summary.scanoneperm {qtl}R Documentation

LOD thresholds from scanone permutation results

Description

Print the estimated genome-wide LOD thresholds on the basis of permutation results from scanone (with n.perm > 0).

Usage

## S3 method for class 'scanoneperm':
summary(object, alpha=c(0.05, 0.10), df=FALSE, ...)

Arguments

object Output from the function scanone with n.perm > 0.
alpha Genome-wide significance levels.
df If TRUE, the degrees of freedom associated with the LOD scores are shown.
... Ignored at this point.

Details

If there were autosomal data only or scanone was run with perm.Xsp=FALSE, genome-wide LOD thresholds are given; these are the 1-alpha quantiles of the genome-wide maximum LOD scores from the permutations.

If there were autosomal and X chromosome data and scanone was run with perm.Xsp=TRUE, autosome- and X-chromsome-specific LOD thresholds are given, by the method described in Broman et al. (in press). Let L_A and L_X be total the genetic lengths of the autosomes and X chromosome, respectively, and let L_T = L_A + L_X Then in place of alpha, we use

alpha_A = 1 - (1 - alpha)^(L_A/L_T)

as the significance level for the autosomes and

alpha_x = 1 - (1 - alpha)^(LX/LT)

as the significance level for the X chromosome. The result is a list with two matrices, one for the autosomes and one for the X chromosome.

Value

An object of class summary.scanoneperm, to be printed by print.summary.scanoneperm. If there were X chromosome data and scanone was run with perm.Xsp=TRUE, there are two matrices in the results, for the autosome and X-chromosome LOD thresholds.

Author(s)

Karl W Broman, kbroman@biostat.wisc.edu

References

Broman, K. W., Sen, 'S, Owens, S. E., Manichaikul, A., Southard-Smith, E. M. and Churchill G. A. The X chromosome in quantitative trait locus mapping. Genetics, to appear.

Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

See Also

scanone, summary.scanone, plot.scanoneperm

Examples

data(fake.f2)

fake.f2 <- calc.genoprob(fake.f2, step=2.5)

operm1 <- scanone(fake.f2, n.perm=100, method="hk")
summary(operm1)

operm2 <- scanone(fake.f2, n.perm=100, method="hk", perm.Xsp=TRUE)
summary(operm2)

[Package qtl version 1.11-12 Index]