Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday February 1st in Assignment Box #32.
- 1. Suppose that A is a block of a (v, k, λ) -BIBD. For each $i \in \{0, 1, ..., k\}$, let x_i denote the number of blocks other than A that intersect A in precisely i elements. Prove that $\sum_{i=0}^{k} ix_i = k(r-1)$ and also that $\sum_{i=0}^{k} i(i-1)x_i = k(k-1)(\lambda-1)$.
- 2. Suppose (X, \mathcal{A}) is a PBD such that $v = |X|, \lambda = 1$ and the blocks of \mathcal{A} have size 3 and k. Prove that if $v \equiv 2 \pmod{3}$ then $k \equiv 2 \pmod{3}$.
- 3. Suppose that a (v, k, λ) -BIBD is both a derived design and a residual design (of some other design(s)). Prove that $v = 2\lambda + 2$.
- 4. Let (X, \mathcal{A}) be a symmetric (v, k, λ) -BIBD. Prove that $k > \lambda$.
- 5. Let (X, \mathcal{A}) be a symmetric (v, k, 1)-BIBD and let A_0 be any block of \mathcal{A} . Explain how the blocks of the residual design $Res(X, \mathcal{A}, A_0)$ can be partitioned into resolution classes.
- 6. Another way of defining a projective plane is as a set X of points and a set \mathcal{A} of subsets of X called lines such that the following three axioms hold:
 - A1: Given any two points, there is exactly one line that contains both of them.
 - A2: Given any two lines, there is exactly one point that is contained in both of them.

A3: There is a subset of X consisting of 4 points, no three of which are collinear.

Prove that under these axioms, every line of the design (X, \mathcal{A}) contains the same number of points.