PMAT 3331 – Projective Geometry Winter 2003

Assignment #1

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 3:00 pm on Wednesday January 29, 2003.
- Please place your completed assignment in Box 35.
- 1. Two vectors \vec{u} and \vec{v} in $A_n(\mathbb{R})$ are said to be *parallel* if $\vec{u} = t\vec{v}$ for some $t \in \mathbb{R}$. Determine the value of q such that the vectors (1, -9) and (-4, q) in $A_2(\mathbb{R})$ are parallel.
- 2. Determine the vector equation for the line passing through the points $Q_0(4,8)$ and $Q_1(6,-7)$ in $A_2(\mathbb{R})$. Is this line a linear submanifold of $A_2(\mathbb{R})$?
- 3. Determine the vector equation for the line passing through the points $Q_0(1,2,4)$ and $Q_1(8,0,-3)$ in $A_3(\mathbb{R})$.
- 4. Determine whether the following three points lie on the same line: $Q_1(4,3,-2)$, $Q_2(0,5,5)$, $Q_3(8,1,-9)$.
- 5. Find the equation of the hyperplane in $A_3(\mathbb{R})$ containing the points $Q_1(4,7,1)$, $Q_2(3,0,2)$, $Q_3(1,8,-3)$. Does this hyperplane form a linear submanifold of $A_3(\mathbb{R})$?
- 6. Let $S_1 = \{t(3,4,5) \mid t \in \mathbb{R}\}$ and $S_2 = \{(x,y,z) \mid 2x + y 3z = 0\}$ be linear submanifolds of $A_3(\mathbb{R})$.
 - (a) Find $S_1 \cap S_2$.
 - (b) Show that $S_1 + S_2 = A_3(\mathbb{R})$.