Instructions

• Answer each question completely; justify your answers.

A group (\mathcal{G}, \cdot) consists of a set \mathcal{G} along with a binary operation \cdot , such that:

- \mathcal{G} is closed under \cdot
- · is associative (i.e., $a \cdot (b \cdot c) = (a \cdot b) \cdot c$)
- there exists an identity with respect to \cdot (i.e., there exists an element $e \in \mathcal{G}$ such that $a \cdot e = e \cdot a = a$ for all $a \in \mathcal{G}$)
- each element has an inverse (i.e., for each $a \in \mathcal{G}$ there exists an element $b \in \mathcal{G}$ such that $a \cdot b = b \cdot a = e$)

Note that we often refer to the group as \mathcal{G} rather than (\mathcal{G}, \cdot) . Notice also that \cdot need not be commutative; a group in which \cdot is commutative is called an *Abelian* group.

The notation a^n will be used to denote $\underbrace{a \cdot a \cdot a \cdot a}_{n \ a's}$. The order of an element $a \in \mathcal{G}$ is the smallest positive integer t such that $a^t = e$. If a has order $|\mathcal{G}|$ then a is a generator of \mathcal{G} .

- 1. Find all generators of each of the following groups:
 - (a) \mathbb{Z}_{17}^*
 - (b) \mathbb{Z}_{25}^*
- 2. Prove the following statement:

If the order of $a \in \mathbb{Z}_n^*$ is t and $a^s \equiv 1 \pmod{n}$, then t divides s.

- 3. (a) Suppose that α is a generator of \mathbb{Z}_n^* . Prove that α^k is a generator of \mathbb{Z}_n^* if and only if $GCD(k, \phi(n)) = 1$, where ϕ is Euler's totient function.
 - (b) Provided that \mathbb{Z}_n^* has at least one generator, then how many generators does it have?
 - (c) When p is prime, \mathbb{Z}_p^* is known to have a generator. How many generators are there in:
 - i. \mathbb{Z}_{31}^*
 - ii. \mathbb{Z}_{181}^*
 - iii. \mathbb{Z}_{257}^*
 - iv. $\mathbb{Z}_{2^t+1}^*$, where (2^t+1) is prime
 - v. \mathbb{Z}_{2t+1}^* , where t and (2t+1) are prime
- 4. Solve for x by using Shanks' Algorithm:
 - (a) $13^x \equiv 12 \pmod{197}$
 - (b) $14^x \equiv 519 \pmod{557}$
 - (c) $7^x \equiv 922 \pmod{1433}$

- 5. Solve for x by using the Index Calculus Method:
 - (a) $55^x \equiv 444 \pmod{569}$
 - (b) $7^x \equiv 92 \pmod{1433}$
- 6. Show that the Diffie-Hellman Problem (DHP) and the El Gamal Problem (ELGAMAL) are computationally equivalent.
- 7. Suppose that Alice has published the key (1237, 34, 383) for use in the El Gamal public-key cryptosystem.
 - (a) You wish to send the message m = 14 to Alice. What do you actually transmit?
 - (b) You have monitored the transmission (94, 225) to Alice.
 - i. Use the Index Calculus Method for solving the Discrete Log Problem to find Alice's secret key a.
 - ii. What was the original message?