PMAT 4282 – Cryptography Winter 2009

Assignment #6

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at: 3:00 pm on Thursday March 19th.
- 1. For each of the following (a, p) pairs, determine whether $a \in QR_p$:
 - (a) (2, 17)
 - (b) (44, 97)
 - (c) (789, 5683)
- 2. Let p be an odd prime. Prove that the equation $x^2 \equiv 1 \pmod{p}$ has exactly two solutions in \mathbb{Z}_p^* .

3. Let $n \ge 3$ be an odd integer. Prove that if $a \in QR_n$ then $\left(\frac{a}{n}\right) = 1$.

- 4. Calculate the following subject to the restriction that when factoring, you are only allowed to factor out powers of 2 (so, for example, with the number 60, you're allowed to factor this as $2^2 \cdot 15$, but treat the 15 as though you don't know how (or if) it factors).
 - (a) $\left(\frac{43}{455}\right)$ (b) $\left(\frac{87}{601}\right)$ (c) $\left(\frac{44}{3323}\right)$ (d) $\left(\frac{5637}{631}\right)$ (e) $\left(\frac{866}{3531}\right)$ (f) $\left(\frac{381}{23}\right)$ (g) $\left(\frac{837}{377}\right)$ (h) $\left(\frac{82001}{643747}\right)$
- 5. Without identifying any factors of n, prove that n is composite.
 - (a) n = 4141
 - (b) n = 75361
 - (c) n = 18162001
 - (d) n = 451149769054931

- 6. Let $n \ge 3$ be an odd integer. Given that $\left(\frac{2}{p}\right) = (-1)^{\frac{1}{8}(p^2-1)}$ whenever p is prime, prove that $\left(\frac{2}{n}\right) = (-1)^{\frac{1}{8}(n^2-1)}$.
- 7. (a) Let n be an odd composite integer. Prove that at least half of the elements of \mathbb{Z}_n^* are Euler witnesses.
 - (b) What proportion of the elements of \mathbb{Z}_{25}^* are Euler witnesses?