Instructions

- Answer each question completely; justify your answers.
- This assignment is due at noon on Thursday February 13th.
- 1. Suppose (X, \mathcal{A}) is a STS(v) on point set $X = \{x_1, \ldots, x_v\}$ and let $\mathcal{F}_1, \ldots, \mathcal{F}_v$ be the v 1-factors of a 1-factorisation of K_{v+1} , where the vertex set Y of this K_{v+1} is disjoint from X. Consider the design with $X \cup Y$ as its point set and $\mathcal{B} = \mathcal{A} \cup \bigcup_{i=1}^{v} \{B \cup \{x_i\} : B \in \mathcal{F}_i\}$ as its block set.
 - (a) Explain why $(X \cup Y, \mathcal{B})$ is a STS.
 - (b) Use this construction to build a STS(15).
- 2. (a) Construct a Latin square L of order m = 6.
 - (b) Let $C_{i,j}$ denote the cell whose location is row i column j of L, and let $L_{i,j}$ denote the symbol contained in cell $C_{i,j}$. Let $X = \{C_{i,j} : 1 \le i \le 6, 1 \le j \le 6\}$. For each cell $C_{i,j}$ define $B_{i,j} = (\{C_{s,j} : 1 \le s \le 6\} \cup \{C_{i,t} : 1 \le t \le 6\} \cup \{C_{s,t} : L_{s,t} = L_{i,j}, 1 \le s \le 6, 1 \le t \le 6\}) \setminus \{C_{i,j}\}$. Let $\mathcal{B} = \{B_{i,j} : 1 \le i \le 6, 1 \le j \le 6\}$.
 - i. List the elements of $B_{1,2}$.
 - ii. Verify that (X, \mathcal{B}) is a symmetric BIBD.
 - (c) When the construction above is adapted for any Latin square of order $m \ge 2$, does it yield a symmetric BIBD? If yes, then express v, k and λ in terms of m.
- 3. A biplane of order n is a symmetric (v, k, λ) -BIBD for which $n = k \lambda$ and $\lambda = 2$. Non-trivial biplanes of order n are currently known to exist only for $n \in \{1, 2, 3, 4, 7, 9, 11\}$.
 - (a) Find a biplane of order 1.
 - (b) Prove that no biplane of order 5 exists.
 - (c) Prove that no biplane of order 8 exists.
 - (d) Prove that no biplane of order 10 exists.
 - (e) Show that the Bruck-Ryser-Chowla theorem does not preclude the existence of a biplane of order 14.
- 4. For which of the following parameters does the Bruck-Ryser-Chowla theorem preclude the existence of a (v, k, λ) -BIBD?
 - (a) (25, 9, 3)
 - (b) (34, 12, 4)
 - (c) (45, 12, 3)
 - (d) (103, 18, 3)