PMAT 3331 – Projective Geometry Winter 2003

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 3:00 pm on March 19, 2003.
- Please place your completed assignment in Box 35.
- 1. Let P_1, P_2, P_3 , and P_4 be distinct collinear points on the line L of $P_2(\mathbb{R})$. Further suppose that each point is in standard form (that is, the last non-zero coordinate is 1). Suppose that $\{B_1, B_2\}$ is an ordered basis for the line L, and that with respect to this basis point P_i has coordinates (s_i, t_i) , for $i \in \{1, 2, 3, 4\}$.
 - (a) Compute the cross ratio $CR[P_1P_2, P_3P_4]$ with respect to the basis $\{B_1, B_2\}$.
 - (b) For each point P_i , any scalar multiple $k_i P_i$ is an equivalent point in $P_2(\mathbb{R})$, provided that $k_i \neq 0$. Determine the coordinates of $k_i P_i$ with respect to the basis $\{B_1, B_2\}$.
 - (c) Compute the cross ratio $CR[(k_1P_1)(k_2P_2), (k_3P_3)(k_4P_4)]$ with respect to the basis $\{B_1, B_2\}$.
 - (d) What conclusion can be made concerning cross ratios?
- 2. Let P_1, P_2, P_3 , and P_4 be distinct collinear points on the line L of $P_2(\mathbb{R})$. Suppose that $\{B_1, B_2\}$ is an ordered basis for the line L, and that with respect to this basis point P_i has coordinates (s_i, t_i) , for $i \in \{1, 2, 3, 4\}$.

Suppose that $\{B_3, B_4\}$ is another ordered basis for L, and that with respect to this basis point B_i has coordinates (α_i, β_i) , for $i \in \{1, 2\}$.

- (a) Determine the coordinates of P_1, P_2, P_3 , and P_4 with respect to the basis $\{B_3, B_4\}$.
- (b) Prove that the cross ratio $CR[P_1P_2, P_3P_4]$ with respect to the basis $\{B_1, B_2\}$ is the same as the cross ratio $CR[P_1P_2, P_3P_4]$ with respect to the basis $\{B_3, B_4\}$.
- (c) What conclusion can be made concerning $CR[P_1P_2, P_3P_4]$?
- 3. Consider the line y = 7x + 1 and the line x + 4 = 0 in \mathbb{R}^2 . Let L_1 and L_2 denote the respective corresponding lines in $P_2(\mathbb{R})$.
 - (a) Express the equations for L_1 and L_2 in homogeneous coordinates.
 - (b) At what point of $P_2(\mathbb{R})$ do L_1 and L_2 intersect?
 - (c) At what points in $P_2(\mathbb{R})$ does L_1 intersect the reference triangle?
 - (d) At what points in $P_2(\mathbb{R})$ does L_2 intersect the reference triangle?
 - (e) In what order do the 4 points that we've just found on L_1 occur?
 - (f) Sketch the graph of L_1 and L_2 in $P_2(\mathbb{R})$ and identify all points of interest.
- 4. Sketch in $P_2(\mathbb{R})$ the two lines that correspond to the lines y = -2x + 5 and 2y = x 4 of \mathbb{R}^2 . Identify all points of interest.