
Memorial University of Newfoundland Department of Mathematics and Statistics

Applied Mathematics 2130

Lab 2006W–4B

“Reasoners Resemble Spiders”

An iterative process (such as a sequence) where the “next” approximation to a solution is
found in terms of the previous approximation(s), is a useful method for finding solutions to
certain classes of problems. Newton’s Method, found in most Calculus texts, is an example.

The iterative process can take the form x
n+1 = f(x

n
) (for instance, x

n+1 = x
2
n
+2

2xn

), or
x

n+2 = f(x
n+1) + g(x

n
) (for example, x

n+2 = 2x
n+1 − x

n
). With any iterative process,

it is necessary to have a starting value, say x0. Sometimes this is given, or it may be freely
chosen from a certain interval.

In implementing an iteration, one must have a criterion under which the process halts.
Specifically, one would like to stop at a ‘good’ approximation to a true solution. The difficulty
is that one does not know in advance the value of a true solution. Thus deciding when to
stop is a problem. Two approaches are usually taken. One is based on the fact that as x

n

approaches a true solution, the value of |x
n
− x

n+1| must get small. The other uses the fact
that near a root of a function f(x), |f(x

n
)| must get small. Both of these two facts may be

used as part of a stopping criterion.

As part of this project we are to choose a selection of values for the real number λ in the
interval (0, 1] for the function

f(x) = λ sin(πx)

and investigate the iteration
x

n+1 = f(x
n
).

To fully understand what is happening, it may be helpful to explore with several different
values of λ, using a program that can generate the corresponding iterated sequence x0, x1, . . .

One question that we might consider while exploring the effects of varying values for λ is
whether the corresponding sequence converges, and if so, to what? If not, then can the
behaviour of the sequence be described?

A closely related area of interest concerns the iterated function f (n)(x) = f(f (n−1)(x)) on the
interval [0, 1]. For instance, by comparing the graphs of f (2)(x) = f(f(x)),
f (3)(x) = f(f(f(x))), f (4)(x) = f(f(f(f(x)))), etc. with that of f(x), can we draw any
conclusions about the function f (n)(x) on the interval [0, 1]?

Following the Suggested Report Format, prepare a report that addresses the issues mentioned
above. Include suitable illustrative graphics supporting your conclusions on the behaviour
of this iterative process. As always, supporting mathematical reasoning is essential.

NOTE: Before beginning this lab, it is recommended that you review the article in Scientific

American (November 1981 issue, pp 22–43) by Douglas Hofstadter (the author of Gödel,

Escher, Bach).
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