- 1. By \mathbb{Z}_n^* we will denote the set $\{a \in \mathbb{Z}_n | \operatorname{GCD}(a, n) = 1\}$. A quadratic residue modulo n is any element x of \mathbb{Z}_n^* that is a square (ie $x = y^2$ for some $y \in \mathbb{Z}_n^*$). What are the quadratic residues for
 - (a) \mathbb{Z}_{23}^*
 - (b) \mathbb{Z}_{26}^*
 - (c) \mathbb{Z}_{27}^*

In a few weeks we will see in class how to determine whether a given element $x \in \mathbb{Z}_p^*$ is a quadratic residue, where p is a prime. For instance, we'll learn how to answer the question: Is 789 a quadradic residue in \mathbb{Z}_{5683}^* ?

2. Below is a schematic diagram for the function $f: \{0,1\}^{12} \to \{0,1\}^{12}$, which is used in each round of computation of an NDS-like cryptosystem in which n = 12 and r = 16.

The specifications of this cryptosystem are such that s_0 is the identity function, s_1 is the complement function, and the permutation in the final step of f simply reverses the order of the 12 bits.

You have gained access to an implementation of the encryption algorithm for this cryptosystem, using the key s_k that Alice and Bob have as their secret. This implementation is online at http://www.math.mun.ca/~dapike/crypto/.

- (a) How many possible choices are there for the key s_k ?
- (b) Perform a chosen plaintext attack on the cryptosystem, and thereby determine s_k .

