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Preface

The theory of the real numbers has two sources: the world of the discrete
epitomized by the process of counting and the positive integers, and the world of
the continuous epitomized by the process of geometric measurement and the real
numbers. There is no conflict between these two approaches and all the numer-
ical computations with integers or real numbers can be realized using the single
real-world construct of the real line. The authors of the the Common Core State
Standards in Mathematics (CCSS-M) clearly understood this and it was their intent
that all children should have a fair understanding of how our number system arises
from counting on the one hand, and measurement and geometry on the other. In
addition, the CCSS-M expect that all children will be able to fluidly and accurately
perform and apply the standard computations of arithmetic.

It will be argued by some, supported by existing test data, that to expect all, or
even most, students to succeed at this level is fatuous. But consider the following
fact:

approximately 80% of children in high-performing countries achieve at
the level reached by only 25% of North American students.

Clearly, the drafters were of the opinion:

If they can do it, why can’t we?

As discussed in Chapter 1 and again in Chapter 20, curricula in high-performing
countries are coherent and focused. The CCSS-M are intended to produce a cur-
riculum that is both coherent and focused. Comparative studies have shown that
where states adopt curricula that are coherent and focused, children are much more
successful and as noted above, approximately 80% of children in high-performing
countries achieve what only 25% of North American students achieve. Thus, adopt-
ing a coherent and focused curricula should produce significantly higher levels
of achievement for all students. Based on 40 years of experience teaching post-
secondary mathematics, I believe the CCSS-M is a good approximation to a coher-
ent and focused curricula.

For teachers to succeed in conveying these ideas to their students, they must
thoroughly understand how these ideas fit together. As discussed in Chapter 1,
many teachers know they need to upgrade their knowledge of arithmetic to succeed
at the levels required by the new standards. Helping teachers acquire this knowledge
in a comprehensive and thorough manner is what this book is about and it is my
hope that the content will provide teachers with the information they need to
succeed in implementing this curricula.
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Chapter 1

Teachers and the CCSS-M

The Common Core State Standards in Mathematics (CCSS-M) resulted from a
process that began in 2009 under the auspices of the National Governors Association
Center for Best Practices (NGA Center) and the Council of Chief State School
Officers (CCSSO). The standards documents were released in June 2010 and after
a careful review, the NGA Center and CCSSO assert that the standards are:1

• Reflective of the core knowledge and skills in English Language Arts and
mathematics that students need to be college- and career-ready;

• Appropriate in terms of their level of clarity and specificity;

• Comparable to the expectations of other leading nations;

• Informed by available research or evidence;

• The result of processes that reflect best practices for standards development;

• A solid starting point for adoption of cross-state common core standards; and

• A sound basis for eventual development of standards-based assessments.

The positive sentiments expressed above can also be found in independent assess-
ments as in the following taken from a working paper issued by the Education
Policy Center at Michigan State University:

1See http://www.corestandards.org/about-the-standards/development-process/
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The adoption of the Common Core State Standards in Mathematics
(CCSS-M) by nearly every state represents an unprecedented oppor-
tunity to improve U.S. mathematics education and to strengthen the
international competitiveness of the American labor force.2

Successful implementation of the new standards does indeed represent a huge
step in addressing the challenge of graduating students from high school that are
both work and/or college ready. But, without doubt, successfully implementing the
CCSS-M will be a challenge for teachers, for students, for administrators and for
parents.3

In the remainder of this chapter we will review some of the data that led to the
CCSS-M, the challenges that must be overcome to achieve successful implementa-
tion and the role of this book in that process.

1.1 The Data that Led to the Standards

The evidence that on graduation from high school and/or university many of our
students have not learned what they need to know is substantial. For example:

1. Twenty-seven percent of Canadian university graduates are functionally illit-
erate as determined by an OECD standard.4

2. Fifty percent of US high school graduates will require remediation (usually in
math) (UT 2013).5

3. According to ACT data, only one fourth of those tested were ready for col-
lege.6

2Implementing the Common Core State Standards for Mathematics: What We Know about
Teachers of Mathematics in 41 States, Leland Cogan, et al., Education Policy Center at Michigan
State University, WP33, 2013, available online. Hereafter referred to as WP33.

3Implementing the Common Core State Standards for Mathematics: What Parents Know and
Support, Leland Cogan, et al., Education Policy Center at Michigan State University, WP34,
2013, available online. Hereafter referred to as WP34.

4Most of the data discussed is associated with the US. However, this article about Canada is
relevant: Shocking Number Of Canadian University Grads Don’t Hit Basic Literacy Benchmark,
The Huffington Post Canada, Posted: 04/29/2014.

5Uri Treisman, Iris M Carl Equity Address: Keeping Our Eyes on the Prize, NCTM, Denver,
April 19, 2013. This address in a variety of formats can be found at: http://www.nctm.org

6See The Common Core and the Common Good, Charles M. Blow, NYT, 21 August, 2013.
(CMB 2013)
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The inescapable conclusion is that many students leaving high school in the US and
Canada are simply not equipped to function in a work environment nor academically
prepared for university. That this situation has existed for many years can be traced
in the growing presence of remedial programs at various post-secondary institutions.
Such programs have existed at some institutions for more than 40 years, but are
now ubiquitous.

Aside from their profound effect on individuals, the results described above
were also detected by international tests. In 2006, the US was ranked 25th by
the OECD Programme for International Student Assessment (PISA) (UT 2013).
Significantly, the list of higher ranked countries did not even include most of the
highest rated Asian countries in terms of mathematics achievement! These results,
together with other factors, led to the conclusion that to maintain its international
competitiveness, the US would have to make changes in its school mathematics
curriculum.7 The result was the CCSS-M.8 Clearly, a key question is:

Can changes in the curriculum cure the problem?

The good news here is that what and how students are taught, in other words,
the curriculum can have a significant effect on adult problem-solving perfor-
mance.9 10

1.1.1 Other Math Test Data

The National Center for Educational Statistics keeps track of all the global data
sets that bear on the quality of education.11 Thanks to the Internet, this data is
accessible to anyone with an interest in educational issues.12 Information on the

7Unfortunately, Canada was not so far down on this list as to provoke a response. Canadian
scores went down in the last PISA round with still no response.

8More information of the generation of the CCSS can be found at
http://www.corestandards.org/in-the-states

9The Myth of Equal Content, W. Schmidt and L. Cogan, 2009. Hereafter, S&C 2009. Available
online at http://www.ascd.org/publications/educational-leadership/nov09/vol67/num03/The-
Myth-of-Equal-Content.aspx

10Two articles on how math learning in childhood affects problem-solving skills
in later life. http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3788.html
http://www.medicaldaily.com/math-skills-childhood-can-permanently-affect-brain-formation-
later-life-298516

11This is a site all teachers and public school administrators should be aware of. For example,
data archived here was analyzed and serves as the evidential basis for The Public School Advantage,
C. Lubienski and S. Lubienski, 2014, available from Amazon. Hereafter PSA.

12See http://nces.ed.gov/ for the main site.
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most recent PISA13 is there as is data from the National Assessment of Educational
Progress.14 The NAEP is described at the site as

the largest nationally representative and continuing assessment of what
America’s students know and can do in various subject areas.

Every two years students are assessed in Grades 4, 8 and 12. It is data from grades
4 and 8 that is relevant here.

According to data at the NAEP website, the average score on this assessment
of mathematics achievement by Grade 8 students in 2011 was 284 . The score that
represents proficiency is 299 (see UT 2013) and only 35% of all Grade 8 students
were deemed proficient.15 The reader may be tempted to conclude that this poor
result is because the sample includes all students.16 In fact, when the sample is
restricted to private school students more than half the students still fail to achieve
the proficiency score.17

As noted, assessments are also done in Grade 4.18 The Grade 4 results for 2011
show only 40% of all students were found to be proficient. Although performance
by students at private schools was better, still less than half are proficient.

Some may believe that the reason student performance appears dismal is due
to the difficult nature of the test questions and that only mathematically gifted
students could be expected to perform well. To address this possibility, let’s look
at some questions. While complete test instruments are not available, sample ques-
tions can be found for all test levels at the NAEP website.19 The questions demand
little more than recall and I would expect that every teacher of math at any level
would agree that the questions are straightforward and that the only errors that
should occur would be due to carelessness, and not a misunderstanding of the ma-
terial being tested.

13See http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2014028
14See http://nces.ed.gov/nationsreportcard/
15See http://nationsreportcard.gov/math 2011/summary.aspx and click on Grade 8 in Profi-

cient paragraph.
16The Public School Advantage (available from Amazon) completely destroys the myth that

private schools provide better and more effective education. In fact, as shown in this work,
American public schools do a more effective job educating the students that are placed in their
care, a fact that every public school teacher and administrator should know.

17The situation in Canada is no better. On a curriculum assessment in the province of New-
foundland during the time I was head, more than half of all students in Grade 9 received a mark
of less than 50%.

18See http://nationsreportcard.gov/math 2011/summary.aspx and click on Grade 4 in Profi-
cient paragraph.

19See http://nationsreportcard.gov/ltt 2012/sample quest math.aspx
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In briefest summary, the data show a majority of students begin accumulating
knowledge deficits in mathematics prior to Grade 4 and this accumulation continues
throughout the school career until graduation from high school. The OECD evi-
dence from Canada shows these deficits are not repaired by the time of graduation
from university.

In terms of the everyday work of classroom teaching in Grade 4 and above,
these results show that in the course of a teaching year, there will certainly be
topics which

the majority of students in the classroom are not ready to
learn.

Obviously, the presence of a large number of students not ready to learn what a
teacher is trying to teach would have a substantial negative impact on that teacher’s
ability to teach that material effectively, even to students who are ready.20 The
question is:

Is the CCSS-M a solution to the ready to learn year-by-year problem?

To answer this question, we need to examine how existing curricula contribute to
this situation.

1.2 Mile Wide-Inch Deep

The Education Policy Center (EPC) at Michigan State University did a study of
existing district math curricula in 41 states that have adopted the CCSS-M.21

Among the key findings in respect to the primary curriculum were that

• there was little common agreement between districts as to when topics were
taught;

• most topics were taught earlier than intended in the CCSS-M;

• many topics were taught in later grades than specified in the CCSS-M;

• for almost all topics, coverage extended over several grades;

20In respect to teacher effectiveness, The Public School Advantage bears witness to the incredibly
fine job being done by public school math teachers all across America.

21Implementing the Common Core State Standards for Mathematics: A Comparison of Current
District Content in 41 States, Leland Cogan, et al., Education Policy Center at Michigan State
University, WP32, 2013, available online. Hereafter referred to as WP32.
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• many more topics were taught in each grade than were specified in the CCSS-
M.

WP32 describes these curricula as being amile wide and an inch deep, an assessment
previously expressed about U.S. mathematics curricula, particularly in the primary
years, in S&C 2009.22

Since addressing this descriptor of previous U.S. curricula is a critical feature the
CCSS-M, we explore its meaning in greater detail. In a 2002 paper, Schmidt et al.23

discuss an analysis of the Third International Math and Science Study (TIMSS)
results on a country-by-country basis. The focus of their study is on whether
and/or how an individual country’s math curricula affects TIMSS performance. In
their paper they make the following four observations about the then extant U.S.
mathematics curricula (ACC, p. 3):

1. ”Our intended content is not focused. If you look at state standards, you’ll
find more topics at each grade level than in any other nation. If you look
at U.S. textbooks, you’ll find there is no textbook in the world that has as
many topics as our mathematics textbooks, bar none. . . . And finally, if you
look in the classroom, you’ll find that U.S. teachers cover more topics than
teachers in any other country.

2. Our intended content is highly repetitive. We introduce topics early and then
repeat them year after year. To make matters worse, very little depth is
added each time the topic is addressed because each year we devote much of
the time to reviewing the topic.

3. Our intended content is not very demanding by international standards.

4. Our intended content is incoherent. Math, for example, is really a handful of
basic ideas; but in the United States, mathematics standards are long laundry
lists of seemingly unrelated, separate topics.”

While this indictment was written in 2002, the analysis presented in WP32 shows it
remains true about the various curricula being replaced in the states and districts
that are in the process of adopting the CCSS-M.

22This descriptor can be traced in the literature back to at least 1997, e.g., A splintered vision:
An investigation of U.S. science and mathematics education, W.H. Schmidt, et al. (available from
Amazon). I believe I heard this descriptor applied to mathematics curricula in Canada in the
early 1990’s.

23A Coherent Curriculum: The Case of Mathematics, W. Schmidt, R. Houang and L. Cogan,
American Educator, Summer 2002; available on-line. Hereafter ACC. This paper is a very
worth-while read for all teachers and administrators engaged in implementing the CCSS-M. A
table derived from their A+ curricula is presented below and again in Chapter 20 of this work.
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In respect to the above observations about curricula in mathematics, ACC draws
the following conclusion (p. 3):

Our teachers work in a context that demands that they teach a lot of
things, but nothing in-depth.

That such an assessment should have negative consequences for student success
should not be surprising to educators in mathematics. At every level, learning
requires sufficient time-on-task to permit the internal changes to occur in children’s
(and presumably adults’) brain structures that are required as part of the learning
process.24

Thus, one conclusion that might be drawn from the NAEP test data is that a
mile wide-inch deep curricula simply will not permit a significant number of children
to learn what they are being asked to learn.

1.3 The CCSS-M Response to Mile Wide-Inch

Deep

To understand how the CCSS-M addresses the problem of mile wide-inch deep, we
need to take a deeper look at the the Standards. We begin by reviewing some of
what the developers wrote about their task:

For over a decade, research studies of mathematics education in high-
performing countries have pointed to the conclusion that the mathe-
matics curriculum in the United States must become substantially more
focused and coherent in order to improve mathematics achievement
in this country. To deliver on the promise of common standards, the
standards must address the problem of a curriculum that is a mile wide
and an inch deep. These Standards are a substantial answer to that
challenge (emphasis mine). CCSS-M, p. 3.25

In respect to what it means to be focused, the CCSS-M offer the following
(p. 3):

It is important to recognize that fewer standards are no substitute for
focused standards. Achieving fewer standards would be easy to do by
resorting to broad, general statements. Instead, these Standards aim
for clarity and specificity (emphasis mine).

24See http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3788.html
25The CCSS-M document is available at http://www.corestandards.org/wp-

content/uploads/Math Standards.pdf and can be obtained by anyone.
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Reviewing the analysis of the CCSS-M inWP32 (see WP32 Display 1, p. 4) indicates
that on a grade-by-grade basis, the CCSS-M concentrate on a narrow set of topics
presented in an order from the particular to the complex. In comparison, extant
state and district curricula still appear as a laundry-list26 of topics. Moreover, in
respect to individual topics, the learning objectives for children, as articulated by
the CCSS-M, appear to be clear and specific (see CCSS-M, pp 9-84).

In respect to the notion of coherence, the CCSS-M turns to Schmidt et al.:

We define content standards and curricula to be coherent if they are
articulated over time as a sequence of topics and performances that
are logical and reflect, where appropriate, the sequential or hierarchical
nature of the disciplinary content from which the subject matter derives.
That is, what and how students are taught should reflect not only the
topics that fall within a certain academic discipline, but also the key
ideas that determine how knowledge is organized and generated within
that discipline.

This implies that to be coherent, a set of content standards must
evolve from particulars (e.g., the meaning and operations of whole num-
bers, including simple math facts and routine computational procedures
associated with whole numbers and fractions) to deeper structures in-
herent in the discipline. This deeper structure then serves as a means
for connecting the particulars (such as an understanding of the rational
number system and its properties). The evolution from particulars to
deeper structures should occur over the school year within a particular
grade level and as the student progresses across grades (ACC, p. 9).

Again, deciding whether this objective was achieved is a matter of reviewing the
analysis presented in WP32 (see Display 1, p. 4 of ACC and the A+ curricula
in Table 1 below which is adapted from ACC) and comparing it to one’s own
understanding of the deep structure of the field of real numbers. On this basis,
I conclude that the authors of the CCSS-M did indeed produce a coherent set of
standards for Grades K-8.27

26ACC, p. 12.
27My focus is on primary and elementary because, in my view and experience, K-6 has always

been the critical area. Knowledge of real numbers and arithmetic are key. Get that right and the
rest will almost take care of itself.
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TOPIC & GRADE: 1 2 3 4 5 6

Whole Number Meaning • • • ◦ ◦
Whole Number Operations • • • ◦
Common Fractions ✷ • • ◦
Decimal Fractions ◦ • ◦
Relationship of Common & Decimal Fractions ◦ • ◦
Percentages ◦ ◦
Negative Numbers, Integers & Their Properties ✷

Rounding & Significant Figures ◦ ◦
Estimating Computations ◦ ◦ ◦
Estimating Quantity & Size ✷ ✷

TOPIC & GRADE: 1 2 3 4 5 6

Equations & Formulas ✷ ◦ ◦ ◦
Properties of Whole Number Operations ✷ ◦
Properties of Common & Decimal Fractions ◦ ◦
Proportionality Concepts ◦ ◦
Proportionality Problems ◦ ◦
TOPIC & GRADE: 1 2 3 4 5 6

Measurement Units ✷ • • • • •
2-D Geometry: Basics ✷ ◦ ◦ ◦
Polygons & Circles ◦ ◦ ◦
Perimeter, Area & Volume ◦ ◦ ◦
2-D Coordinate Geometry ◦ ◦
Geometry: Transformations ◦
TOPIC & GRADE: 1 2 3 4 5 6

Data Representation & Analysis ✷ ✷ ◦ ◦

Table 1. This table is adapted from ACC. Topics have been reorganized
to reflect domains identified in the CCSS-M and only grades 1-6 are
shown. Topics identified with a • are in the intended curricula of all
the A+ countries in the grade shown; ◦ identify 80% of A+ countries;
✷ identify 67% of A+ countries. Topics not on this list are not in the
intended curricula of A+ countries in Grades 1-6!

To summarize, the Standards for K-8 are:

• narrowly focused in respect to topics covered on a year-by-year basis;

• reflect the natural development of mathematics as a discipline;
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• expect individual standards to be ”introduced and taught to mastery all dur-
ing a single school year” (WP32, p. 11);

• demand the fluidity with computations necessary for the work place and/or
further academic work;

• develop mathematical ideas on a hierarchical basis from simple to complex;

• require a deeper knowledge of our numeration system and its role in compu-
tations than in previously extant U.S. curricula;

• intend that computations and principles presented in the curricula to be
learned sufficiently well that they will be usable on a life-long basis;

• drive the development of learning on the basis of key mathematical ideas.

In short, students who achieve competency as specified in the CCSS-M will succeed
from a mathematical perspective.

1.4 How Teachers Enact Curricula

In their analysis of TIMSS data, Schmidt et al. looked for effects of curricula on
student performance.

One of the most important findings from TIMSS is that the differences
in achievement from country to country are related to what is taught
in different countries (ACC, p. 2).

In analyzing the TIMSS data, the authors distinguished between intended curricula
— what is in curriculum documents — and enacted curricula — what teachers
actually teach in their classrooms (ACC, p. 3). Their analysis found:

. . . that in most countries studied, the intended content that is formally
promulgated (at the national, regional, or state level) is essentially repli-
cated in the nation’s textbooks. We can also say that in most countries
studied, teachers follow the textbook. By this we mean that they cover
the content of the textbook and are guided by the depth and duration
of each topic in the textbook. From this knowledge, we can say with
statistical confidence that what is stated in the intended content (be it a
national curriculum or state standards) and in the textbooks is, by and
large, taught in the classrooms of most TIMSS countries (ACC, p. 3).
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Since teachers are the ultimate arbiters of whether the CCSS-M will be enacted, the
EPC surveyed some 12,000 teachers in CCSS-M states. The results of this survey
form the database studied in WP33.

In respect to how teachers determine what to teach, WP33 asserts

Perhaps as a result of emphasis on standards in the past decade or more
teachers reported that their classroom teaching was primarily influenced
by standards rather than their textbook . . . , (WP33, p. 2).

After noting that For the most part, textbooks still embody the distinctive ”mile
wide-inch deep” curriculum . . . , WP33 makes the further observation that is rele-
vant in this context:

The triage required in deciding among the competing curriculum vision
presented by the CCSSM and textbooks is particularly problematic for
primary grades teachers as they are the least well prepared mathemati-
cally and, consequently, to make these critical decisions (WP33, p. 3).28

These observations provide a clear message to primary school administrators at
the state and local level: textbooks consistent with the CCSS-M will be necessary
for successful implementation. Where such textbooks are not available, other means
for supporting teachers in the process of implementation must be provided.

Because the data at the NAEP site29 has such profound consequences for teach-
ers and students, we go through it again. Sixty percent of Grade 4 students are not
proficient in math. By Grade 8, the number has reached 65% .

How should we, as educators, respond to this situation? In discussions with
classroom teachers at every grade level I have heard the following view expressed:

there is no point in responding because these children are in-
capable of learning math.

Those who hold this view communicate it to the children in their classroom about
whom it is held. Worse yet, I have heard this view expressed by senior administra-
tors and math consultants. It can be properly expressed as:

Blame the child!30

28WP33 is quoting Foundations for Success: The Final Report of the National Mathematics
Advisory Panel, U.S. Department of Education, 2008, 120pp.

29See http://nces.ed.gov/nationsreportcard/
30Or an alternative: Some kids just can’t do math. All these are excuses for a failure to teach.
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There are multiple grounds on which to confront the notion that a large per-
centage of children are unable to succeed with the math curriculum. For example,
based on my 40 years experience as a teacher of math, at the level of arithmetic,
indeed of calculus, there is no math gene that makes some kids successful while
others are not. In my experience, what determines success is whether a student
knows and can use the prerequisite material. Clearly evidence based on my personal
experience is anecdotal. However, there is TIMSS data that bears on the question.
Consider the following:

. . . a comparison of mathematics scores in 22 countries revealed that
U.S. eighth-graders who scored at the 75th percentile were actually far
below the 75th percentile in 19 of the other countries. The most dra-
matic results were in comparison to Singapore — a score at the 75th
percentile in the U.S. was below the 25th percentile in Singapore (ACC,
p. 2).

ACC concludes from this that what is considered above average in the U.S. is far
below average in high-performing countries. But think about this as information
about the children in high-performing countries. What this is telling us is that
their children — 80% for Singapore — achieve at a standard of which every North
American parent would be proud.31

1.4.1 The CCSS-M and Individual Competency Issues

As already noted, the CCSS-M is narrowly focused and expects most individual
standards to be introduced and taught to mastery in one school year (WP32). From
a teaching perspective, this has the effect of making much more time available for
Core topics, in particular, numbers and computations with numbers. Indeed, this
narrowed focus of the CCSS-M in comparison to their own state’s extant standards
was one of the features that surveyed teachers gave as a reason for liking the CCSS-
M (WP33, p. 4).

By narrowing the focus and treating fewer topics each year, the CCSS-M pro-
vides the time necessary for children to achieve mastery of these topics. That the
CCSS-M is the same across states and districts means that teachers can expect a
more uniform group of students in their classrooms, further raising the probability

31I’ve had students from Singapore in class and they are a delight to teach. One such student
was in a 2nd year calculus class and was easily the best student in the class. He told me his grades
did not qualify him to get into a Singapore university, so he came to N. America. The point is,
this student was considered second rank in Singapore by his own description.
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that each child will achieve at the standard identified. This is another positive
feature of the CCSS-M identified by teachers (WP33, p. 4).

The analysis of TIMSS data in ACC shows definitively that what students
learn is what is in the curriculum.32 Thus, successful implementation of a
coherent and focused curriculum like the CCSS-M will have a positive effect on
student performance, both on assessments like TIMSS and also on preparation for
the work-place and/or college.

1.5 What Parents Say

In WP34 the EPC reports on a 2011 survey of parental attitudes in respect to the
CCSS-M. This paper also includes information from earlier surveys. In briefest sum-
mary, parents support education of their children and the teachers and schools that
educate them. They understand the importance of education and want education
to be protected in times of budget stringency.

In respect to statements about math that could be applied directly to their
own children, the survey reported levels of agreement of more than 75% with the
statements. For example (WP34, p. 6):

• Any child can learn math if they have a good teacher (87%).

• Any child can learn math if they have a good curriculum (85%).

• All children in grades 1-8 should study the same mathematics (79%).

The first two statements suggest parents have high expectations in respect to their
own children. That these expectations are not unreasonable is shown by the fact
that in countries identified by ACC that have A+ curricula and well-trained primary
math teachers, 80% of students perform at levels achieved by only 25% of North
American students. The last of the statements, together with similar statements,
are clear expressions of support for a common curriculum on the part of parents.
However, WP34 expresses concern about continued support as follows:

However, what happens when their children find the math harder and
more fail, especially on the first CCSSM assessment, remains to be seen
(WP34, p. 6).

Seeing that such concerns are well-founded is only a matter of keeping track of dis-
cussion in the public media. To enhance a child’s chance of success with the higher
standards, parents need to be engaged as participants in their child’s education
which we discuss further below.

32ACC p. 3.
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1.6 Rote-learning and the CCSS-M

We have referred several times to research on cognitive development. How hu-
man beings learn and represent learning internally in the brain are major research
areas for modern psychologists. In respect to mathematics, a key focus is how
children learn to solve problems and how problem-solving methods evolve as the
brain matures. Cognitive psychologists distinguish two problem-solving methods,
procedure-based and memory-based.33 To give an example, consider finding 3+5 .
There are many procedure-based methods; for example, one could count on ones
fingers, or consult an addition table, or use the procedures described in Chapter 3.
On the other hand, there is only one memory-based procedure; one simply recalls
the answer.

It is recognized that memory-based problem-solving is far more efficient and
that children naturally transition from procedure-based methods to memory-based
methods. Clearly, in order to apply a memory-based method, the required fact base
must be incorporated into the long-term memory of the problem solver — in the
case above the fact is: 3 + 5 = 8 . Acquiring the required fact bases involves rote
learning. If acquiring the fact bases merely enhanced problem-solving skills, we
could perhaps leave natural development to itself, but the story doesn’t end there.

The important thing the research on brain development shows is that

rote-learning of math in childhood creates long-term changes in brain
structures that are critical to memory-based problem-solving skills in
later life (see MED).

This fact is certainly one of the underlying reasons explaining why the coherent
curricula described in ACC are so effective. Recall that coherent curricula expect
most topics to be taught to mastery in a single year. To achieve this the number
of topics in each year is vastly reduced. Moreover, for a student to achieve mastery
of a topic, the essential facts associated with that topic must become stored in the
student’s brain as part of long-term memory. As QIN shows, this creates structural
changes in the student’s brain which in turn make problem solving more efficient.
In other words, there is a self-reinforcing feed-back loop operating here.

The CCSS-M quite clearly intends for children to transition to memory-based
problem-solving. For example, the CCSS-M expect children to achieve fluidity with
the standard computational algorithms. Fluidity can only be achieved as part of

33See Qin, 2014, http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3788.html
(hereafter, QIN). For a general discussion of the research in relation to rote-learning of math by the
Stanford group see: http://www.medicaldaily.com/math-skills-childhood-can-permanently-affect-
brain-formation-later-life-298516 (hereafter, MED).
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a memory-based solution process. This is but one example of the expectation that
the procedures and knowledge embodied in the Standards will become part of a
memory-based repertoire. Learning the required facts to achieve fluidity is but one
example in the learning process where parents can play an important supporting
role. And as noted above, incorporating this knowledge into memory will benefit a
child’s problem-solving skills as an adult, a benefit to all possible career choices.

1.7 Formative Assessment

It is a simple fact that the only way to determine whether someone knows something
is to ask them. In the context of education, this means testing. Tests are the only
way we have to determine whether a child knows what is required by the CCSS-M,
or indeed, any curricula.

The importance of assessment/feedback in respect to the CCSS is described in
a position paper on formative assessment at the NCTM website.34 In particular,
the paper recommends:

1. The provision of effective feedback to students

2. The active involvement of students in their own learning

3. The adjustment of teaching, taking into account the results of the assessment

4. The recognition of the profound influence that assessment has on the moti-
vation and self-esteem of students, both of which are crucial influences on
learning

5. The need for students to be able to assess themselves and understand how to
improve

(quoted from NCTM-FA).
The intention of formative assessment is that students would immediately know

whether they have successfully acquired a body of material and, if not, information
would be immediately available enabling a response to successfully complete the
learning process. Responding to incomplete learning is essential if students are to
be ready to learn future items in the curriculum. This is particularly true of a
well-designed curricula like the CCSS-M that develops knowledge from the simple
to the complex in a manner that reflects the true structure of the discipline.

34See Formative Assessment A position of the National Council of Teachers of
Mathematics, found at http://www.nctm.org/uploadedFiles/About NCTM/Position State-
ments/Formative%20Assessment1.pdf (NCTM-FA).
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This critical feature of the CCSS-M, that lack of prerequisite knowledge
will impede future learning, is the reason why immediate corrective action
must be taken as soon as deficits are identified. Providing time in instructional
plans implementing the CCSS-M for individual assessment followed by corrective
action where necessary is essential for successful implementation of the Standards.

In respect to self-esteem issues, it is essential that students, parents and teachers
come to view assessment as one of the key tools for success and not as a punitive
device. In short, assessment should be seen as providing the answer to one and
only one question:

Does this student need more time on this task?

To successfully meet the new standards, children must have feedback from assess-
ment and respond to that feedback in effective ways.

1.7.1 Responding to Formative Assessments

The implied theory of formative assessment as described in the five points above is
that teachers will identify difficulties, communicate those difficulties in a suitable
manner to learners, and that the learners will take responsibility for fixing
the problem (see NCTM-FA). The question that must be posed is:

Is it reasonable to expect children aged 5-11 to take responsi-
bility for fixing the problem?

It seems unlikely that the expectations in respect to students described in the
Formative Assessment paper (NCTM-FA) will be met without serious adult in-
tervention in the corrective process. Although the CCSS-M appear to contemplate
additional time for this process, it will be labor intensive. Further, it seems unlikely
that governments will provide additional resources in the form of money and qual-
ified personnel beyond what is already present, and you can already find evidence
of this fact on Internet news sites.35

Given these realities, it seems plausible that the educational system may con-
tinue to fail for many children unless additional sources of adult support are found.
The most plausible source lies in parents and is the underlying reason why C.M.
Gaskill and I wrote a book on arithmetic for parents.36 In the view of the author, it

35A search of Huffington Post has more than 50 pages of articles on Common Core. Some
focus on resource/training requirements and whether such resources/training will be available in
particular states. See, for example, http://www.huffingtonpost.com/stephen-chiger/to-improve-
teaching-get-s b 3655190.htm

36Parents’ Guide to Common Core Arithmetic, 2014. Available from Amazon.
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is only by viewing parents as an essential resource and actively enlisting their help
in educating their children that teachers will be able to succeed with the CCSS-M
and seriously increase the 40% proficiency rates in arithmetic that we currently
measure in Grade 4.

Understandably, teachers may have concerns about whether parents should be
enlisted.37 Nevertheless, because learning to the CCSS-M standard must become
memory-based, parents need to be seen by teachers as allies and parents say they
are ready. WP34 (p. 1) states: survey responses suggest most parents are ready to
provide support for the CCSSM both in the public arena and at home. Surely we
can all agree that at a minimum, every parent could successfully help their child
with rote learning issues such as mastering the tables and achieving fluidity with
standard computations.

1.8 The Elephants in the Room

We began this chapter by quoting a statement of support for the CCSS-M by
qualified experts:

The adoption of the Common Core State Standards in Mathematics
(CCSS-M) by nearly every state represents an unprecedented oppor-
tunity to improve U.S. mathematics education and to strengthen the
international competitiveness of the American labor force (WP33).

These judgements lead directly to the conclusion that after adopting a proper im-
plementation of the CCSS-M, students in primary and elementary should be more
successful and this success should propagate into higher grades. On the one hand,
it would seem that parents and the public in general should be pleased with this
prospect. And on the other, it would seem that enhanced success for their students
would be enough to garner the enthusiastic support of an overwhelming proportion
of teachers. Why then is there sufficient conflict about the Common Core initia-
tive that would lead a state to revoke its adoption,38 or a teachers’ union to vote

37A colleague attending a math education conference in Singapore was asked the purpose of his
visit by a customs officer. When he answered that he was attending a math-ed conference, the
customs officer pulled him aside and spent so much time seeking pointers as to how he might help
his child with math that my colleague always spoke of this feature of Singapore culture — that
every parent expects to be involved in their child’s education — as one of the reasons underlying
Singapore’s success at math.

38See for example: http://www.newsobserver.com/2014/09/22/4174322 common-core-review-
begins.html?rh=1 Hereafter RNO2014.
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no-confidence in the standards?39

1.8.1 National Assessments and Standardized Tests

It is clear that national and international data on student performance will continue
to be generated by programs such as NAEP and PISA and collected at sites like
the NCES.40

The NAEP assessments are supposed to be designed to reflect the entirety of
the standards. In the future, this means, assessments will test the entire CCSS-
M. Clearly new test instruments need to be created. Achieving this is a major and
expensive task. One group engaged in this task is PARCC.41 Visitors to the website
can view sample test instruments and get a fair idea of what students are expected
to master. I have worked all the sample tests for Grades 3-6. Out of around 150
questions on these sample exams, I had wording and/or clarity issues with less
than ten. Even so, all appropriately reflected the focus of the Standards and were
consistent with my understanding of its intent. I would suggest that every teacher
visit the site and work the problems to enhance their understanding of what the
test designers consider to be appropriate emphasis on various topics.

Given that the nature of the tests being developed is appropriate, and that
national assessments provide useful data, what is the problem that would lead to
a teachers union voting no confidence in the Standards?42 The answer lies in the
political use that such data can be put to, namely, to indict schools for failing to
achieve on a relative basis.

For years, private schools have been touted as out-performing public schools
based on this data. In the last year however, a careful analysis showed that public
schools were actually doing a better job of educating children than private schools.43

The point is that proper analysis of NCES data demonstrates that the American
public school system is doing a superb job in comparison to other American schools
and teachers should welcome national tests as a means for generating the data to
continue to demonstrate that fact.

39See: http://www.wbez.org/news/education/chicago-teachers-union-votes-oppose-common-
core-110152 Hereafter, WBEZ.

40NEAP, PISA and NCES are the National Assessment of Educational Progress, the Program for
International Student Assessment and the National Center for Educational Statistics, respectively.

41See www.parcconline.org/parcc-assessment
42See WEBZ.
43The Public School Advantage, 2014.
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1.8.2 Testing Understanding

We have already pointed out that there is conflict over standardized testing. Be-
cause the Standards make an issue of understanding, it is evident that questions
testing understanding will be part of assessments. But what is understanding? Un-
less there is clarity on what it means to test understanding, conflict over testing
can only grow.

The notion that American curricula were deficient in that students did not
understand became prevalent in the 1960’s with the advent of the New Math.
There is substantial literature on this subject.44 What is clear from Usiskin’s paper
is that even today, there is no universal agreement on what it means to understand
a given mathematical idea. Thus, until we can all agree on what exactly it
means to understand and how to demonstrate that understanding, we will have
difficulty assessing the understanding component of the CCSS-M, particularly
at the primary and elementary level. So we are clear, ask yourself:

What does it mean to say a child understands the Distributive Law?
How would a child demonstrate her understanding to your satisfaction?

Answering these questions is difficult and quite likely idiosyncratic.
With the above caveats in mind, we note that in the 2012 paper, Z. Usiskin45

suggests that there are four independent components to mathematical understand-
ing:

1. procedural understanding — how to correctly perform a computation;

2. use-application understanding — being able to recognize when a computation
should be applied;

3. proof understanding — how to derive the formula underlying a computation;

4. representational understanding — how to pictorially represent a computation.

Bleiler and Thompson46 argue that these components should be used as a basis for
testing understanding. This division makes sense but the components are certainly
not of equal importance or appropriate to children of all ages. For example, being
able to correctly perform computations with fluidity is critical to all children not

44See Z. Usiskin, (2012) http://www.icme12.org/upload/submission/1881 F.pdf (hereafter, ZU
2012)

45See ZU 2012.
46Multidimentional Assessment of the CCSS-M, Teaching Children Mathematics, Dec.,

2012, 292-300.
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only because it is the foundation on which the others rest, but because the internal
processes associated with the development of these skills have life-long effects (see
QIN and MED). Expecting children to associate operations with physical processes
— addition as combining or subtraction as taking away — is critical because it
is the key to knowing which particular operation should be applied in practical
situations.

The example of proof discussed by Usiskin is Rule 13 of §13.9.1 which states:

a

b
× c

d
=

a× c

b× d
.

There may be a point at which students should be expected to reproduce this
proof, but it is not in elementary school. However, the CCSS-M makes the point
that children should know that

a

b
= a× 1

b
and that knowledge of this fact together with the Associative and Commutative
Laws for multiplication enables one to explain why we expect this Rule 13 to be
valid.

The degree of importance assigned to pictorial representations is problematic
because in many instances these are individual constructs as opposed to natural
representations. To be clear what I mean, in §6.2.2 I discuss a concrete realization of
the Arabic System of numeration. It is a construct in the sense that I created it for
explanatory purposes. Alternatively, to picture a real-world collection (see Chapter
3) and say that its cardinal number is the abstraction that arises by counting its
contents is a fundamental natural representation. For a variety of reasons, I might
believe my construct to be the best such representation of the Arabic System so
that it, or something like it, might even be valuable for teaching children why
the standard computational algorithms work. But I would certainly not think that
children should ever actually use it in a computation as a substitute for the standard
algorithm which is what is suggested when we ask children to use a number table
to solve:

57− x = 24.

That said, every child should know how the notion of numbers arise from counting
real-world collections and/or measuring lengths. These are fundamental and the
basis for our thinking.

Clearly, both state and national agencies intend to test understanding. One
major developer is the PARCC consortium and sample tests can be found at their
website.47 Examination of the types of questions in PARCC sample tests leads to

47See: www.parcconline.org/parcc-assessment
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the conclusion that, for the most part, the questions asked are fairly straight for-
ward, although they do demand a substantial facility with reading and interpreting
what is read. Teachers should visit the site for a sense of PARCC’s view as to what
is appropriate.

1.9 The Content of this Book

The remainder of this book is devoted to what I call arithmetic. In terms of the
CCSS-M, it is the underlying material on which the Domain containing:

number, operations on numbers and the naming system for numbers

is based. The relevant standards are found in the K-8 sections of the CCSS-M.
I focus on this material because my teaching experience in post-secondary has
convinced me that students who learn this body of material well will succeed at
Algebra 1 which is the keystone course leading to post-secondary success. In this
respect, my experience appears totally consistent with the experts who designed
the curriculums in high-performing countries.

The CCSS-M raise the standard of learning for students in respect to arith-
metic. In his paper on understanding, Usiskin (ZU 2012) notes that teachers need
a substantially deeper level of knowledge than that demanded of the students. In
WP34, the teacher survey data indicate that teachers, particularly at the primary
level, understand this fact and want help. WP33 tells us that primary school
teachers are the least likely to comfortably triage among the competing curriculum
visions presented by the CCSS-M and previously extant textbooks. The remainder
of this book is devoted to providing a deep knowledge of arithmetic that will enable
teachers to confidently make the required choices.

The mathematical content of the book falls between that in Parents’ Guide to
Common Core Arithmetic and the initial chapter of Elements of Real Analysis.48

Unlike traditional mathematics books, arithmetic is developed here as an exper-
imental science which ultimately can be turned into a completely logical construct.
So readers are clear, we take real-world collections as basic objects of study. We at-
tach to each collection a numerical measure, namely the cardinal number that tells
us how many belong to the collection. While no one can be sure how human beings
arrived at numbers and mathematics, it seems likely counting collections played a
major role. Since the notion of physical collection differs from the mathematicians
notion of set, we spend a brief chapter elucidating the difference.

48H.S. Gaskill and P.P. Narayanaswami, Elements of Real Analysis, Prentice Hall, 1998. (ERA)
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Chapter 3 develops the notion of cardinal number as an abstract property as-
sociated with collections. To achieve this, we use pairing which the reader may
recognize as one-to-one correspondence. In Chapter 4, collections are studied from
the perspective of determining their properties in respect to the notion of cardinal
number. Specifically, we are given a collection and its cardinal number and we
want to know what happens to the cardinal number of that collection as we put
more elements into the collection, or take elements out of the collection. Studying
collections in this way is much like what early scientists did in respect to studying
the motion of physical objects. We are looking for general principles that apply to
counting as a process. In Chapter 5 we turn the principles discovered in Chapter
4 into mathematical statements about the set of counting numbers. This chapter
transitions from experiment to the abstract mathematical model.

Chapter 6 explains why numbers are useless without a system of notation and
that the one we have is special because of its ability to support computations.
Introducing a system of notation requires a zero and it is in this chapter that
zero is discussed. The remarkable fact is that while the Arabic System required
thousands of years of human intellectual development, a seven-year old can not
only master it, but use it to perform computations that would astound all but the
very few 1000 years ago.

Chapters 7-9 and 12 develop the operations of addition, subtraction, multiplica-
tion and division on the set of counting numbers. The definitions of the operations
are sourced in our understanding of counting and collections. As such, it is required
that these operations acting on counting numbers model the behavior of counting in
respect to real-world collections. This behavior is used to identify the key properties
that each operation must have. As well, it is shown how computations involving
the operations are supported by the Arabic System.

Chapter 10 introduces the set of whole numbers (integers). Introducing this
set involves negative numbers and the algebraic concept of additive inverse. Since
the inverse concept may well be new to some readers, considerable explanation is
provided. The important algebraic properties that apply to arithmetic are identified
and proofs given from a set of axioms — the standard ring axioms. Why we should
take these as axioms is explained and proofs are provided for the important facts.

Chapter 11 deals with the order properties of the integers. The critical definition
relating order to algebra is given. How the number line is constructed is discussed.
How addition and subtraction are represented on the line is presented.

Chapter 13 develops the real numbers. This development again requires new
numbers and a new concept, namely, the multiplicative inverse. The importance of
unit fractions is discussed. The usual field axioms are given. The key ideas related
to nomenclature and notation are discussed. The algebraic facts of arithmetic of
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importance to school children are derived from the axioms. The chapter concludes
with a discussion of how the facts are applied in practical situations.

Chapters 14-16 focus on fractions. Explanatory material is given that supports
the CCSS-M standards for this material. Traditionally this is the most difficult
topic in the primary curriculum. Chapter 14 deals with topics from K-4. It is all
about what common fractions are. Two key ideas are presented. Knowledge of
these two ideas makes the arithmetic of fractions simple. Chapter 15 deals with
the basic arithmetic of multiplying and adding fractions. All the usual rules are
discussed and explanations of why the operations work as they do are given in terms
of material from Chapter 14. Chapter 16 deals with the most advanced topics from
fractions which are found in grades 4-8.

Chapter 17 deal with the order properties of the reals. It begins by discussing
why the field axioms are not enough to specify the real numbers. The axiom scheme
is based on the notion of positive and the order relations are then defined. The
standard rules governing order are derived and the key topics from the CCSS-M,
e.g., placing fractions on the line, are discussed.

Chapters 18-19 cover decimals and decimal arithmetic. A higher level of under-
standing of the Arabic System using exponents is useful for coming to terms with
why the computations work as they do. So Chapter 18 begins by treating exponents
and the rules governing their behavior. Chapter 19 treats decimal arithmetic and
the relation between fractions and decimals.
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