Instructions

- Answer each question completely; justify your answers.
- This assignment is due at the start of class on Wednesday February 5th.
- 1. Prove that there is a (7, 7, 4, 4, 2)-BIBD and that it is unique up to isomorphism.
- 2. We define a Latin square of order n to be an $n \times n$ array in which each of the n^2 cells is filled with a symbol from a set S of cardinality n, such that each symbol occurs once in each row of the array and each symbol occurs once in each column of the array. Typically the set S is chosen to be $\{1, 2, ..., n\}$. A Latin square is called symmetric if, for each i and j, the symbol in cell (i, j) is the same as the symbol in cell (j, i).
 - (a) Construct an example of a Latin square of order 3 that is not symmetric.
 - (b) Construct an example of a symmetric Latin square of order 3.
 - (c) Construct an example of a Latin square of order 4 that is not symmetric.
 - (d) Construct an example of a symmetric Latin square of order 4.
- 3. Suppose that A is a block of a (v, k, λ) -BIBD. For each $i \in \{0, 1, ..., k\}$, let x_i denote the number of blocks other than A that intersect A in precisely i elements. Prove that $\sum_{i=0}^{k} ix_i = k(r-1)$ and also that $\sum_{i=0}^{k} i(i-1)x_i = k(k-1)(\lambda-1)$.
- 4. Suppose that a (v, k, λ) -BIBD is both a derived design and a residual design (of some other design(s)). Prove that $v = 2\lambda + 2$.
- 5. Let (X, \mathcal{A}) be a symmetric (v, k, λ) -BIBD. Prove that $k > \lambda$.
- 6. Let (X, \mathcal{A}) be a symmetric (v, k, 1)-BIBD and let A_0 be any block of \mathcal{A} . Explain how the blocks of the residual design $Res(X, \mathcal{A}, A_0)$ can be partitioned into resolution classes.
- 7. Another way of defining a projective plane is as a set X of points and a set \mathcal{A} of subsets of X called lines such that the following three axioms hold:
 - A1: Given any two points, there is exactly one line that contains both of them.
 - A2: Given any two lines, there is exactly one point that is contained in both of them.
 - A3: There is a subset of X consisting of 4 points, no three of which are collinear.

Prove that under these axioms, every line of the design (X, \mathcal{A}) contains the same number of points.