$egin{array}{ll} { m MATH} \ 2320-{ m Discrete} \ { m Mathematics} \ { m Fall} \ 2011 \end{array}$

Assignment #3

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 6th in Assignment Box #23.
- 1. Determine whether the relation \mathcal{R} is reflexive:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 \text{ is odd} \}$$

(b)
$$\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 | xy \ge 0\}$$

2. Determine whether the relation \mathcal{R} is symmetric:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{N}^2 \mid x + y = 10\}$$

(b)
$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^4 \geqslant 10\}$$

3. Determine whether the relation \mathcal{R} is antisymmetric:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant y\}$$

(b)
$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 \geqslant y^2\}$$

4. Determine whether the relation \mathcal{R} is transitive:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{N}^2 \mid x + y = 10\}$$

(b)
$$\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid x + y \in \mathbb{Z}\}$$

- 5. Define the relation \sim on \mathbb{Z} by $a \sim b$ if $3a b^2$ is even.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{4}$?
 - (c) What is \mathbb{Z}/\sim ?
- 6. Define the relation \sim on \mathbb{R}^2 by $(a,b) \sim (c,d)$ if a+b=c+d.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Provide a geometrical description of $\overline{(2,2)}$.