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Marks

[4] 1. Compute a gcd of α = 26 + 7i and β = −59 − 17i, by copying the method for rational
integers. Write the gcd in the form αλ + βσ.

Solution: We have
β

α
=
−59− 17i

26 + 7i
=
−1653

725
− 29

725
i = −57

25
− 1

25
i. Hence, q1 = −2 + 0i

and β = α(−2)+(−7−3i). Similarly,
26 + 7i

−7− 3i
=
−203

58
+

29

58
i = −7

2
+

1

2
i. Hence, choose

q2 = −3 (or −3 + i or −4 or −4 + i) and then 26 + 7i = (−7− 3i)(−3) + (5− 2i). Since
−7− 3i

5− 2i
=
−29− 29i

29
= −1− i ∈ G, then −7− 3i = (5− 2i)(−1− i)+0. Hence a gcd of

α and β is 5−2i the last nonzero remainder. (The other possible gcd’s are the associates
−5 + 2i, 2 + 5i,−2− 5i.) We have 5− 2i = 26 + 7i− [(−59− 17i)− (26 + 7i)(−2)](−3).
Hence

5− 2i = (−59− 17i)3 + (26 + 7i)7.

[3] 2. Let α and β be Gaussian integers. If α | β, prove that N(α) | N(β). Is the converse
true?

Solution: Since α | β, then β = αγ where γ ∈ G. Then N(β) = N(αγ) = N(α)N(γ).
Since N(α), N(β), N(γ) are rational integers, then clearly N(α) | N(β).

The converse is not true. For example, N(2 + 3i) | N(2− 3i) but (2 + 3i) 6 | (2− 3i).

[7] 3. (a) Find a gcd of α = −172 + 210i and β = 624− 52i.

Solution: We use the Division Algorithm until we get a zero remainder:

β = α(−2− 2i) + (−140 + 24i)

α = (−140 + 24i)(1− i) + (−56 + 46i)

−140 + 24i = (−56 + 46i)(2 + i) + (18− 12i)

−56 + 46i = (18− 12i)(−3) + (−2 + 10i)

18− 12i = (−2 + 10i)(−1− i) + (6− 4i)

−2 + 10i = (6− 4i)(−1 + i) + 0.

Hence a gcd is 6− 4i, the last nonzero remainder.
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(b) Factor α and β completely into primes and hence check your answer in part (a).

Solution: With help from Maple we have

α = (−1)(1 + i)2(3− 2i)2(3− 10i)

β = i(1 + i)4(3 + 2i)(3− 2i)(−1− 2i)(−5− 2i).

Therefore a gcd is (1 + i)2(3− 2i) = 2i(3− 2i) = i(6− 4i).

[3] 4. Let Z[
√
−2] = {a + b

√
−2 | a, b ∈ Z}. Then the norm map N is defined in exactly the

same way in this set of “integers”, namely, for α = a + b
√
−2, N(α) = αα = a2 + 2b2.

State and prove a Division Algorithm for Z[
√
−2].

Solution: If α, β ∈ Z[
√
−2] and α 6= 0, then there exist q, r ∈ Z[

√
−2] such that β = αq+r

where N(r) < N(α).

Proof: Consider
β

α
=

βᾱ

αᾱ
= A + B

√
−2 where A, B ∈ Q. (Note

β

α
=

a + b
√
−2

c + d
√
−2

=

(a + b
√
−2)(c− d

√
−2)

c2 + 2d2
=

ac + 2bd

c2 + 2d2
+

bc− ad

c2 + 2d2

√
−2.) Choose a, b ∈ Z such that |A− a| ≤ 1

2

and |B − b| ≤ 1
2
. Let q = a + b

√
−2, and r = β − αq. Then clearly β = αq + r and

N(r) = N(β − αq) = N(α)N(
β

α
− q) = N(α)N((A− a) + (B − b)

√
−2)

= N(α)((A− a)2 + 2(B − b)2) ≤ N(α)(
1

4
+

2

4
) =

3

4
N(α) < N(α).

[8] 5. Prove that you cannot have a Division Algorithm in the “rings” Z[
√
−5], Z[

√
−6] and

Z[
√
−10] by examining the factorizations 3·7 = (1+2

√
−5)(1−2

√
−5), 2·3 = −

√
−6

√
−6

and 2 · 5 = −
√
−10

√
−10. (You should first show that the set of units in these three

rings is {±1}).
Solution: It is straightforward to prove that ε is a unit if and only if N(ε) = 1 for
ε ∈ Z[

√
−d] where d is positive and square-free. Hence ε is a unit if and only if a2+db2 = 1

for some a, b ∈ Z. But if d > 1, then the only solutions are b = 0, a = ±1. Hence the set
of units is {±1}.
In the set Z[

√
−5], we first prove that 3, 7, 1+2

√
−5 and 1−2

√
−5 are primes. If 3 is NOT

a prime, then 3 = αβ for α, β ∈ Z[
√
−5]. Then 9 = N(α)N(β) and so N(α) = 3 = N(β)

if neither α nor β is a unit. Let α = a + b
√
−5, then 3 = N(α) = a2 + 5b2. Clearly

this (Diophantine) equation has no solutions. Hence 3 is prime. In exactly the same
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way, one shows that 7, 1± 2
√
−5 are primes. Hence 21 has two different factorizations

into primes. Hence there is no unique factorization into primes in Z[
√
−5], and hence no

Division Algorithm.

In Z[
√
−6] the only units are ±1. We need to prove that 2, 3, ±

√
−6 are primes in

Z[
√
−6]. If 2, say, in NOT prime then 2 = αβ and 4 = N(α)N(β) so N(α) = 2 = N(β)

since α and β are not units. Let α = a + b
√
−6, then 2 = a2 + 6b2. Clearly there are no

solution to this (Diophantine) equation. Similarly for 3 and ±
√
−6. Say −

√
−6 = αβ,

then 6 = N(−
√
−6) = N(α)N(β) and hence N(α) = 2 or 3. If α = a + b

√
−6, then

a2 + 6b2 = 2 or 3 clearly have no solutions. As in the case above, the factorizations
2(3) = −

√
−6

√
−6 show that there is no unique factorization into primes, and hence no

Division Algorithm.

Similarly in Z[
√
−10], a2 + 10b2 = 2 or 5 have no solutions etc.

The norm map N can be defined in the setting Z[
√

d] = {a + b
√

d | a, b ∈ Z} where d is
a square free positive integer greater than 1. For α = a + b

√
d ∈ Z[

√
d], N(α) = αα =

(a + b
√

d)(a− b
√

d) = a2 − db2. Prove that N(αβ) = N(α)N(β) for α, β ∈ Z[
√

d].

Solution: Let α = a + b
√

d and β = c + e
√

d. Then αβ = ac + bed + (ae + bc)
√

d so
N(αβ) = (ac + bed)2 − d(ae + bc)2 = a2c2 + 2abcde + b2e2d2 − da2e2 − 2abcde− db2c2 =
a2c2 + b2e2d2 − da2e2 − db2c2 = (a2 − db2)(c2 − de2) = N(α)N(β).

Show that Z[
√

10] does not have a Division Algorithm by examining the factorization
2 · 5 = (

√
10)2.

Solution: First, we show that ε is a unit in Z[
√

d] if and only if N(ε) = ±1.

Proof: If ε is a unit then εε′ = 1 for some ε′ ∈ Z[
√

d]. Computing the norm we have
N(1) = N(ε)N(ε′). Since N(1) = 1 and N(ε) and N(ε′) are rational integers, then
N(ε) = ±1. Conversely, if ±1 = N(ε) = εε̄, then clearly ε | 1 so ε is a unit.

Suppose 2 is not a prime in Z[
√

10]. Then 2 = αβ for α, β ∈ Z[
√

10], where neither
α nor β is a unit. Since 4 = N(α)N(β), then N(α) = ±2. Let α = a + b

√
10, then

a2 + 10b2 = ±2. Hence a2 ≡ ±2 (mod 5). This is clearly impossible, since the squares
modulo 5 are 0, 1 and 4. In a similar way one can show that 5 and

√
10 are primes in

Z[
√

10]. (It is clear that no two of these primes are associates. Why?)

[25]


