MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

MIDTERM TEST	Pure Mathematics 3370	October 26, 1998
MIDTERM TEST	Pure Mathematics 3370	October 26, 19

Marks

- [4] 1. Let $\{F_n\}_{n=1}^{\infty}$ be the Fibonacci sequence. Prove that $F_n = \frac{\alpha^n \beta^n}{\sqrt{5}}, n \ge 1$, where α and β are the positive and negative roots, respectively, of the equation $x^2 x 1 = 0$.
- [7] 2. (a) Define a Mersenne number. What is the first Mersenne number that is not prime?
 - (b) Prove that there are arbitrarily large gaps between successive prime numbers.
 - (c) State clearly the Prime Number Theorem.
- [4] 3. (a) Solve the Diophantine equation 189x + 1220y = 12, 131.
 - (b) Find the positive solutions, if any.
- [2] 4. Find the last two digits of the number 367^{4764} . (You should use the fact that $\phi(100) = 40$.)
- [8] 5. Prove **TWO** of the following:
 - (a) Prove Fermat's (Little) Theorem, that is, prove $a^{p-1} \equiv 1 \pmod{p}$, if p is a prime, and $p \not\mid a$. If you use Euler's Theorem, prove it!
 - (b) If p is a prime and $p \equiv 1 \pmod{4}$, prove that the congruence $x^2 \equiv -1 \pmod{p}$ has a solution. (You may use Wilson's Theorem without proof.)
 - (c) If p is prime prove that $(p-1)! \equiv -1 \pmod{p}$.
 - (d) Prove that any prime congruent to 1 modulo 4 can be written as the sum of two squares. (Hint: Wilson's Theorem is needed. Any other results used should be proved.)

[25]