Assignment #4

PMAT 3331 – Projective Geometry Winter 2003

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 3:00 pm on February 19, 2003.
- Please place your completed assignment in Box 35.
- 1. The 4 axioms for projective planes are:
 - i. Every pair of distinct points are incident with exactly one line.
 - ii. Every pair of distinct lines intersect in a single point.
 - iii. There are at least 3 distinct points on every line.
 - iv. Each point is on at least 3 distinct lines.

For each integer $n \ge 2$, construct a set \mathcal{P} of points and a set \mathcal{L} of lines such that $|\mathcal{P}| = n$, axioms 1 and 2 are satisfied, but both of axioms 3 and 4 are violated.

- 2. Consider the points (4,5) and (-2,2) in \mathbb{R}^2 .
 - (a) What points in $P_2(\mathbb{R})$ do these points correspond to?
 - (b) What line in $P_2(\mathbb{R})$ contains both of the corresponding points?
- 3. What line of $P_2(\mathbb{R})$ does the line y = 3x 2 of \mathbb{R}^2 correspond to? Sketch this line in the projective plane, illustrating its points of intersection with ℓ_1 , ℓ_2 , and ℓ_{∞} .
- 4. Consider the lines y = 3x + 4 and y = 4x 8 in \mathbb{R}^2 . Determine the corresponding lines in $P_2(\mathbb{R})$ and their point of intersection. Sketch these lines in $P_2(\mathbb{R})$ and identify all points of interest.
- 5. Let k be fixed. Prove that the vertical line x = k in \mathbb{R}^2 corresponds to a line in $P_2(\mathbb{R})$. What is this corresponding line?
- 6. (a) Let m, b_1 , and b_2 be fixed such that $b_1 \neq b_2$. The lines $y = mx + b_1$ and $y = mx + b_2$ in \mathbb{R}^2 correspond to two lines in $P_2(\mathbb{R})$. What is the point of intersection of these two lines in $P_2(\mathbb{R})$?
 - (b) Let k_1 and k_2 be fixed such that $k_1 \neq k_2$. The lines $x = k_1$ and $x = k_2$ in \mathbb{R}^2 correspond to two lines in $P_2(\mathbb{R})$. What is the point of intersection of these two lines in $P_2(\mathbb{R})$?
 - (c) What conclusion can we make regarding the point of intersection of two lines in $P_2(\mathbb{R})$ whose corresponding lines in \mathbb{R}^2 are parallel?