Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday January 29th in Assignment Box #37.
- 1. Suppose that a BIBD has v = 8 and k = 4. Prove that $b \ge 14$.
- 2. Suppose (X, \mathcal{A}) is a PBD such that $v = |X|, \lambda = 1$ and the blocks of \mathcal{A} have size 3 and k. Prove that if $v \equiv 2 \pmod{3}$ then $k \equiv 2 \pmod{3}$.
- 3. Let (X, \mathcal{A}) be a symmetric (v, b, r, k, λ) -BIBD and let A_0 be any block of \mathcal{A} . Prove that $(X \setminus A_0, \{A \setminus A_0 : A \in \mathcal{A} \setminus \{A_0\}\})$ is a BIBD and determine its five parameters.
- 4. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D\}$. Let $\mathcal{A} = \{1234, 1567, 189A, 1BCD, 258B, 269C, 27AD, 359D, 36AB, 378C, 45AC, 468D, 479B\}$. Let $\mathcal{B} = \{1234, 1567, 189A, 1BCD, 258B, 269C, 27AD, 35AC, 368D, 379B, 459D, 46AB, 478C\}$.
 - (a) Select a block A_0 (*i.e.*, actually pick one) from \mathcal{A} and also a block B_0 from \mathcal{B} and use the construction from question 3 to construct two new designs by deleting the chosen blocks from the two given designs (X, \mathcal{A}) and (X, \mathcal{B}) .
 - (b) Prove that the two designs constructed in part (a) are isomorphic.
 - (c) Find an isomorphism between (X, \mathcal{A}) and (X, \mathcal{B}) .