PMAT 2320 – Discrete Mathematics Winter 2008

Assignment #5

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 4:00 pm on 22 February 2008.
- 1. Exercise 2.5.1, parts (c) and (d).
- 2. Let $A = \mathbb{N}$ and define \preceq on A by $a \preceq b$ iff a divides b.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) Does this poset have a maximum?
 - (d) Does this poset have a minimum?
- 3. Let $A = \{2, 3, 4, \dots, 17\}$ and define \leq on A by $a \leq b$ iff a divides b.
 - (a) Draw the Hasse diagram for the poset (A, \preceq) .
 - (b) Is \leq a total order?
 - (c) Does this poset have a maximum?
 - (d) Does this poset have a minimum?
 - (e) Does this poset have any minimal elements? If yes, what are they?
 - (f) Does this poset have any maximal elements? If yes, what are they?
 - (g) What is the least upper bound of elements 3 and 4?
 - (h) What is the greatest lower bound of elements 15 and 16?
- 4. Let $A = \mathbb{R}^2$ and define \preceq on A by $(a, b) \preceq (x, y)$ iff $a \leq x$ and $b \leq y$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) What is the least upper bound on $(\sqrt{2}, 9)$ and (5, -3)?
 - (d) What is the greatest lower bound on $(\pi, \frac{2}{3})$ and $(0, \frac{3}{2})$?
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sqrt{x^3 4x}$.
 - (a) State the domain of f.
 - (b) State the range of f.
 - (c) Prove or disprove: f is one-to-one.
 - (d) Prove or disprove: f is onto.
- 6. Exercise 3.1.17.
- 7. Exercise 3.1.19, except part (a).

- 8. Let $A = \{0, 1, 2, \dots, 9\}$ and define the function $g : \mathcal{P}(A) \to \mathbb{Z}$ so that g(X) = |X|.
 - (a) What is the domain of g?
 - (b) How many elements are in the domain of g?
 - (c) What is the range of g?
 - (d) Is g surjective?
 - (e) Is g injective?