Fall 2000

Name

MUN Number

Marks

- [3] 1. State whether each statement is true, false, or invalid:
 - (a) If $x \in \mathbb{Q}$ then $x \in \mathbb{Z}$.
 - (b) Suppose a is a root of $f(x) = x^2 1$.
 - (c) $A \Longrightarrow B$ if and only if $not(B) \Longrightarrow not(A)$.
 - (d) 12 divides n or $3 = \sqrt{-9} \iff n$ is even and 2n + 1 is even.
 - (e) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Q}, x = y.$
 - (f) $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{N} \right\}.$
- [6] 2. State the negation of each of the following:
 - (a) For all $a \in A$ there exists $b \in B$ such that a = b.

(b) There exists an integer n such that for every real number r, $n \mid r$.

- [7] 3. Let $A = \{1, 2, 3, 6\}, B = \{2, 4, 6\}, \text{ and } C = \{3, 6, 9, 12\}.$
 - (a) Draw a Venn diagram showing the relationship between the sets. Label each element.

- (b) What are:
 - i. $A \cap C$
 - ii. $A \cup B$
 - iii. $A \cap (A \cup C)$
 - iv. $A \setminus (B \cup C)$
 - v. $A \oplus B$
 - vi. $((A \cup B) \cap C)^2$
- $[4] \qquad 4. \ \ {\rm Let} \ A = \{a,b,\{a,b,c\}\}.$
 - (a) What is |A|?
 - (b) Indicate whether the following statements are true or false:
 - i. $a \in A$
 - ii. $c \in A$
 - iii. $c \subseteq A$
 - iv. $\emptyset \in A$
 - v. $\emptyset \subseteq A$
 - vi. $\{a, b\} \in A$
 - vii. $\{a, b\} \subseteq A$

- [4] 5. Consider the statement: n is odd $\implies n^2$ is odd.
 - (a) What is the converse of this statement?
 - (b) Prove that this converse is true.

- [6] 6. Define \sim on $\mathbb{Z} \setminus \{0\}$ by $x \sim y$ iff xy > 0.
 - (a) Is \sim reflexive?

(b) Is \sim symmetric?

(c) Is \sim anti-symmetric?

(d) Is \sim transitive?

(e) Is \sim an equivalence relation? If yes, what is $\overline{1}$?

- [5] 7. Let T be a finite set.
 - (a) Show that $(\mathcal{P}(T), \subseteq)$ is a poset.

- (b) i. Give an example of a non-empty finite set T for which $(\mathcal{P}(T),\subseteq)$ is totally ordered.
 - ii. Draw the Hasse diagram for your poset.

- [5] 8. Define $f: \mathbb{R} \to \mathbb{R}$ by $f: a \mapsto \frac{a^2 + 6}{2}$.
 - (a) What is the domain of f?
 - (b) What is the range of f?
 - (c) Is f injective?
 - (d) Is f surjective?
 - (e) Is f bijective?
- [2] 9. Define $f: \mathbb{Z} \to \mathbb{Z}$ by $f(x) = x^2 + x + 1$, and $g: \mathbb{Z} \to \mathbb{Z}$ by g(x) = 2 5x. What is $(f \circ g)(x)$?