Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday March 15th in Assignment Box #32.
- 1. Show that if there exists a Rosa triple system of order m involving a partition of the set $\{1, 2, \ldots, 3m+2\} \setminus \{2m+1, 3m+1\}$ then $m \equiv 1$ or 2 (mod 4).
- 2. Construct a cyclic STS(57).
- 3. Construct a cyclic STS(69).
- 4. Suppose S is a Steiner triple system of order n. Make three copies of S, one on the point set $X_1 = \{1, 2, \ldots, n\}$, a second on $X_2 = \{n + 1, n + 2, \ldots, 2n\}$ and the third on $X_3 = \{2n + 1, 2n + 2, \ldots, 3n\}$. Suppose that L_1 , L_2 and L_3 are three mutually orthogonal Latin squares of order n, each of them on the symbol set $\{1, 2, \ldots, n\}$. For $t \in \{1, 2, 3\}$, add (t 1)n to each cell of L_t , yielding a Latin square L_t^* . Now construct n^2 triples $\{L_1^*(i, j), L_2^*(i, j), L_3^*(i, j)\}$ where $1 \leq i \leq n, 1 \leq j \leq n$ and $L_t^*(i, j)$ denotes the symbol contained in the cell whose location is row i column j of L_t^* . Verify that these n^2 triples, when combined with those of the three copies of S, form a STS(3n).
- 5. Assuming that a 5-(12, 6, 1) design exists, determine λ_i for each $i \in \{0, 1, \dots, 4\}$.
- 6. Prove that if an S(2, k, v) exists then $v 1 \ge k(k 1)$. Moreover, prove that if inequality occurs then in fact $v \ge k^2$.
- 7. Show that if an S(t, k, v) exists then $v t + 1 \ge (k t + 1)(k t + 2)$. As a corollary, show that the existence of an S(5, 8, v) requires that $v \ge 24$.