Marks

3]

MEMORIAL UNIVERSITY OF NEWFOUNDLAND
DEPARTMENT OF MATHEMATICS AND STATISTICS

FinaAL ExaMm Pure Mathematics 3370 - Solutions FarLr 1999

1. (a)

(b)

If a | be and (a,b) = 1, prove that a | c.

Proof: First, note that ax + by = (a,b) = 1 for some x, y € Z. Then acx + bcy = ¢ and
since a | be then clearly a divides the left side. Hence a | c.

Solve the Diophantine equation 25z 4+ 11y = 557.

Solution: After four applications of the Division Algorithm, with quotients 2, 3, 1 and 2,
we have 25(4) + 11(—9) = 1. Hence the general solution of the Diophantine equation is:

x = 4(557) + 11t = 2228 + 11¢, and y = —9(557) — 25t = —5013 — 25¢, for t € Z.

Find the positive solutions, if any.
Solution: We have to solve x > 0 and y > 0. This gives the following inequality for ¢,

—222 ~501 —222 —501
T 8 o 3. Since 8 ~ —202.545 and oU13 ~ —200.52 then the integer

solutions are t = —201 and ¢t = —202. Hence x = 17,y = 12 and x = 6,y = 37.

Prove that any composite integer n has a prime factor < y/n.

Proof: Since n is composite n = ab where without any loss of generality 1 < a < b < n.
Let p be a prime factor of a, then clearly p is a prime factor of n. Since a? < ab = n,
then a < y/n, and hence p < \/n.

List 50 consecutive composite numbers.

Solution: The numbers 51! + 2, 51! 4+ 3,51! +4,---, 51! + 51 are 50 consecutive integers
which are all composite since j | 51! + j.

Give a formula to generate all the primitive Pythagorean triples and list 6 such triples.

Solution: One such formula for the primitive Pythagorean triples is a = u? — v?,b =
2uv, ¢ = u? + v* where u > v, (u,v) = 1, and v # v (mod 2). (Note a® + b* = ¢2.) Six
such triples are (3,4,5), (5,12,13), (7,24, 25),(9,40,41), (15,8,17) and (21, 20,29). (To
impress marker the last example should be (4961, 6480, 8161) :-))

Find the last two digits of 99999,

Solution: The smart way to solve this problem is to let z = 99999 and then 9z = 9190000,
Euler’s theorem for m = 100 say that a?(1°) = 1 (mod 100). Since ¢(100) = 40, then
9% =1 (mod 100). Hence 9100000 = 9(10)(2500) — (940)2500 = 1 (mod 100). Hence we have
to solve for = the congruence 9z = 1 (mod 100). This is easy since 9z = —99 (mod 100).
Hence z = —11 = 89 (mod 100). Hence the last two digits of 99999 are 8 and 9.



(b)

Find the common solution of the congruences x = 16 (mod 41), x = 2 (mod 7), and
x =2 (mod 15).

Solution: Note that the second congruence is equivalent to z = 16 (mod 7) and hence
the first two congruences are equivalence to the one congruence z = 16 (mod 287).
Substituting this information into the third equation we get = 16 + 287a = 2 (mod
15) and hence a = 8 (mod 15). Hence z = 16 +287a = 16+ 287(8 + 15b) = 2312 + 4305
for some b € Z. Hence the unique solution modulo the product of the three moduli is
x = 2312.

Define a primitive root modulo a positive integer m.

Solution: The number a is a primitive root modulo m if (a,m) = 1 and the order of
a modulo m is ¢(m), where ¢ is Euler’s phi function. That is, a® # 1 (mod m) for
1<t < p(m).

How many primitive roots are there modulo m = 1257

Solution: The number of primitive roots are ¢(¢(125)) = ¢(5%(4)) = 5(4)(2) = 40.

If a has order h modulo m, prove that h | ¢(m).

Proof: We have ¢(m) = hq + r where 0 < r < h. Then by Euler’s theorem, 1 = a?™ =
a*" = (a")9a” = a” (mod m), using the fact that a"” =1 (mod m). Since h is minimal
and r < h then r = 0 and hence h | ¢(m).

Either: Prove that a rational prime p = 1 (mod 4) is not a Gaussian prime.

Proof: We proved that the congruence > = —1 (mod p) has a solution z = a if p is
a prime congruent to 1 modulo 4. Hence a®> + 1 = 0 (mod p). Hence there is an inte-
ger b such that a®> + 1 = pb, or (a +i)(a — i) = pb. If p were a Gaussian prime then
since p | (a +i)(a — i) we would have p | (a + ) or p | (a — ). But this is impossi-
ble since neither %+%i nor % — }Di is a (Gaussian) integer. Therefore, p is not a prime in G.
OR: Prove, using the Either part, that such a prime can be written as the sum of two
squares of rational integers.

Proof: Since p is not a prime in G, then there exist nonunit integers a and ( such
that a8 = p. Then going to Cheers and fetching Norm, we have N(a)N(3) = p?. Since
N(a) > 1and N(3) > 1 we must have N(a) = p. Let a = a+bi, then p = N(a) = a®+1°.

Factor the Gaussian integer 14(23 — 15i).

Solution: Since 7 = 3 (mod 4), then 7 is a Gaussian prime. Also 2 = —i(1+1:)?, and since
23 and 15 are odd, 1+ divides 23— 15:. Hence 14(23—151) = —i(1+4)(7)(1+1)(4—193).
Since N(4 — 19i) = 377 = 13 x 29, then one of the prime divisors of 13, namely 2 + 3i
must divide 4 — 19i. We have 4 — 19i = (2 — 3¢)(5 — 2i), and since N(5 — 2i) = 29,
a rational prime, then 5 — 2i is prime, so the required factorization of 14(23 — 157) is
—i(1+)*(7)(14+14)(2 — 34)(5 — 24).
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6. Prove ONE of the following theorems:

(a)

If (a,m) =1 and m > 1, prove that a®™ =1 (mod m).

Proof: Let 11,79,...,74(m) be the positive integers less than m which are relatively
prime to m. Since (a,m) = 1, we claim that ary,ary,...,arsu,) are congruent, not
necessarily in order of appearance, to r1,7a,...,7¢m). For each i, we have (ar;,m) =1
since (r;,m) = 1 and (a,m) = 1. If ar; = ar; (mod m) then, by the cancellation
law, r; = r; (mod m) and hence i = j. That is, ar; # ar; (mod m) if ¢ # j. Hence
the set {ary,ars, ..., argum)} contains ¢(m) elements which are relatively prime to m
and incongruent modulo m. Hence they are congruent to all of the possible remainders
that are relatively prime to m. Multiplying, we obtain Hfi"f) (arj) = Hf:(T) r; (mod m),
and hence a®™) Hfi”f) r; = Hj’inf) r; (mod m). Now (r;,m) = 1 so we can use the
cancellation law to cancel the r; and we obtain a®™ =1 (mod m).

If p is a prime then (p — 1)! = —1 (mod p).

Proof: If p =2 or p = 3, the congruence is easily verified. Suppose that p > 5. For each
J,1 <j<p-—1, we have (j,p) = 1 and hence there exists a (unique) inverse ¢ modulo p
with ji = 1 (mod p). The integer i can be chosen so that 1 < i < p—1. Since p is prime,
j =idif and only if j = 1 or j = p — 1. For if j = 4, the congruence j?> = 1 (mod p) is
equivalent to (j — 1)(j + 1) = 0 (mod p). Therefore, either j — 1 =0 (mod p), in which
case j = 1, or j + 1 =0 (mod p), in which case j = p — 1. If we omit the numbers 1
and p — 1, the effect is to group the remaining integers 2,3, ..., p — 2 into pairs j,7 where
j # 1, such that ji = 1 (mod p). When these ’%3 congruences are multiplied together
and the factors rearranged, we get 2-3-4...(p—2) = (p—2)! = 1 (mod p). Multiplying
by p — 1 we obtain the congruence (p — 1)! =p— 1= —1 (mod p).

Every even perfect number is of the form N = 2"71(2" — 1) with 2" — 1 a prime.

Proof: Let N = 2" 'F where n > 1 and F is odd. Let 1 = fi, fa,..., fmm = F be the
factors of F and let S = f; + fo+ ...+ fn. Given that N is perfect, we have

2N =sum of factorsof N = fi+ fo+...+ fun
2f1+2fo+ ..+ 2f
A2 et 2"

= 2"-1DA+2" =D fo+...+2"=1)fm
= (2"-18S

+
_|_

"F (2" —1)F+F
om 1 |

. Since S and F are integers, 2" — 1 must divide F' evenly

and hence we have 2"F = 2N = (2" — 1)S. Therefore, S =

d h S=F
and hence, —|—2n_1

and hence F'/(2" — 1) is an integer and a factor of F'. But S is the sum of the factors of
F, two of which are clearly 1 and F'. Hence, F'/(2" —1) = 1 and hence F' = 2" — 1. Since

the only positive factors of F' are 1 and F, F' must be prime, that is, 2" — 1 is prime.



