- 1. Calculate the following subject to the restriction that when factoring, you're only allowed to factor out powers of 2 (so, for example, with the number 60, you're allowed to factor this as $2^2 \cdot 15$, but treat the 15 as though you don't know how (or if) it factors).
 - (a) $\left(\frac{43}{455}\right)$
 - (b) $\left(\frac{87}{601}\right)$
 - (c) $\left(\frac{44}{3323}\right)$
 - (d) $\left(\frac{5637}{631}\right)$
 - (e) $\left(\frac{866}{3531}\right)$
 - (f) $\left(\frac{381}{23}\right)$
 - (g) $\left(\frac{837}{377}\right)$
 - (h) $\left(\frac{82001}{643747}\right)$
- 2. Without identifying any factors of n, prove that n is composite.
 - (a) n = 4141
 - (b) n = 52633
 - (c) n = 18162001
 - (d) n = 451149769054931
- 3. Let $n \geq 3$ be an odd integer. Prove that if $a \in QR_n$ then $\left(\frac{a}{n}\right) = 1$.
- 4. (a) Let n be an odd composite integer. Prove that at least half of the elements of \mathbb{Z}_n^* are Euler witnesses.
 - (b) What proportion of the elements of \mathbb{Z}_{25}^* are Euler witnesses?