Instructions

- Answer each question completely; justify your answers.
- This assignment is due at the start of class on Wednesday January 22nd.
- 1. Show that for a (v, 3, 1)-BIBD to exist it is necessary that $v \equiv 1$ or 3 (mod 6).
- 2. What are the necessary conditions for the existence of a (v, 4, 1)-BIBD?
- 3. Prove that every (6,3,2)-BIBD is simple.
- 4. (a) Consider the set $S = \{1, 2, 3, 4, 5, 6\}$. Find a partition of S into ordered subsets of size three, such that each subset is either of the form $\{x, y, z\}$ such that x + y = z or of the form $\{x, y, z\}$ such that x + y + z = 13.
 - (b) For each set $A = \{x, y, z\}$ from part (a), where x < y < z, let A' be the set $\{0, x, x + y\}$. Let σ be the permutation (0 1 2...12). For each set A', list the sets $\sigma^i(A')$ for i = 0, 1, 2, ..., 12.
 - (c) Taken as blocks, what type of design do the sets from part (b) form?
- 5. Let A_0 be a block in a (v, k, 1)-BIBD, say (X, \mathcal{A}) .
 - (a) Find a formula for the number of blocks $A \in \mathcal{A}$ such that $|A \cap A_0| = 1$.
 - (b) Use this formula to show that $b \ge k(r-1) + 1$ if a (v, k, 1)-BIBD exists.
 - (c) Using the facts that vr = bk and v = r(k-1) + 1, deduce that $(r-k)(r-1)(k-1) \ge 0$ and hence $r \ge k$, which implies Fisher's Inequality.
- 6. Let A_0 be a block in a (v, k, 1)-BIBD, say (X, \mathcal{A}) . Let $x \in X \setminus A_0$ and show that there are at least k blocks that contain x and intersect A_0 . From this, deduce that $r \ge k$, which implies Fisher's Inequality.