)gn(x)dx ≥ f(x0)

2
κn(b− a)→∞ as n→∞.

This is a contradiction. Thus, f = 0 on [−π, π].
If f is continuous but not real-valued, then our hypothesis gives

∫ π

−π
f(x)e−ikxdx = 0 and

∫ π

−π
f(x)e−ikxdx = 0 ∀k = 0,±1,±2, ....

Hence ∫ π

−π
<f(x)ej(x)dx = 0 and

∫ π

−π
=f(x)ej(x)dx = 0.

By the first part, we get that <f(x) = 0 = =f(x) and so f = 0 on [−π, π].
Finally, we no longer assume that f is continuous. But, f generates a continuous
function

F (x) =

∫ x

−π
f(t)dt.

Integration by parts yields

∫ π

−π
F (x) sin(kx)dx =

1

k

∫ π

−π
f(x) cos(kx)dx = 0.

Similarly, ∫ π

−π
F (x) cos(kx)dx = 0.
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This infers that F and F − C for every constant C, is orthogonal to each of the
non-constant members of {ej}. For (2π)−1/2, let

C0 =
1

2π

∫ π

−π
F (x)dx.

Then 〈F − C0, ej〉 = 0 for all j ∈ N. Since F is continuous, we conclude from the
first two parts that F − C0 = 0. Of course, f = F ′ = 0 a.e. on [−π, π].

Ex.5.6. (i) From 〈Tf, g〉 = 〈f, T ∗g〉 we have

∫

[−π,π]

φfḡdm =

∫

[−π,π]

fT ∗gdm

and so T ∗g = φ̄g by uniqueness of T ∗.
(ii) It is clear that if φ is real-valued, then φ̄ = φ and hence T ∗ = T .
(iii) If |φ| = 1 a.e. on [−π, π] then T is unitary; If φ ≥ 0 a.e. on [−π, π] then
〈Tf, f〉 ≥ 0 and hence T is positive; If φ = ±1 a.e. on [−π, π] then T 2f = φ2f = f
and hence T is projection.

Ex.5.7. Consider (λI − T )x = y. Thus x(t) = y(t)/(λ − t) provided t 6= λ for
t ∈ [0, 1]. So there is a unique solution x ∈ C[0, 1] except when t = λ for t ∈ [0, 1]
and so σ(T ) = [0, 1].

Ex.5.8. It follows from (λI − T )∗ = λ̄I − T ∗.
Ex.5.9. Consider a bounded sequence (xj) in X. Since T is compact, the sequence
(Txj) has a convergent subsequence, say, (Txjk ) which is convergent to y in X.
Then

‖STxjk − Sy‖ ≤ ‖S‖‖Txjk − y‖ → 0 as k →∞.
This shows that ST is compact. Note that (Sxj) is bounded. So (TSxj) has a
convergent subsequence, showing that TS is compact.
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