effectplot {qtl} | R Documentation |
Plot the phenotype means for each group defined by the genotypes at one or two markers (or the values at a discrete covariate).
effectplot(cross, pheno.col=1, mname1, mark1, geno1, mname2, mark2, geno2, main, ylim, xlab, ylab, col, add.legend=TRUE, legend.lab, draw=TRUE, var.flag=c("pooled","group"))
cross |
An object of class cross . |
pheno.col |
Column number in the phenotype matrix to be drawn in the plot. One may also give a character string matching a phenotype name. Finally, one may give a numeric vector of phenotypes, in which case it must have the length equal to the number of individuals in the cross, and there must be either non-integers or values < 1 or > no. phenotypes; this last case may be useful for studying transformations. |
mname1 |
Name for the first marker or pseudomarker.
Pseudomarkers (that is, non-marker positions on the imputation grid)
may be referred to in a form like "5@30.3" , for position 30.3
on chromosome 5. |
mark1 |
Genotype data for the first marker. If unspecified,
genotypes will be taken from the data in the input cross object,
using the name specified in mname1 . |
geno1 |
Optional labels for the genotypes (or classes in a covariate). |
mname2 |
Name for the second marker or pseudomarker (optional). |
mark2 |
Like mark1 (optional). |
geno2 |
Optional labels for the genotypes (or classes in a covariate). |
main |
Optional figure title. |
ylim |
Optional y-axis limits. |
xlab |
Optional x-axis label. |
ylab |
Optional y-axis label. |
col |
Optional vector of colors for the different line segments. |
add.legend |
A logical value to indicate whether to add a legend. |
legend.lab |
Optional title for the legend. |
draw |
A logical value to indicate generate the plot or not. If FALSE, no figure will be plotted and this function can be used to calculate the group means and standard errors. |
var.flag |
The method to calculate the group variance. "pooled" means to use the pooled variance and "group" means to calculate from individual group. |
In the plot, the y-axis is the phenotype. In the case of one marker, the x-axis is the genotype for that marker. In the case of two markers, the x-axis is for different genotypes of the second marker, and the genotypes of first marker are represented by lines in different colors. Error bars are plotted at +/- 1 SE.
The results of sim.geno
are used; if they are not available,
sim.geno
is run with n.draws=16
. The average phenotype
for each genotype group takes account of missing genotype data by
averaging across the imputations. The SEs take account of both the
residual phenotype variation and the imputation error.
A data.frame containing the phenotype means and standard errors for each group.
Hao Wu; Karl W Broman, kbroman@biostat.wisc.edu
plot.pxg
, find.marker
,
effectscan
, find.pseudomarker
data(fake.f2) # impute genotype data ## Not run: fake.f2 <- sim.geno(fake.f2, step=5, n.draws=64) ## End(Not run) ######################################## # one marker plots ######################################## ### plot of genotype-specific phenotype means for 1 marker mname <- find.marker(fake.f2, 1, 37) # marker D1M437 effectplot(fake.f2, pheno.col=1, mname1=mname) ### plot a phenotype # Plot of sex-specific phenotype means, # note that "sex" must be a phenotype name here effectplot(fake.f2, mname1="sex", geno1=c("F","M")) # alternatively: sex <- pull.pheno(fake.f2, "sex") effectplot(fake.f2, mname1="Sex", mark1=sex, geno1=c("F","M")) ######################################## # two markers plots ######################################## ### plot two markers # plot of genotype-specific phenotype means for 2 markers mname1 <- find.marker(fake.f2, 1, 37) # marker D1M437 mname2 <- find.marker(fake.f2, 13, 24) # marker D13M254 effectplot(fake.f2, mname1=mname1, mname2=mname2) ### plot two pseudomarkers ##### refer to pseudomarkers by their positions effectplot(fake.f2, mname1="1@35", mname2="13@25") ##### alternatively, find their names via find.pseudomarker pmnames <- find.pseudomarker(fake.f2, chr=c(1, 13), c(35, 25)) effectplot(fake.f2, mname1=pmnames[1], mname2=pmnames[2]) ### Plot of sex- and genotype-specific phenotype means mname <- find.marker(fake.f2, 13, 24) # marker D13M254 # sex and a marker effectplot(fake.f2, mname1=mname, mname2="Sex", mark2=sex, geno2=c("F","M")) # Same as above, switch role of sex and the marker # sex and marker effectplot(fake.f2, mname1="Sex", mark1=sex, geno1=c("F","M"), mname2=mname) # X chromosome marker mname <- find.marker(fake.f2, "X", 14) # marker DXM66 effectplot(fake.f2, mname1=mname) # Two markers, including one on the X mnames <- find.marker(fake.f2, c(13, "X"), c(24, 14)) effectplot(fake.f2, mname1=mnames[1], mname2=mnames[2])