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MEMORIAL UNIVERSITY OF NEWFOUNDLAND
DEPARTMENT OF MATHEMATICS AND STATISTICS

FiNnaAL ExAM PM 3370 — Solutions Farr 2005

1. (a)

Find the inverse of 97 modulo 192.

Solution: After three divisions with quotients 1, 1, and 47, we have 1 = 97(—95) + 192(48)
and hence the inverse of 97 is —95 = 97 (mod 192). (That is, 97 is the inverse of 97 —
cute!)

Find all the incongruent solutions of the congruence 485z =5 (mod 960).

Solution: It is fairly easy to see that (485,960) = 5(97, 192), so we can use the information
from part (a) to solve the problem. We divide the congruence by 5 and then solve.

The congruence 97z = 1 (mod 192) has solution x = 97 and so all the solutions of
485x = 5 (mod 960) are given by

97,97 4+ 192 = 289,289 + 192 = 481,481 4 192 = 673, 763 + 192 = 865.

Solve the Diophantine equation 192x + 97y = 5000.
Solution: From part (a) again the general solution is

x = 48(5000) + 97¢ = 240000 + 97¢, y = —95(5000) — 192t = —475000 — 192¢, ¢ € Z.

Find the positive solutions, if any.

—240000 —475000
Solution: We need to solve for t, x > 0 and y > 0. We have —— BTV R
and since =2{0% ~ —2474.227 and =100 ~ —2473.958, we have one positive solution

when t = —2474. The solution is x = 22,y = 8.

Find the smallest positive solution of the Diophantine equation 192z — 97y = 5000.
Solution: From part (a), 1 = 192(48) — 97(95), and hence the general solution is

x = 48(5000) — 97t = 240000 — 97¢, y = 95(5000) — 192t = 475000 — 192¢.

When z > 0 and y > 0 we get ¢ < Mg# ~ 2474.227 and t < % ~ 2473.958 and
hence ¢ < 2473. The smallest solution is given when ¢ = 2473. The smallest solution is

z =119, y = 184.

Given n = 221 = 17x 13, e = 97, and the encryption function £ : M +— M€ (mod n), find
d so that D : C'+— C? (mod n) is the decryption function in the RSA-Algorithm. (That
is, D o E = the identity function for integers mod n which are relatively prime to n.)

Solution: Since ¢(221) = ¢(17)p(13) = 16 x 12 = 192. (Surprise, surprise ... I wonder
where we saw that number before?!) Recall that d is the inverse of e modulo ¢(n). In
part (a) we computed the inverse of 97 to be 97 modulo 192. Hence d = 97. (In a serious
application one would never choose n so that the secret number d would be the same as
the public number e.)
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2. If ¢| ab and (b,c) = 1, prove that ¢ | a.

Proof: Since (b, c) = 1, there exist integers z and y such that bx + cy = 1. Multiplying by
a we have abr + acy = a. Since ¢ | ab, ¢ divides the left side of the last equation and hence
c|a.

. Let {f,} be the Fibonacci sequence. For n > 1 prove, by mathematical induction, that
n __ Aan

«
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Proof: Note that a =

, where «, 3 are the roots of 2> — x — 1 = 0, a being the larger root.
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Hence, by the principle of mathematical induction, the result holds for all n > 1.

=1=fa

4. (a) State and prove Euler’s Theorem.

Euler’s Theorem. If (a,m) = 1, then a®™ = 1 (mod m), where ¢ is Euler’s phi

function.

Proof. Let ry,ra,...,T¢mm) be the positive integers less than m which are relatively prime
to m. Since (a,m) = 1, we claim that ary,ars, ..., arsum) are congruent, not necessarily
in order of appearance, to r1,7a,. .., ¢(m)-

For each ¢, we have (ar;,m) = 1 since (r;,m) = 1 and (a,m) = 1. If ar; = ar; (mod m)
then, by the cancellation law, 7; = r; (mod m) and hence i = j. That is, ar; # ar;
(mod m) if @ # j. Hence the set {ary,ary, ..., aryq, } contains ¢(m) elements which are
relatively prime to m and incongruent modulo m. Hence they are congruent to all of the
possible remainders that are relatively prime to m. Multiplying, we obtain

#(m) #(m) ¢(m) ¢(m)
H (ar;) = r; (mod m) and hence ™ H r; = r; (mod m).
j=1 i=1 j=1 j=1

Now (r;,m) = 1 so we can use the cancellation law to cancel the r; and we obtain
a®™ =1 (mod m).

(b) Find the remainder when 113*® is divided by 54.
Solution: Since ¢(54) = ¢(2 - 33) = 18, then, by Euler’s Theorem, 11'® = 1 (mod 54).
Hence 11348 = 111809+6 — (1118)19116 = 116 = 1771561 = 37 (mod 54). Hence the
required remainder is 37.
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Find = which satisfy simultaneously x = —3 (mod 12) z = 1 (mod 5) and z = 14 (mod 17).

Solution: From the first congruence x = —3 + 12a for some a € Z. From the second
congruence, —3 + 12a = 1 (mod 5). Hence 2a = 4 (mod 5); that is a = 2 (mod 5), so
r = -3+ 12a = —3 4 12(2 + 5b) for some b € Z. Hence z = 21 4+ 60b = 14 (mod 17),
and so 4 +9b = 14 (mod 17). So 9b = 10 = 27 (mod 17). Hence b = 3 (mod 17). Hence
x =21+460b=21460(3+ 17¢) = 201 4 1020c for some ¢ € Z. The required z is 201.

Use the Chinese Remainder Theorem to find the last two digits of the number 2%,

Solution: Let x = 219 We need to find z modulo 100. Clearly z = 0 (mod 4) and
since ¢(25) = 20, 22° = 1 (mod 25), by Euler’s Theorem. Hence r = (22)% = 1
(mod 25). Therefore x = 4a = 1 = —24 (mod 25) so a = —6 = 19 (mod 25). Hence
x = 4a = 4(19 + 25b) = 76 + 1000, so the last two digits of 29 are 7 and 6.

Define the order of an integer modulo a positive integer m.

Solution: Let (a,m) = 1. We say that a has order h if h is the smallest positive integer
such that a" = 1 (mod m).

If a has order h modulo m and b is the inverse of a modulo m, prove that b also has
order h. (Note ab =1 (mod m).)

Proof: Note first that b" = a"" = (ab)" = 1 (mod m). If o' = 1 (mod m) for | < h,
then a' = a'b' = (ab)! =1 (mod m) which contradicts the minimality of h, Hence b' # 1
(mod m) for I < h, and so b has order h.

Calculate ¢(4(100 x 19%)), where ¢ is Euler’s phi function.

Solution: ¢(p(100 x 19%)) = ¢(p(22-52-19%)) = ¢(2-5-4-19%2-18) = ¢(2*-32-5-19%) =
23.3-2-4-19-18 = 65664.

7. Find all the primitive Pythagorean triples a, b, ¢ with a? +b? = ¢? where one of a, b, ¢ is equal
to 140.

Solution: One of a or b must be even, say b is even. Then a = u? — v?,b = 2uv = 140, and
¢ = u? + v?, where u > v,u #Z v (mod 2) and (u,v) = 1. Since uv = 70, we have just four
cases: u = 70,v = 1; u = 35,v = 2; u = 14,v = 5; and u = 10,v = 7. Then the triples
(a,b,c) are (4969, 140, 4971), (1221, 140, 1229), (171, 140, 221), and (51, 140, 149).

8. (a)

Factor into Gaussian primes the number 27300(1 + 37).

Solution: We have the obvious factorization 27300(1 + 3i) = 22-3-5%-7-13(1+ 3i). The
rational primes 3 and 7 are Gaussian primes. Since 1 and 3 are odd, (1 +4) | (1 + 34).
We have 1+3i = (1+)(2+1), 4= —(1+4)%, 5= (2+4)(2—4) and 13 = (3+1)(3 —1).
Hence the prime factorization of 27300(1 + 3i) is:

—(144)*-3(241)3(2—14)2-7(3+4) (3—1) (144)(2+1) = —3-7(1+4)°(2414)*(2—i)*(3+1) (3—1).

State and prove the Division Algorithm for Gaussian Integers.
(Division Algorithm): Given « # 0 and 3 € G, the set of Gaussian integers, there

exist v, § € G such that § = ya + §, where N(«) < N(f3), N being the norm mapping
from G to NU {0}.



Proof. Note 2 5% = A+ Bi where A, B € Q. Choose a,b € Z such that [A —a| <
and |B—b| < 1 Let v = a+bi and 6 = f—~a. We need to show that N() < N(a). Bu
N(d) = N(6 - va) N (a (5 =7)) =N(@)N (5 =) = N@)N((A—a) + (B - b)i)
N(a)((A—=a)*+ (B—=b)*) < N(a) (2 +1) = $N(a) < N(a) since N(a) # 0.
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ONE part only:

State and prove Wilson’s Theorem.
Wilson’s Theorem. If p is a prime then (p — 1)! = —1 (mod p).
Proof. If p =2 or p = 3, the congruence is easily verified. Suppose that p > 5. For each
Jj,1<j<p-—1, wehave (j,p) =1 and hence there exists a (unique) inverse i modulo p
with

ji =1 (mod p).
The integer 7 can be chosen so that 1 < i < p — 1. Since p is prime, 7 = ¢ if and only
if j=1orj=p-—1. Forif j =i, the congruence j2 = 1 (mod p) is equivalent to
(j—1)(j +1) =0 (mod p). Therefore, either j — 1 = 0 (mod p), in which case j = 1,
or 7+ 1 =0 (mod p), in which case j = p — 1. If we omit the numbers 1 and p — 1,
the effect is to group the remaining integers 2,3,...,p— 2 into pairs j,7 where j # 1,
such that ji = 1 (mod p). When these 22 congruences are multiplied together and the
factors rearranged, we get

2-3-4...(p—2)=(p—2)!'=1 (mod p).
Multiplying by p — 1 we obtain the congruence
(p—D!'=p—1=—1 (mod p).

Euclid defined perfect numbers and discovered a formula for even perfect numbers. Euler,
2000 years later, proved that this formula gave all the even perfect numbers. State clearly
one of these results and prove it.

Theorem 1: If 2™ — 1 is prime, then N = 2"71(2" — 1) is perfect.

Proof: Since 2" — 1 is prime, the divisors of N, including N = 2"~1(2" — 1), are

1,2,22...,2"7 L (2" —1),2(2" —1),22(2" — 1),...,2" (2" —1).

"1
Adding, and using the formula 1 +z 4+ 22 4+ --- + 2" ! = T R with x = 2, we have
x R

sum = 14+2+22 4+, +2" 4 (2" 1) (1 +2+2°2+... + 2"
— (2D + 2" =12 1) = (2" = 1)(1+ (2" —1)) = 2N.

Hence, the sum of all the divisors of N is 2N so N is perfect.



Theorem 2: Every even perfect number is of the form N = 2"71(2" — 1) with 2" — 1 a
prime.

Proof: Let N = 2" 'F where n > 1 and F is odd. Let 1 = fi, fo,..., fm = F be the
factors of F and let S = f1 + fo+ ...+ fn. Given that N is perfect, we have

2N =sum of factors of N = fi+ fo+ ...+ fu

+ 2fi+2fo+ ...+ 2fm
+ 22+ 2%+ 22
+ 2n71f1+2n71f2_|_.”+2n71fm

2"=Df i+ 2" =D fo+...+2"=1)fn
= (2"-1S

and hence we have
2"F=2N = (2" - 1)S.

Therefore,
g_ 2"F (2" -1)F+F
D S |
and hence,
F
S=F .
* 2n — 1

Since S and F are integers, 2" — 1 must divide F evenly and hence F/(2" — 1) is an
integer and a factor of F'. But S is the sum of the factors of F', two of which are clearly
1 and F. Hence, F'/(2" — 1) = 1 and hence F' = 2" — 1. Since the only positive factors
of F' are 1 and F, F must be prime, that is, 2" — 1 is prime.



