MATH 2320 – Discrete Mathematics Fall 2011

Assignment #4

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 20th in Assignment Box #23.
- 1. Let $A = \{2, 3, 4, \dots, 17\}$ and define \leq on A by $a \leq b$ iff a divides b.
 - (a) Draw the Hasse diagram for the poset (A, \preceq) .
 - (b) Is \leq a total order?
 - (c) Does this poset have a maximum?
 - (d) Does this poset have a minimum?
 - (e) Does this poset have any minimal elements? If yes, what are they?
 - (f) Does this poset have any maximal elements? If yes, what are they?
 - (g) What is the least upper bound of elements 3 and 4?
 - (h) What is the greatest lower bound of elements 15 and 16?
- 2. Let $A = \mathbb{R}^2$ and define \preceq on A by $(a, b) \preceq (x, y)$ iff $a \leqslant x$ and $b \leqslant y$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) What is the least upper bound on $(\sqrt{2}, 9)$ and (5, -3)?
 - (d) What is the greatest lower bound on $(\pi, \frac{2}{3})$ and $(0, \frac{3}{2})$?
- 3. Let $A = \{0, 1, 2, \dots, 7\}$ and define the function $g : \mathcal{P}(A) \to \mathbb{Z}$ so that g(x) = |x|.
 - (a) What is the domain of g?
 - (b) How many elements are in the domain of g?
 - (c) What is the range of g?
 - (d) Is g surjective?
 - (e) Is g injective?
- 4. Define $h : \mathbb{N}^2 \to \mathbb{N}$ by $h : (x, y) \mapsto (x + y)$.
 - (a) Is h surjective?
 - (b) Is h injective?
- 5. Exercise 3.1.16.
- 6. Exercise 3.2.7, part (b). Note that the part of the problem that asks an inverse to be found is asking for an inverse to the function $f: A \to (\text{Range of } f)$.