Name MUN Number

Marks

- [6] 1. State whether each statement is true, false, or invalid:
 - (a) If $x^2 \in \mathbb{R}$ then $x \in \mathbb{N}$.
 - (b) Let a = 2k + 1 for some $k \in \mathbb{Z}$.
 - (c) $A \Longrightarrow B$ if and only if $not(A) \Longrightarrow not(B)$.
 - (d) $n \text{ is odd and } 4 \mid n \iff n^2 \le 0 \text{ or } 2 = 3.$
 - (e) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Q}, x < y.$
 - (f) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Q}, x < y.$
- [6] 2. State the negation of each of the following:
 - (a) For all $a \in \mathbb{N}$ there exists $b \in \mathbb{Q}$ such that a = -b.
 - (b) There exists an integer n such that for every real number r, n | r.

- [5] 3. Consider the statement: $n \text{ is odd} \implies n^2 + 2n + 1$ is even.
 - (a) What is the converse of this statement?
 - (b) Prove that this converse is true.

- [7] 4. Let $A = \{2, 4, 7, 9\}, B = \{2, 4, 8\}, \text{ and } C = \{3, 6, 9\}.$
 - (a) Draw a Venn diagram showing the relationship between the sets. Label each element.

(b) What are:

i. $A \cap B$

ii. $A \cup B$

- iii. $(B \setminus A) \cap (A \cup C)$
- iv. $A \setminus (B \cup C)$

v. $A \oplus B$

- vi. $((A \cup C) \cap B)^2$
- [5] 5. Let $A = \{a, \{a, b\}, c, d, \{d, e\}\}.$
 - (a) What is |A|?
 - (b) Indicate whether the following statements are true or false:
 - i. $a \in A$ ii. $b \in A$ iii. $b \subseteq A$ iv. $\emptyset \in A$ v. $\emptyset \subseteq A$ vi. $\{a, b\} \in A$ vii. $\{a, b\} \subseteq A$ viii. $\{\{a, b\}\} \subseteq A$ ix. $\mathcal{P}(\{c\}) \subseteq A$

Pure Mathematics 2320

[6] 6. Let A, B, and C be sets. Prove that $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.

[10] 7. Define ~ on the set A = {-3, -2, -1, 0, 1, 2, 3} by x ~ y if and only if x² + y² is even.
(a) Is ~ reflexive? Justify your answer.

(b) Is \sim symmetric? Justify your answer.

(c) Is \sim anti-symmetric? Justify your answer.

(this question continues...)

(d) Is \sim transitive? Justify your answer.

(e) Is ~ an equivalence relation? If yes, find both of $\overline{0}$ and $\overline{1}$.