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1. (a) Find the inverse of 35 modulo 81.

Solution: After just three divisions with quotients 2, 3, and 5, we have 81(16)+35(—37) = 1
and hence the inverse of 35 is —37 = 44 (mod 81).
(b) Find all the incongruent solutions of the congruence 245z = 7 (mod 567).

Solution: It is easy to see that (245,567) = 7(35,81) = 7, so we should first divide
through by 7. Hence we solve first 352 = 1 (mod 81). From part (a) a solution is x = 44.
Hence all seven incongruent solutions are given by

x = 44,44 + 81,44 + 2(81), - - -, 44 + 6(81) = 530.

(c) Solve the Diophantine equation 81z + 35y = 803.
Solution: From part (a) information we have

xr = 16(803) + 35t = 12848 + 35¢,y = —37(803) — 81t = —29711 — 81t for t € Z.

(d) Find the positive solutions, if any.
—12848 ; —29711

81
since % ~ —367.0857 and % ~ —366.802, we have one positive solution when

t = —367. The solution is x = 3,y = 16.

Solution: We need to solve for t, x > 0 and y > 0. We have and

2. Prove, using the canonical decomposition of the integers, that (a,b)(a, ¢) = (a, bc) if (b,c) = 1.

Proof: Let a = []i_, p{",b = H:le?i, and ¢ = [[/_, p/*, where the p; are prime and the
a;, B, and v; > 0 for 1 < i < r. We are given that (;7; = 0 for all 7, and we need to prove
that

min{a;, 3;} + min{a;, v} = min{a;, B; + v}

for all 2. We consider first the case for those ¢ for which 3; = 0. Then the result is
obvious since the left side is just 0 + min{c;,;} and the right side is just min{«;, 5; + v} =
min{a;, 0+~;}. The second case is for the remaining ¢, those for which 8; # 0. Since 3;y; =0
for all 7, then +; = 0. By a similar argument, since the result is symmetric in §; and ~;, the
result follows.

. Ifale blc, and (a,b) =1, prove that ab | c. (Prove any results used.)

Proof: Since a | ¢, the ¢ = ad for some d € Z. Since (a,b) = 1, ax+by = 1 for some z,y € Z.
Multiplying by d we have adz 4 bdy = d, and since ¢ = ad and b | ¢, then b | (adz + bdy), so
b| d. Hence d = be for some e € Z. Hence ¢ = ad = abe and so ab | c.
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4. Let {f,} be the Fibonacci sequence. For n > 5 prove that f, = 5f, 4+ 3f,_5. Hence, prove
that 5| f5, for n > 1.

Proof: Forn =6, 5f,_4+3fn_5=5f+3f1i =5+3=8= fgandforn =7, 5f,_4+3f,_5 =
5fs+ 3fa =10+ 3 =13 = f;. Assume the result holds for n = k and n = k + 1. Then

Jere = o+ fog1 = (5fu—a + 3fi—s) + (5fk—s + 3fr—4)
= 5(fr—a + fo—3) +3(fo—s + fr—a) = Sfu—2 + 3fi-s

so the result holds for n = k + 2. Hence, by the principle of mathematical induction, the
result holds for all n > 5.

Forn =1, f5 =5, so clearly 5 | f5. Assume that 5 | fsi, then f5i1) = forts = 5fsrt1+3 fon
using the result proved above. Since 5 | fsi, then clearly 5 | fsgi5. So, by the principle of
mathematical induction, the result holds for all n > 1.

5. (a)

State and prove Euler’s Theorem.
Euler’s Theorem: If (a,m) = 1 then a®™ = 1 (mod m).

Proof: Let 11,72,...,74(m) be the positive integers less than m which are relatively
prime to m. Since (a m) = 1, we claim that ary,ars,...,aryu,) are congruent, not
necessarily in order of appearance, to ri,rg, ..., 74(m). For each i, we have (ar;,m) =1
since (r;,m) = 1 and (a,m) = 1. If ar; = ar; (mod m) then, by the cancellation law,
r; = r; (mod m) and hence ¢ = j. That is, ar; # ar; (mod m) if i # j. Hence the
set {ari,ary, ..., arym)} contains ¢(m) elements which are relatively prime to m and
incongruent modulo m. Hence they are congruent to all of the possible remainders that
are relatively prime to m. Multiplying, we obtain H?i”f)(arj) H¢(T r; (mod m) and
hence a?™ H¢ (m) r; = H;Wln r; (mod m). Now (7;, m) = 1 so we can use the cancellation
law to cancel the r; and we obtain a®™ =1 (mod m).

Find the remainder when 1737 is divided by 55.

Solution: First note that ¢(55) = ¢(5)¢p(11) = 4(10) = 40. Let x = 17%7. Then the
smart way to solve this problem is to note that 4913z = 173z = 173 = (1710)% = 1
(mod 55), by Euler’s Theorem. Since 4913 = 18 (mod 55), then we have to solve for z,
18z = 1 = —54 (mod 55). Clearly the solution is + = —3 = 52 (mod 55). This is the
required remainder.

Prove the Chinese Remainder Theorem for two congruences. That is, if (m,n) = 1 then
show that the congruences z = a (mod m) and z = b (mod n) have a common solution
modulo mn. (You do not need to prove uniqueness.)

Proof: To satisfy the first congruence x must be of the form a + my for some y € Z.
Hence we need to prove that a + my = b (mod n) has a solution. This is equivalent to
solving my = b — a (mod n). There is a solution y since (m,n) = 1. (This solution can
be given explicitly as y = X (b — a) where mX +nY = 1.) Now substitute this value for
y into a + my and reduce modulo mn.
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(b) TIllustrate the proof by finding the common solution modulo 238 of the pair of congruences
x = —3 (mod 14) and z = 13 (mod 17).
Solution: From the first congruence x = —3 4 14y for some y € Z. Substituting in the
second congruence we have —3+14y = 13 (mod 17). Then 14y = 16 (mod 17), and hence
—3y = —1 = —18 (mod 17). That is, y = 6 (mod 17). Then z = -3 + 14(6 + 17z) =
81 + 238z for some 2z € Z. Hence the common solution is z = 81.

. (a) Define the order of an integer modulo a positive integer m.

Solution: We say that an integer a, where (a,m) = 1, has order h if a” = 1 (mod m)
and, if a # 1, a* Z 1 (mod m) for 1 <t < h.

(b) If a has order A modulo m and a" = 1 (mod m), prove that h | n.
Proof: Let n = hq +r where 0 < r < h. Then 1 = a" = """ = (a")%a" = 1%" = a"
(mod m). Since h is minimal, = 0, and hence h | n.

(c) Calculate ¢(4(200 x 41%)), where ¢ is Euler’s phi function.
Solution: We have ¢(4(200 x 413)) = ¢(d(2% x 52 x 413)) = ¢(22 x 20 x 412 x 40) =
H(27 x 5% x 41%) = 25 x 20 x 41 x 40) = 2,099, 200.

. If a®> + b* = 2 is a primitive Pythagorean triple with b even, give two examples of such

triples with b = 308.

Solution: Recall the formula for the primitive Pythagorean triples is a = u? —v%,b = 2uv, ¢ =
u? +v? where u > v, (u,v) = 1,u # v (mod 2). Since b =4 x 7 x 11 then for u = 14,v = 11,
a="75b=308,c=317, and for u =22,0v =7,a = 435,b = 308, ¢ = 533.

. (a) Factor into Gaussian primes the number 210 + 90i.

Solution: The obvious factorization is 210+90i = 2x3x5x (7+3¢). Then 2 = —i(1+14)?,
3 is a Gaussian prime and 5 is not, but 5 = (1 + 24)(1 — 2¢), both factors being prime.
Note that 7+ 3i = (1 +4)(5 — 2¢) and since N(5 — 2i) = 29, then 5 — 2i is prime. Hence
we have the factorization into primes 210 + 90i = —3i(1 +4)3((1 + 24)(1 — 2i)(5 — 21).

(b) State and prove the Division Algorithm for Gaussian Integers.
Given a, f € G, a # 0, there exist 7, € G such that § = ay + §, where N(0) < N(«).
Proof: Note g = % = A+ Bi where A, B € G. Choose a,b € Z such that |A —a| <
and |B—b| < 1. Let vy = a+biand § = 3—~va. We need to show that N(§) < N(«). Bu
N@©O)=N(B—-va)=N(a(2—-7%)) =N()N (£ —~) = N(@N((A—a) + (B -b)i

N(a)((A—a)? + (B—1)*) < N(a) (L + 1) = LN(a) < N(a) since N(a) # 0.

~
~
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10. Given n = 391 = 17 x 23, e = 101, and the encryption function £ : M +— M*¢ (mod n), find

d so that D : C' +— C? (mod n) is the decryption function. Briefly explain how the RSA
public-key cryptosystem works. That is, explain how ‘Bob’ can send a secret message to
‘Alice’ so that Alice knows it comes from Bob.

Solution: First we compute d. Since ¢(391) = 16 x 22 = 352 and since (101,352) = 1,
then after four steps in the Euclidean Algorithm for Z we have 101(—115) 4+ 352(33) =1, so
d =237 = —115 (mod 352). Now see text for the rest of the story.



