Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 12:00 on Monday April 2nd in Assignment Box #32.
- 1. Use the SQS doubling construction to build a SQS(8).
- 2. Let (X, \mathcal{A}) be a t- (v, k, λ) design and let $\mathcal{B} = \{X \setminus A : A \in \mathcal{A}\}$. Prove that (X, \mathcal{B}) is also a t-design and determine its parameters in terms of v, k and λ .
- 3. (a) Construct a symmetric idempotent quasigroup of order 9 on the set $X = \mathbb{Z}_9$.
 - (b) When this quasigroup is used to construct a STS(27) via the Bose construction, what are the blocks that contain the point 3_0 ?
 - (c) When this quasigroup is used to construct a STS(27) via the Bose construction, what are the blocks that contain the point 6_1 ?
- 4. (a) Construct a symmetric half-idempotent quasigroup of order 8 on the set $X = \mathbb{Z}_8$.
 - (b) When this quasigroup is used to construct a STS(25) via the Skolem construction, what are the blocks that contain the point 3_0 ?
 - (c) When this quasigroup is used to construct a STS(25) via the Skolem construction, what are the blocks that contain the point 6_1 ?
- 5. (a) Describe how to construct an idempotent quasigroup of every even order $n \ge 4$.
 - (b) Describe how to use the construction from part (a) to construct a TTS(3n).
 - (c) Use these constructions to build a TTS(12).
- 6. (a) Let 1 < m < n be integers. A Latin square L of order n has a subsquare of order m if there is an $m \times m$ subarray of L that is itself a Latin square on a subset of m of the n symbols of L. Prove that if a Latin square of order n has a subsquare of order m then $2m \leq n$.
 - (b) Let 1 < m < n be integers. Suppose that L_1, L_2, \ldots, L_s are MOLS of order n. Suppose further that L_1, L_2, \ldots, L_s each have a subsquare of order m situated in the same positions (without loss of generality, in the upper left $m \times m$ corner). Prove that $(s+1)m \leq n$ and also that these subsquares form a set of s MOLS of order m.
- 7. A Steiner triple system that is resolvable is called a *Kirkman Triple System*. Prove that if a KTS(v) exists then $v \equiv 3 \pmod{6}$.