- 1. On Page 137 of Stinson's book is the Miller-Rabin Primality Test:
 - 1 Given n, write $n-1=2^t m$, where m is odd.
 - 2 Choose a random integer a such that $1 \le a \le n-1$.
 - 3 Set $b \leftarrow a^m \pmod{n}$.
 - 4 If $b \equiv 1 \pmod{n}$ then output "n is likely prime" and stop.
 - 5 For $i = 0, 1, \ldots, (t-1)$, do the following:
 - 5.1 If $b \equiv -1 \pmod{n}$ then output "n is likely prime" and stop. Otherwise set $b \leftarrow b^2 \pmod{n}$.
 - 6 Output "n is composite"

The intent is to perform this algorithm k times (say k = 100), and if each time the output was "likely prime", to then conclude n is very likely to be prime.

Stinson's book proves that if n is prime, then this algorithm will never output "n is composite". However, if n is composite, then it is possible that the algorithm will incorrectly state that "n is likely prime."

Find an odd composite number $n \ge 50$ and a value for a (1 < a < n-1) for which the algorithm outputs "n is likely prime."

- 2. Let p be an odd prime and let $a \ge 1$. Prove that the number of solutions in \mathbb{Z}_p to the equation $x^a \equiv 1 \pmod{p}$ is GCD(a, p 1).
- 3. Let n = pq where p and q are distinct odd primes. Prove that the number of integers m, $0 \le m < n$, such that $m^e \equiv m \pmod{n}$ is $(d_1 + 1)(d_2 + 1)$ where $d_1 = \text{GCD}(p 1, e 1)$ and $d_2 = \text{GCD}(q 1, e 1)$.
- 4. Bob has published (30314385727, 683) as his public-key for RSA. Eve intercepts the ciphertext 13490063419 sent from Alice to Bob. What was the plaintext message?
- 5. Use Pollard's p-1 algorithm to factor n=3129476997089035646236920257. What is the smallest B value that will yield a factorisation?
- 6. Use the Pollard ρ algorithm to factor n = 1002468832301.
- 7. Using the Quadratic Sieve Method, factor at least two of the following integers.
 - (a) n = 39961
 - (b) n = 49981
 - (c) n = 99067