Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday March 8th in Assignment Box #32.
- 1. (a) Find a (21, 5, 1) difference set.
 - (b) Use it to construct a projective plane of order 4.
- 2. Construct a (31, 5, 2) difference family.
- 3. Recall that Heffter's First Difference Problem is to find a partition of $\{1, 2, ..., 3m\}$ into 3-subsets of the form $\{a, b, c\}$ such that a + b = c or $a + b + c \equiv 0 \pmod{6m + 1}$.
 - (a) Find a solution to Heffter's First Difference Problem for m = 3 and then use it to construct a STS(19).
 - (b) Find a solution to Heffter's First Difference Problem for m = 4 and then use it to construct a STS(25).
- 4. Find a Skolem triple system of order 8 and use it to construct a STS.
- 5. Find an O'Keefe triple system of order 10 and use it to construct a STS.
- 6. Let L and L^* be two Latin squares of order n, and let $L_{i,j}$ (resp. $L_{i,j}^*$) denote the symbol contained in the cell whose location is row i column j of L (resp. L^*). The squares L and L^* are said to be *orthogonal* if the set of ordered pairs $\{(L_{i,j}, L_{i,j}^*) : 1 \leq i \leq n, 1 \leq j \leq n\}$ has cardinality n^2 (i.e., each possible ordered pair of symbols occurs, and it does so exactly once). A set $\{L_1, L_2, \ldots, L_t\}$ of t Latin squares of order n is said to be a set of mutually orthogonal Latin squares if each pair of Latin squares is orthogonal.
 - (a) Find a pair of orthogonal Latin squares of order 3.
 - (b) Find a set of three mutually orthogonal Latin squares of order 4.
 - (c) Show that there is no pair of orthogonal Latin squares of order 2.
- 7. Let $v \equiv 2 \pmod{4}$. Prove that no resolvable $(v, \frac{v}{2}, \frac{v}{2} 1)$ -BIBD can exist.