${ m PMAT~2320-Discrete~Mathematics} \ { m Winter~2008}$

Assignment #1

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at

The following symbols will be used to represent certain sets of numbers:

- \mathbb{Z} the set of integers
- \mathbb{N} the set of natural numbers, namely $\{1, 2, 3, \ldots\}$
- \mathbb{R} the set of real numbers
- Q the set of rational numbers
- 1. Determine whether the following statements are true, false, or invalid.
 - (a) If $4 \ge 4$ and 7 is odd, then $x^2 + 9x 1$ has a real solution.
 - (b) Suppose n is a non-negative integer.
 - (c) If $-2^2 = 4$ then 3 is even and 5 < 4.
 - (d) $\sqrt{x^2} = x$.
 - (e) 0 is positive.
- 2. For each valid statement in Question 1 that is an implication,
 - (a) state the converse
 - (b) determine whether the converse holds.
- 3. What is the negation of each of the following statements:
 - (a) A or (B and not(C))
 - (b) A or B or C
 - (c) (A and not(B)) and (C or not(D))

Definition. For integers a and b, we say that a divides b (written as "a|b") if there exists an integer n such that b=na. An integer x is said to be even if x=2k for some integer k. And an integer x is said to be odd if x=2k+1 for some integer k.

- 4. Show that the following statements are false:
 - (a) Given that $n \in \mathbb{N}$, $8|n^2$ if and only if 8|n.
 - (b) If $x, y \in \mathbb{R}$ such that x > 0, y > 0, then $(x+3)^2 + (y+4)^2 \le 5^2$.
 - (c) For all $x \in \mathbb{R}$, $100x^4 > \frac{x^6}{1000}$.

- 5. Rewrite the following statements as English sentences. Also indicate whether each statement is true or false.
 - (a) $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Q}, x = y.$
 - (b) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Q}, x = y.$
 - (c) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Q}, x = y.$
 - (d) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Q}, x = y.$
- 6. Find the negation of each statement in Question 5 and indicate whether it is true or false.
- 7. Let $x, y \in \mathbb{Z}$. Prove that xy is odd if and only if x and y are both odd.
- 8. Consider the statement: $\forall x \in \mathbb{Z}, x \text{ is odd} \Rightarrow 4|(x^3 x).$
 - (a) Is this statement true or false? Justify your answer either with a proof or else with a counter-example.
 - (b) What would be the negation of the statement?