Test 2

PURE MATHEMATICS 2320

Fall 2000

Name

MUN Number

Marks

[4] 1. Let $A = \mathbb{R} \setminus \{1\}$ and define $f: A \to A$ by $f: a \mapsto \frac{a}{a-1}$. Show that $f^{-1} = f$.

- [7] 2. State whether each of the following sets is finite, countably infinite, or uncountable:
 - (a) \mathbb{R}^2
 - (b) ∅
 - (c) $7\mathbb{Z} + 3$
 - (d) $\{x \in \mathbb{R} \mid x^4 13x^2 + 10 = 0\}$
 - (e) $\{x \in \mathbb{Q} \mid x \in (-3,4)\}$
 - (f) $\{x \in \mathbb{Z} \mid x = -\sqrt{x^2}\}$
 - (g) $\{x \in \mathbb{R}, |x = -\sqrt{x^2}\}$
- [4] 3. (a) Express in base 10 the base 3 number 12011.

(b) Express in base 4 the base 10 number 234.

- [5] 4. Let a = 1728 and b = 804.
 - (a) Calculate GCD(a, b).

(b) Find integers m and n such that ma + nb = GCD(a, b).

(c) Calculate LCM(a, b).

- [3] 5. State whether each of the following is true or false:
 - (a) $84 \equiv 12 \pmod{4}$
 - (b) If $x \not\equiv 0 \pmod{3}$ then $x^{200} \equiv 1 \pmod{3}$
 - (c) $-67 \equiv 17 \pmod{20}$
- [6] 6. Solve for x:
 - (a) $2x \equiv 4 \pmod{8}$

(b) $3x \equiv 0 \pmod{12}$

(c) $11x \equiv 4 \pmod{100}$

[4] 7. Prove that $3^{2n} - 1$ is divisible by 8 for every integer $n \ge 1$.

- [6] 8. Define a sequence by $a_1 = 1$ and $a_k = 2a_{k-1} + 1$ for k > 1.
 - (a) What are the first 7 terms of this sequence?
 - (b) Find a formula for a_n and prove that it is correct.